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e ML and MAP decoding

e Mutual Information

e EXIT functions

e EXIT functions over Binary Erasure Chan-
nel

e EXIT functions over Gaussian Channel

e Bounds on EXIT functions

This talk is base on joint works with G. Kramer, S.
Litsyn, S. ten Brink, E. Sharon



ML and MAP decodings

C is a binary code of the length n
We transmit ¢ € C and receive y = ¢ + noise

Decoding for minimization of the word error
rate (ML Decoding):

Find ¢’ € C such that Pr(c'|y) = max.cc Pr(cly)
Bitwise decoding (MAP or APP decoding):

For each code coordinate 3 we compute

PI’(Cj = O|g)
Pr(c; = 1y)

Let Q[J] — (y17 e Yi—1 Y5415 - - 7yn) Then

PI’(Cj = 1|g) PI’(C]' = 1|g[]]) Pr(Cj = 1|y])



MAP decoders are used as constituent decoders
in iterative codes (TURBO, LDPC and so on
codes)
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Mutual Information

e X and Y are random variables

e Mutual Information between X and Y s
defined as

Pr(z|y)

I(X;Y) = Z Pr(z) Pr(y|x) log Pr(2)

L,y

e If X and Y are independent then

I(X:Y)=0

oIf YV is a function of X, and
Pr(t=0)=Pr(z=1)=1/2
then I(X;Y) =1



Extrinsic Information Transfer (EXIT)

C1

Encoder

function
U1
: MAP
Channel | Yj Decoder
Un

— Pr(cl\gm)

€ = Pr(cj|£[j]>

ey = Pr(cn|g[n]

The average input (apriori) information
1

== I(C}Y,
"y

The average output (aposteriori) information

out —

ZI(

I,ut(I;,) is called the EXIT function of the code

over a given channel

Stephan ten Brink intoroduced this notion;
also suggested tracking evolution of mutual in-
formation during iterative decoding
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Binary Erasure Channel

C erasure Y

I(C;Y)=1—g¢

t

l//

G

G is a generator matrix of a code C
G¢ IS a t columns submatrix of G
The function

re(C) = Z rank(G¢), t=1,...,n

Yvef{l,...,n}
|Wh|=t

IS called the information function of C
(Helleseth, Klgve, Levenshtein, 1997)



Theorem 1

BEC(Im>

out

=1-= Z It = 1) 'l mi(C) — (n =i+ 1) - (O)].

Numbers r; can be found with the help of
generalized Hamming weight enumerator A’:

ry = complicated function of(Al)

For example we know Al for the Hamming
code. Therefore we can compute I,,:(1;,)
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“Advantages” of MAP decoding over
ML decoding

In the case of ML decoding there exist optimal
codes:

Binary Symmetric Channel - Hamming codes are
optimal

Binary Erasure Channel - MDS codes are optimal
k

l//

any k positions are independent




Simplex code
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How about MAP decoding?
Area Property

Theorem 2 In Binary Erasure Channel for a
code (linear or nonlinear) of rate R we have

1
/O Tout(Iin)dliy, =1 — R

It means there is no discrimination; every code
IS the best one somewhere
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Duality Property

Theorem 3 In BEC the EXIT functions of a
code and its dual code are connected:

Iout(Iin) =1- IoLut(]- — Iin)
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Gaussian and Other Channels
We transmit ¢; and receive y; = ¢; + z;

Def. 1 A channel is called symmetric if
PY|C(—3/| —c) = py|c(y|c)-
Def. 2 A density f is called consistent if it sat-
isfies
f(z) = f(—=z)e”. (1)

Theorem 4 If inputs of a MAP decoder of a
linear (distance invariant) code are symmetric
and consistent then its outputs are also sym-
metric and consistent.

Repetition code of length n over AWGN chan-
nel N(O,o0):

—($—2/0'2)0'2/2 |092(1 _|_ e_x)dx

o
= e
m 87‘(‘
no —(z—2/n?%02)n?02/2 —x
—— | e [o] 1+e dx
. go( )

I out



Theorem 5 Single Parity Check Code of length
n over symmetric and consistent channel has
the following EXIT function

Iy = 23— g2y
e In2 = (2i)(2i — 1)
1 & 1 .
Tout — — [E(T?)]" 1,
o In2 /= (2i)(2i — 1)
where

T = Pr(c; = 1ly;) — Pr(c; = —1|y;).



Duality for AWGN?

AWGN "\ — 1_TAWGN s
Iout,parity check(Im) =1 Iout,repetltlon(1 Iin)

EXIT curve for a [6,5] parity check code
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Area property for AWGN?

The area theorem also does not hold in AWGN
channel, but at least for repetition and single
parity check codes

1
/O Iout(Iin)dIin

IS very closeto 1 — R



EXIT functions BEC & AWGN

Theorem 6 For single parity check codes we

have
TAWGN - 1 7BEC
Tout ( No Z - In(2)(2i — 1)(20) Lout ~ (€);
where
(ln%—4]€—gR)2
., _/-|-1 0421 . 16%R "

_ 42 £y
(1 —t¢ )\/167TNOR



EXIT curve - [31,26] Hamming code
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Probability of MAP Decoding Error
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Bounds on EXIT functions

1 Y1 €1 = Pr(cl‘gm)
Encoder| f MAP |
ncoder| . Channel | ¥ Decoder € = Pr(cj|gm)
Cn Un €n _ Pr(cn|g[n]
1 -
Ly, = ;Z[(CJ,Y?)
J
1

Iout = gZI(Cj; Ej)
J

We would like to find a channel that maximizes
(minimizes) I,, for given I,

I. Land, S. Huettinger, P. Hoeher, J. Huber;
and I. Sutskover, S. Shamai proved recently
the following theorems:

Theorem 7 The Binary Symmetric Channel
minimizes and Binary Erasure Channel maxi-
mizes I,,+ for given I, in the case of repetition
code.



Theorem 8 The Binary Symmetric Channel
maximizes and Binary Erasure Channel mini-
mizes I,,+ for given I;, in the case of single
parity check code.
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