General Properties of Optimal Decoding: EXIT function characterization of MAP decoding

Alexei Ashikhmin Bell Labs

- ML and MAP decoding
- Mutual Information
- EXIT functions
- EXIT functions over Binary Erasure Channel
- EXIT functions over Gaussian Channel
- Bounds on EXIT functions

This talk is base on joint works with G. Kramer, S. Litsyn, S. ten Brink, E. Sharon

ML and MAP decodings

C is a binary code of the length n We transmit $\underline{c} \in C$ and receive $\underline{y} = \underline{c} + \text{noise}$

Decoding for minimization of the word error rate (ML Decoding):

Find $\underline{c}' \in C$ such that $\Pr(\underline{c}'|\underline{y}) = \max_{\underline{c} \in C} \Pr(\underline{c}|\underline{y})$

Bitwise decoding (MAP or APP decoding):

For each code coordinate j we compute

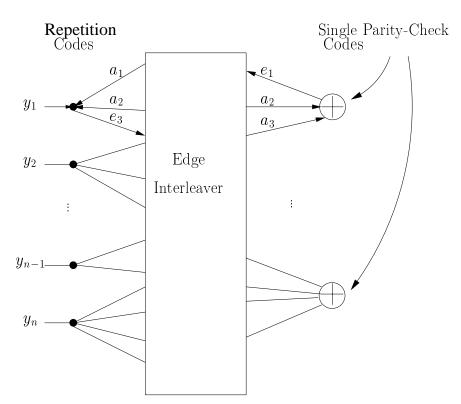
$$\ln \frac{\Pr(c_j = 0|\underline{y})}{\Pr(c_j = 1|\underline{y})}$$

Let $\underline{y}_{[j]} = (y_1, \dots, y_{j-1}, y_{j+1}, \dots, y_n)$. Then

$$\ln \frac{\Pr(c_j = 0|\underline{y})}{\Pr(c_j = 1|\underline{y})} = \ln \frac{\Pr(c_j = 0|\underline{y}_{[j]})}{\Pr(c_j = 1|\underline{y}_{[j]})} + \ln \frac{\Pr(c_j = 0|y_j)}{\Pr(c_j = 1|y_j)}$$

MAP decoders are used as constituent decoders in iterative codes (TURBO, LDPC and so on codes)

LDPC codes:



Mutual Information

- X and Y are random variables
- ullet Mutual Information between X and Y is defined as

$$I(X;Y) = \sum_{x,y} \Pr(x) \Pr(y|x) \log \frac{\Pr(x|y)}{\Pr(x)}$$

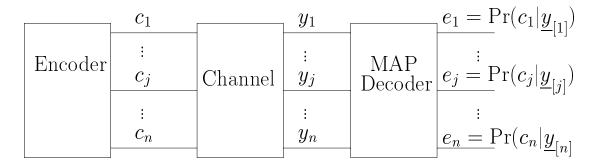
ullet If X and Y are independent then

$$I(X;Y) = 0$$

 \bullet If Y is a function of X, and

$$\Pr(x=0) = \Pr(x=1) = 1/2$$
 then $I(X;Y) = 1$

Extrinsic Information Transfer (EXIT) function



The average input (apriori) information

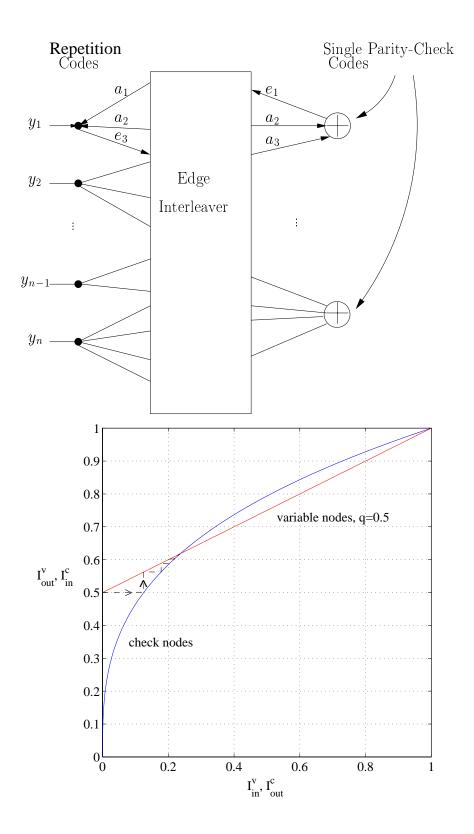
$$I_{in} = \frac{1}{n} \sum_{j} I(C_j; Y_j)$$

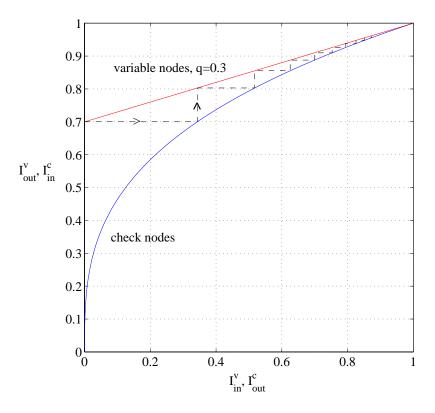
The average output (aposteriori) information

$$I_{out} = \frac{1}{n} \sum_{j} I(C_j; E_j)$$

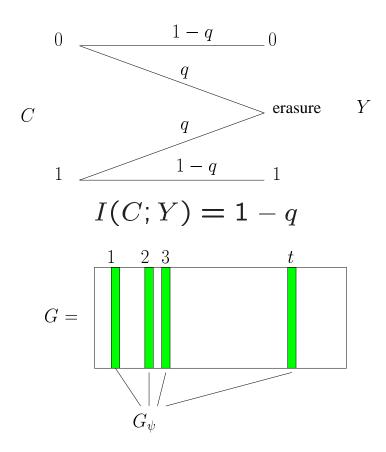
 $I_{out}(I_{in})$ is called the EXIT function of the code over a given channel

Stephan ten Brink intoroduced this notion; also suggested tracking evolution of mutual information during iterative decoding





Binary Erasure Channel



G is a generator matrix of a code C G_{ψ} is a t columns submatrix of G The function

$$r_t(C) = \sum_{\substack{\psi \in \{1,\ldots,n\} \ |\psi|=t}} \operatorname{rank}(G_{\psi}), \ t = 1,\ldots,n$$

is called the information function of C (Helleseth, Kløve, Levenshtein, 1997)

Theorem 1

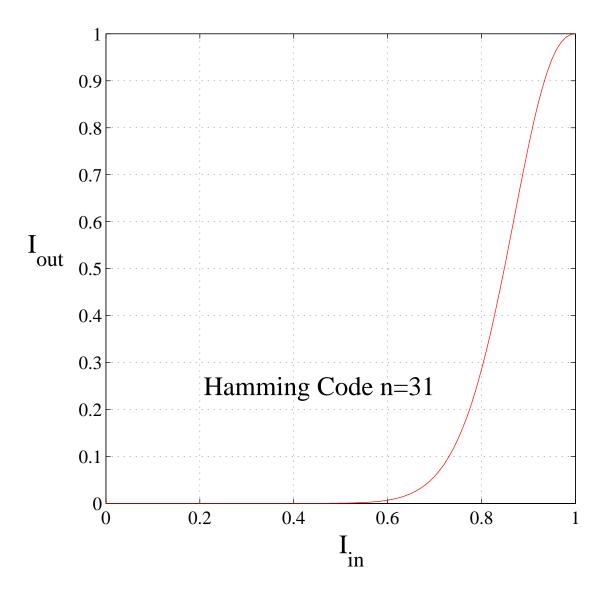
$$I_{out}^{BEC}(I_{in})$$

$$= 1 - \frac{1}{n} \sum_{t=1}^{n} I_{in}^{i-1} (1 - I_{in})^{n-i} [i \cdot r_t(C) - (n-i+1) \cdot r_t(C)].$$

Numbers r_t can be found with the help of generalized Hamming weight enumerator A_i^r :

 $r_t = \text{complicated function of}(A_i^r)$

For example we know A_i^r for the Hamming code. Therefore we can compute $I_{out}(I_{in})$

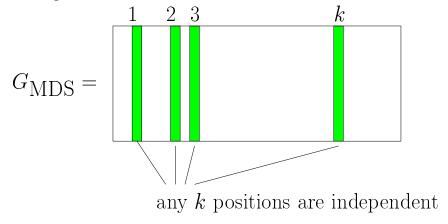


"Advantages" of MAP decoding over ML decoding

In the case of ML decoding there exist optimal codes:

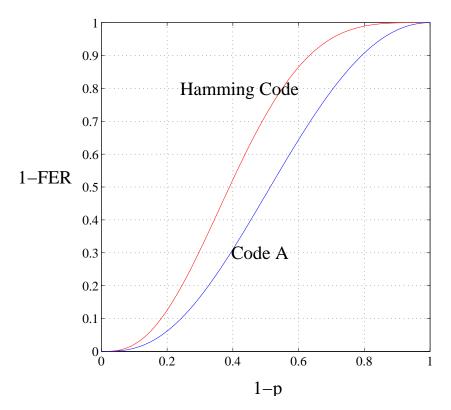
Binary Symmetric Channel - Hamming codes are optimal

Binary Erasure Channel - MDS codes are optimal



Simplex code

Code A



FER=frame (code word) error rate p is the channel erasure probability

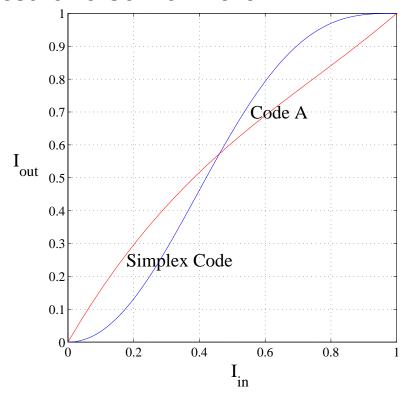
How about MAP decoding?

Area Property

Theorem 2 In Binary Erasure Channel for a code (linear or nonlinear) of rate R we have

$$\int_0^1 I_{out}(I_{in}) dI_{in} = 1 - R$$

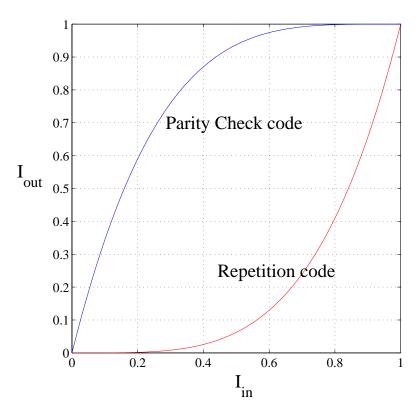
It means there is no discrimination; every code is the best one somewhere



Duality Property

Theorem 3 In BEC the EXIT functions of a code and its dual code are connected:

$$I_{out}(I_{in}) = 1 - I_{out}^{\perp}(1 - I_{in})$$



Gaussian and Other Channels

We transmit c_j and receive $y_j = c_j + z_j$

Def. 1 A channel is called symmetric if

$$p_{Y|C}(-y|-c) = p_{Y|C}(y|c).$$

Def. 2 A density f is called consistent if it satisfies

$$f(x) = f(-x)e^x. (1)$$

Theorem 4 If inputs of a MAP decoder of a linear (distance invariant) code are symmetric and consistent then its outputs are also symmetric and consistent.

Repetition code of length n over AWGN channel $N(0,\sigma)$:

$$I_{in} = \frac{\sigma}{\sqrt{8\pi}} \int e^{-(x-2/\sigma^2)\sigma^2/2} \log_2(1+e^{-x}) dx$$

$$I_{out} = \frac{n\sigma}{\sqrt{8\pi}} \int e^{-(x-2/n^2\sigma^2)n^2\sigma^2/2} \log_2(1+e^{-x}) dx$$

Theorem 5 Single Parity Check Code of length n over symmetric and consistent channel has the following EXIT function

$$I_{in} = \frac{1}{\ln 2} \sum_{i=1}^{\infty} \frac{1}{(2i)(2i-1)} [E(T^{2i})]$$

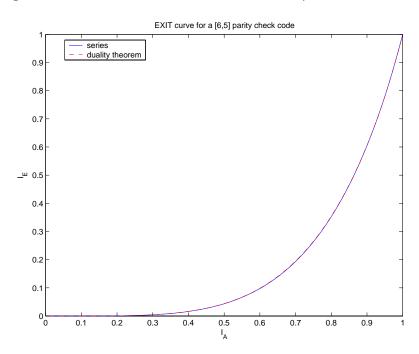
$$I_{out} = \frac{1}{\ln 2} \sum_{i=1}^{\infty} \frac{1}{(2i)(2i-1)} [E(T^{2i})]^{n-1},$$

where

$$T = \Pr(c_j = 1|y_j) - \Pr(c_j = -1|y_j).$$

Duality for AWGN?

$$I_{out, \mathsf{parity}}^{AWGN}$$
 check $(I_{in}) = 1 - I_{out, \mathsf{repetition}}^{AWGN} (1 - I_{in})$



I_{in}	0.02	0.08	0.2
I_E exact	1.105e - 8	9.495e - 6	0.00070
I_E from duality	0	1.124e - 5	0.00073

0.4	0.6	0.8	0.9	0.96
0.0161	0.0975	0.3525	0.6046	0.8196
0.0163	0.0984	0.3541	0.6052	0.8194

Area property for AWGN?

The area theorem also does not hold in AWGN channel, but at least for repetition and single parity check codes

$$\int_0^1 I_{out}(I_{in}) dI_{in}$$

is very close to 1-R

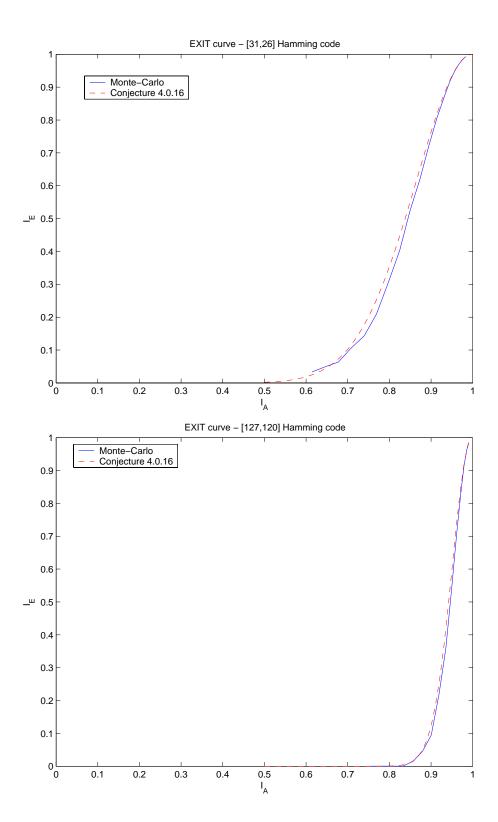
EXIT functions BEC ⇔ AWGN

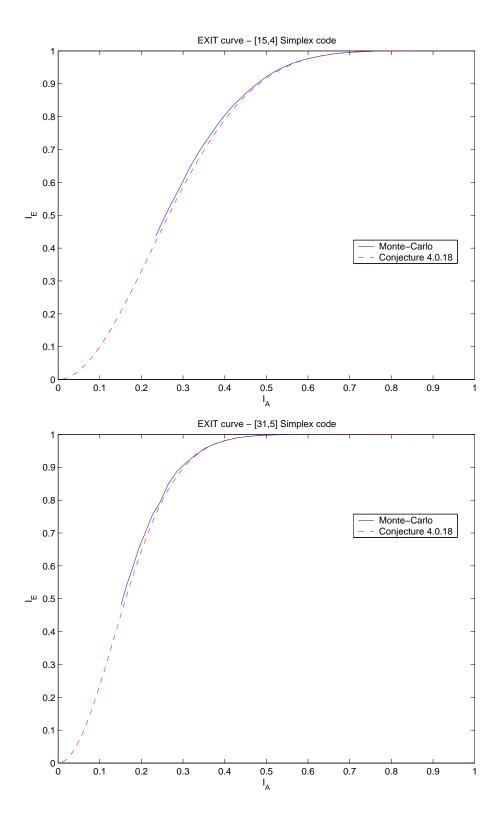
Theorem 6 For single parity check codes we have

$$I_{out}^{AWGN}(\frac{E_b}{N_0}) = \sum_{i=1}^{\infty} \frac{1}{ln(2)(2i-1)(2i)} I_{out}^{BEC}(\epsilon_i),$$

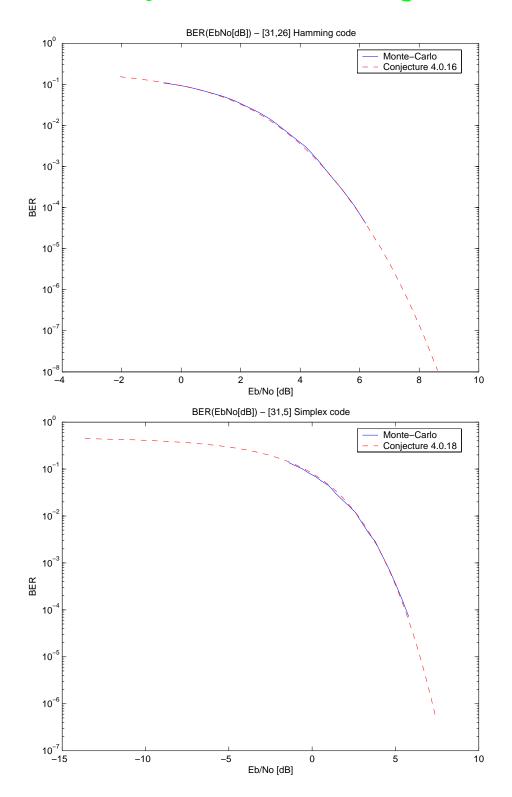
where

$$\epsilon_{i} = 1 - \int_{-1}^{+1} \frac{2t^{2i}}{(1 - t^{2})\sqrt{16\pi \frac{E_{b}}{N_{0}}R}} e^{-\frac{(\ln \frac{1+t}{1-t} - 4\frac{E_{b}}{N_{0}}R)^{2}}{16\frac{E_{b}}{N_{0}}R}} dt$$

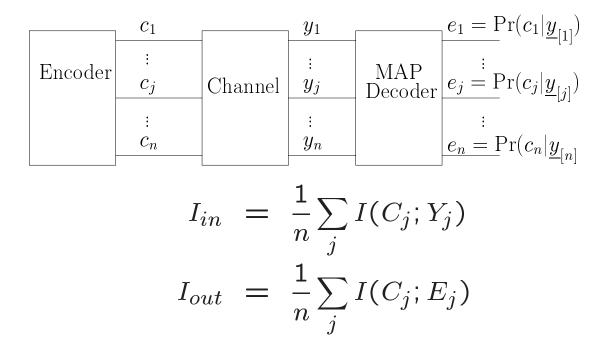




Probability of MAP Decoding Error



Bounds on EXIT functions



We would like to find a channel that maximizes (minimizes) I_{out} for given I_{in}

I. Land, S. Huettinger, P. Hoeher, J. Huber; and I. Sutskover, S. Shamai proved recently the following theorems:

Theorem 7 The Binary Symmetric Channel minimizes and Binary Erasure Channel maximizes I_{out} for given I_{in} in the case of repetition code.

Theorem 8 The Binary Symmetric Channel maximizes and Binary Erasure Channel minimizes I_{out} for given I_{in} in the case of single parity check code.

