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PROJECT OVERVIEW

GOALS

� Fundamental advances in state-of-the-art of 
computing and representing swept volumes and 
associated operations that are smoother than 
existing methods and incorporate effectively 
computable shape invariants.

� Application of results to some important problems 
that highlight the utility and advantages of the 
new algorithms.



OUTCOMES
� New algorithms for swept volume operations that 

are  more efficient, smoother and capable of 
resolving accuracy, stability and consistency 
problems.

� Accurate and fast programs for use in virtual 
sculpting and tissue engineering that include shape 
verification capabilities.

� Techniques and insights helpful in rigorous 
formulation of the foundations of computational 
topology.



PRESENTATION OVERVIEW

• Some fundamental concepts and questions in 
computational topology

• Brief introduction to swept volumes and 
associated operations

• Smoother interpolation in object representation

• Using singularity theory to analyze and represent 
swept volumes

• Shape invariants and their applications to swept 
volumes



PRESENTATION OVERVIEW 
(continued)

• Applications of new swept volume algorithms to 
virtual sculpting

• Modeling heterogeneous structures arising in 
tissue engineering using swept volume techniques

• Initial results on smoother representation of 
swept volumes and their intersections

• Recapitulation of project goals, research plans and 
results



Computational topology 
fundamentals

Many fundamental questions in computational 
topology have not been answered  in a broadly 
accepted way. Moreover, numerous foundational 
concepts have as yet not been delineated  in an 
unambiguous and widely adopted manner.

For example, when do two objects M and N
embedded in Euclidian n-space Rn have the same 
shape? Interpreted in the strictest possible sense, 
an appropriate answer seems to be the following:



M and N have the same shape if there is a Euclidian 
transformationΦ:Rn

�Rn , with Φ�Euc(n) such that 
Φ(M)=N. This can be expressed precisely in the 
category of Euclidian embeddings, by saying that 
there is a Euclidian isomorphism Φ such that the 
diagram of embeddings:

Rn

Rn
X

f

g
Φ (1)

commutes, where f,g:X�Rn are isometric embeddings 
with F(X)=M, g(X)=N. On the other hand, possibly the 
weakest reasonable interpretation of shape is:

M and N have the same shape if there is a 
homeomorphism Φ:Rn

�Rn such that the diagram (1) 
commutes.



Note that this weak form of shape characterization 
is not synonymous with homeomorphism type. For 
example, the two knots shown below are 
homeomorphic, but not isomorphic in category of 
continuous embeddings.

Trefoil knot

Fig 1. Homeomorphic objects of different shape



Equivalence in the category of embeddings involves 
more invariants than in the topological category –
knotting and linking characteristics must also be 
computed.

As shape should be independent of size, a better 
strict definition may be the following: M and N
have the same shape if there is a commutative 
diagram

Rn

RRn
X

f

g
� (2)

where Ψ�Sim(n) – the Lie group of similarities of 
Rn. Of course, there is a whole range of 
intermediate definitions between this and the 
topological category.



For computational representations, the embeddings of 
interest, f and g, are close to one another (in an 
appropriate topology), so the question of shape can be 
reduced to the categories of topological spaces and 
homeomorphisms, smooth varieties and morphisms, 
etc. Then some of the key issues are:

Accuracy – If M=f(X) is the exact object, and N=g(X)
is an algorithmically rendered approximation, how 
close are f and g in a chosen topology?

Consistency – Let g be an approximate embedding 
computed using an algorithm A and data D so that 
g=gA,D. When do M and N=gA,D(X) have the same shape?



Stability (Robustness) – Do f(X) and gA,D(X) have the 
same shape when f and g are sufficiently close?

To algorithmically check for preservation of shape, 
one needs effectively computable shape 
characteristics (invariants) . A complete set of 
effectively computable shape invariants is available in 
some instances; for example, the Euler characteristic 
for closed surfaces in R3. However, in more complicated 
situations it is well known that even basic invariants 
such as the fundamental group are not effectively 
computable (Markov, Novikov).



Basic question : For what classes of objects is it 

possible to include  sufficiently many effectively 

computable shape invariant subroutines in a 

representation algorithm to effectively resolve the 

questions of consistency and stability

Partial answer : It seems reasonable to begin the 

investigation with the class of swept volumes.



Smoother Interpolation

Can the current interpolation methods such as 
piecewise linear and NURBS be effectively 
supplanted by smoother procedures capable of 
incorporating more of the known object features in 
the next generation of representation programs?



Swept volumes may provide a clue to a possible 
affirmative answer to this question. The key here is 
that the boundary �M of a swept volume M has a 
natural description as a flow of a differential 
equation, namely the sweep-envelope differential 
equation.

Perhaps local flows of differential equations, 
smoothly joined over the entire boundary, can serve 
as the basis of a better interpolation scheme. For 
example, such a formulation is likely to lead to more 
efficient intersection schemes.



Introduction to Swept Volumes 
Operations

An initial object M is a compact, connected, n-
dimensional, piecewise smooth submanifold of Rn. 
This is acted upon by a sweep � - a continuous 
function

�: I=[0,1]�Diffc(Rn),

taking values in the space of diffeomorphisms that 
are compactly different from the identity, with 
associated sweep map �(x,t) := �t(x) and swept volume

S
�
(M):=im� = �(M�I) � Rn (3)



extended sweep map �*(x,t) := (�t(x),t) and extended 
swept volume

S
�

* (M):=im�* = �* (M�I) � Rn+1 (4)

The sweep and extended sweep are generated, 
respectively, by the sweep differential equation
(SDE) and extended sweep differential equation
(ESDE)

(5)

and
(6)



and

P(S
�

* (M)) = S
�
(M),

where P(x,t)=x is the natural projection Rn
�R� R.

A swept volume is a variety as shown below and in 
the subsequent pictures.

Fig. 2. Swept volume of a disk in R3

(with boundary stratification)





The SDE leads to a handy decomposition of the 
boundary of the swept volume via the sweep flow 
formula

� S
�
(M) = �-M(0)� �+M(1)� G

�
(M)/T

�
, (7)

where �-M(0) are initial ingress points where (5) 
points into the interior of M=M(0):=�0(M), �+M(1)
are the terminal egress points where (5) points out 
of the interior of M(1):=�1(M), G

�
(M) are the grazing 

points where (5) points neither into nor out of the 
interior of M(t):=�t(M),0	 t 	 1, and T

�
is a trim set of 

interior self-intersection points.



There is a variant of the SDE called the sweep 
envelope differential equation (SEDE) of the form

(8)

having the property that its trajectories starting on 
the initial grazing point set �0M(0) generate all of 
G

�
(M), thereby providing the basis for very efficient 

swept volume algorithms.



Smoother Interpolation
It follows from the SEDE (8) that points on the 
boundary � S

�
(M) of a swept volume are naturally 

represented by the local flow (generated by a 
differential equation) of a codimension-1 submanifold 
as shown below.

Fig 3. Local boundary sweep



A natural question is can this be extended to more 
general object boundaries and how can such local 
sweep representations be smoothly blended 
together? Preliminary results obtained concerning 
this question are quite promising, so smoother more 
versatile interpolation schemes may be feasible via 
this approach.



Stratification of Swept Volumes
There is a natural way of decomposing swept 

volumes based on singularity/stratification theory 
that begins with the sweep map

� : (M�I) � Rn.

The image �(M�I)=S
�
(M) may be written in the form

S
�
(M) = V1� V2� …� Vm (9)

Where the strata {Vk} are submanifolds of Rn with 
dimensions raging from 0 to n. This stratification of 
the swept volume is of the Thom-Boardman type, 
wherein the strata of dimension less that n
correspond to singularities of �, i.e. points where �

has less than maximal rank.



It can be proven that the stratification is Whitney 
regular, meaning roughly that all points in each 
stratum Vk are “equally singular” and each pair of 
abutting strata Vj , Vk join at well defined angles (see 
Fig.2).

A one-dimensional reduction in the singularity 
characterization of swept volumes is realized by 
using the flow of the SEDE (8) represented in the 
form

� : �0M(0)�I � Rn (10)



The Thom-Boardman classes of (10) generate the 
stratification

G
�
(M)= W1� W2� …� Wq (11)

Here the trade-off is that � is considerably 
more complicated than �. Nevertheless, the 
stratification (11) can also be shown to be regular.

Determining the strata tends to be 
computationally expensive, but useful local normal 
forms are readily obtained from this singularity 
theory approach (cf. Abdel-Malek, Blackmore, 
Shapiro,…). Regularity allows one to verify 
consistency and stability more qualitatively using 
Thom-Mather theory.



Computable Shape Invariants
One of the reasons that categorical (shape) 

invariants are rather accessible for swept volumes 
S

�
(M) is that they are essentially isomorphic to M�I

(modulo self intersection or trimming) in most of the 
shape categories of interest.

The most obvious shape invariants are the 
characteristic (cohomology) classes such as the Euler 
class, Pontryagin classes, and Stiefel-Whitney 
classes. These are invariants that can be used to 
check for consistency and stability, and they are 
effectively computable via simplicial construction.



They do not, in general provide a complete set of 
invariants, but in some cases they are sufficient as 
with the Euler class (characteristic) for embedded 
surfaces. Local versions of some of these invariants 
can also be helpful in detecting singular behavior such 
as self-intersection.

There are other related, possibly effectively 
computable, approaches to the questions of 
consistency and stability that look promising, 
especially for swept volumes.



For example, obstruction theory fits rather nicely 
into the structure of swept volumes owing to the 
fiber structure illustrated below in Fig 4.

Fig 4. The fibration P-1: S
�
(M)� S

�

* (M).



Is S
�
(M) a singular (corresponding say to the 

adjunction of cells in a CW-complex structure) or 
nonsingular lifting of S

�

* (M)? Obstruction theory (in 
particular Moore-Postnikov factorization) is a 
natural approach to resolving this question.



Application to 
Virtual Sculpting

A new algorithm will be developed for use in virtual 
sculpting that improves on the SDE based scheme 
devised by Maiteh et al. To accomplish this, an SEDE 
base will be used together with ray-casting and more 
efficient localization and triangulation refinement 
procedures. 





Main Ideas of Virtual Sculpting

Shutter Glasses

Motion 
Tracker

Ideas

User (Stylist 
or Designer)

Control Unit
Transmitter

Virtual 
Workpiece

Virtual Tool

Computer

Sensory 
Glove

Shutter GlassesShutter Glasses

Audio Device

Y
Z

Real world Virtual world

YZ X

X



Analogy: NC Machining Simulation



Solid Modeling Engine

Load Workpiece Load Workpiece Generate Swept Volume Generate Swept Volume 

Scan ConversionScan Conversion

Workpiece Dexel  DataWorkpiece Dexel  Data Swept Volume Dexel
Data

Swept Volume Dexel
Data

Boolean OperationBoolean Operation

Design ObjectDesign Object



Application to Tissue Engineering

The heterogeneous structures found in tissue 
engineering can be modeled as objects produced by 
swept volume operations. 

• Examples include fiberous materials, bone, 
connective tissues, growth matrices, etc





Selected Goals for Tissue 
Engineering Application

• Find an efficient ways to represent complex object 
properties
– density (studied much in current literature)
– porosity (e.g., the air pockets in a loaf of bread or the 

cavities in a piece of bone; not studied much).
– permeability (e.g. rate of air/liquid/etc able to pass through 

an object)

• Develop efficient algorithms to perform modeling and 
analysis operations on objects

• Develop manufacturing processes to create objects 
with these properties



Approach
• Store the statistical properties of the object’s 

interior rather than the exact internal geometry of 
each and every cavity or pocket in the object.
– Integrate Stochastic Geometry with CAD and solid modeling
– Model complex object properties as stochastic point 

processes, stochastic fiber processes, etc
– Properties are captured as statistical distributions and 

property measures
• Develop operators work on statistical distributions 

and returns a distribution that would likely describe 
operations (e.g. union, intersection, or difference) 
between the original materials.



Boolean Operations on Stochastic 
Material Representations

The probability of the object obtained after a Boolean operation
containing material at a certain location is based on…

• Union:  probability that A or B contain material there.

• Intersection: probability that both A and B contain material…

• Subtraction:  probability that A contains material, B does not.

The red areas represent the combination of probability distributions from Boolean operations.



Example Porous Materials

Porous cube 
generated by  

simulation

Bone matrix, courtesy 
of NASA.

Cube generated by 
removing spheres

Model with 
varying porosityTrabecular bone, courtesy 

of Berkeley Univ.Cross section



Activities under CARGO

• Integration of swept volume representations 
with stochastic properties

• Modeling attributes like “flow” and inter-
material connectivity with sweep 
representations

• Derive manufacturing parameters
– From sweep vols to SFF-manufactured prototypes 

and parts
– Work with Therics, bio-material manufacturing 

company in Princeton, NJ
– Work with NIST on heterogeneous model standards



Preliminary Work on Flow 
Representation and Intersections

Some progress has already been made on a couple of 
basic problems associated with the project, namely:

Problem A : How can smooth flow representations of 
object boundaries be effectively employed to 
determine intersections, and what type of shape 
invariants may prove useful?

Fig 6. Intersection of objects



The intersection question – in various guises – has 
been and is being studied extensively (e.g., see the 
work of several CARGO grantees). Initial indications 
are that the flow approach can be effectively 
combined with several existing intersection 
algorithms and further improvements may be 
attainable though such innovations as smooth versions 
of Bezout’s theorem.



Problem B : How can smooth flow interpolations be 
smoothly blended over a whole object, and how can 
additional information on object features such as 
curvature and various singular subsets be efficiently 
integrated into such interpolation programs? 

It has been found that there are quite a few means 
available to resolve this question. However, 
considerably more research will be necessary to 
develop an “optimal” solution.



Project Flowchart
Stratification and 
Shape Invariants 

Algorithms

More Efficient 
SEDE based Swept 

Volume 
Algorithms

Flow Interpolation 
Algorithms

New Intersection 
Algorithms

Swept Volume 
Algorithms with 

Smoother Interpolation 
and Consistency and 

Stability Checks
SEDE based 

Algorithms for 
Tissue Engineering

New Virtual 
Sculpting 
Programs?

Computational 
Topology Algorithms 
for “General” Object 

Representation
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