
On Computing All Immobilizing Grasps of a Simple
Polygon with Few Contacts

Jae-Sook Cheong Herman J. Haverkort
A. Frank van der Stappen

Institute of Information and Computing Sciences,

Utrecht University, P.O.Box 80089, 3508 TB Utrecht, the Netherlands

{jaesook,herman,frankst}@cs.uu.nl

Abstract: We study the output-sensitive computations of all the combinations of
the edges and vertices of a simple polygon P that allow a form closure grasp with
less than four point contacts. More specifically, we present an O(m

4

3 log
1

3 m + K)-
time algorithm to compute all K pairs of concave vertices, an O(n2 log2 n + K)-time

and O(m2 log2 m + nm
2

3 log
4

3 m + K)-time algorithm to compute all K triples of
one concave vertex and two edges, and two concave vertices and an edge respectively,
where n is the number of edges, and m is the number of concave vertices of P . We
also present an O(n2 log4 n + K)-time algorithm that enumerates all the edge triples
with a second-order immobility grasp using Czyzowicz’s conditions in [4].

1 Introduction

Many applications such as robot hand grasping and manufacturing operations require
an object to be immobilized, such that any motion of the object violates the rigidity of
the object or the contacts.

An attractive theoretical model for immobility was formulated by Reuleaux [11]
in 1876. He defines a rigid body to be in form closure if a set of contacts along its
boundary constrains all finite and infinitesimal motions of the body. This notion is
stronger than immobility, as for instance an equilateral triangle with a point contact
in the middle of each edge is immobilized, but is not in form closure (it permits an
infinitesimal rotation around its center). Form closure depends only on the position of
the contacts and their normals, and is invariant with respect to the curvature of body
and contacts. This is not true for immobility in general (if we replace the equilateral
triangle in the example by its inscribed circle, contacts and normals remain identical,
but the body is no longer immobilized). Markenscoff et al. [8] and Mishra et al. [9]
independently showed that, with the exception of a circle, any two-dimensional body
can be put in form closure with four frictionless point contacts, and that almost any
three-dimensional body can be put in form closure with seven such contacts. We will
call a configuration of frictionless point contacts that put an object in form closure a
form-closure grasp.

We consider the problem of computing all form-closure grasps of a polygonal part
with at most four frictionless point fingers. The availability of all grasps of a certain

1



part allows a user–usually a machinist–to select the grasps that best meet specific ad-
ditional requirements, for instance with respect to accessibility, which may vary from
one operation to another. As the computation of all grasps along a given combination
of edges and concave vertices can be accomplished in constant time [10, 16], the al-
gorithmic challenge is to efficiently report all combinations of edges and vertices that
yield at least one grasp.

An algorithm to compute, for a simple n-vertex polygon, all the edge combinations
that have a form-closure grasp with four fingers was presented by van der Stappen et
al. [16]. The algorithm runs in O(n2+ε + K)-time, where K is the number of edge
quadruples reported. Brost and Goldberg [1] studied the same problem in modular
settings, where the contact positions are restricted to a grid.

In general, four point contacts are required for planar objects, but sometimes form-
closure grasps with fewer contacts are possible by using contacts in concave vertices
of the object. Form-closure grasps with less than four fingers were first studied by
Gopalakrishnan and Goldberg [7], who gave an O(n2)-time algorithm to find all the
concave vertex pairs that allow a two-finger form-closure grasp. In Section 2.1, we
improve this to O(m

4

3 log
1

3 m+K), where m is the number of concave vertices of the
polygon. Combinations of one concave vertex and two edges can be reported using
the general algorithm by van der Stappen et al. We improve on that by presenting an
O(n2 log2 n + K)-time algorithm. Finally, we show how to report combinations of

two concave vertices and one edge in time O(m2 log2 m + nm
2

3 log
4

3 m + K)-time.
In Section 3, we turn our attention away from form-closure to general immobility.

Analogous to the above, we call a configuration of frictionless point contacts that im-
mobilizes a rigid body an immobility grasp. Czyzowicz et al. [4] provided a necessary
and sufficient geometric condition for a simple polygon without parallel edges to be
immobilized by three point contacts. A more general analysis applicable to arbitrary
objects was given by Rimon and Burdick [12, 13, 14], who define the term second-
order immobility, as it not only takes position and normal, but also curvature of object,
contacts, and possible motions into account.

An algorithm that reports, for a simple n-vertex polygon without parallel edges,
all the edge triples that yield at least one immobility grasp was given by van der Stap-
pen [16]. Its running time is O(n2 log2 n + K ′), where K ′ is the number of triples
considered according to some criterion. This criterion is a necessary, but not suffi-
cient condition, and so the algorithm may consider triples that do not yield immobility
grasps. We resolve this shortcoming by giving a truly output-sensitive algorithm with
a running time of O(n2 log4 n + K)-time, where K is the number of edge triples
yielding grasps satisfying Czyzowicz et al.’s necessary and sufficient conditions [4]
for immobilization.

2 Projection of the wrenches of a polygon on a plane

A wrench in two-dimensional space is a vector (Fx, Fy, τ), where Fx, Fy is the force
along the normal direction of the edge, and τ is the moment/torque. A set of wrenches
that achieves form-closure satisfies a condition, stated in the following theorems: one
in an algebraic form and another in a geometric form [6, 15, 9, 10].

2



Theorem 2.1 For k > 4 for 2D and k > 7 for 3D, k wrenches w1, w2, · · ·wk achieve
form closure if and only if there exists a set of k non-negative and non-trivial constants
λ1, λ2, · · · λk, such that λ1w1 + λ2w2 + · · · + λkwk = w, for any wrench w.

Theorem 2.2 For k > 4 for 2D and k > 7 for 3D, k wrenches w1, w2, · · · , wk

achieve form closure if and only if the origin lies strictly inside the convex hull of
w1, w2, · · · , wk.

Placing a point contact at a concave vertex gives us two wrenches, (w1, w2), be-
cause the contact touches two edges at the same time. Therefore, we must take ad-
vantage of concave vertices to achieve form closure with less than four point contacts.
Computing all form closure grasps using a concave vertex is equivalent to the problem
of finding all pairs of wrenches that satisfy the condition in Theorem 2.2 with a given
wrench pair.

First we introduce some notation. If a ray from the origin O in the direction of a
wrench w hits a plane Π, the intersection of Π and the ray is called the projection of
w. The reflection of w is the intersection point of Π and a ray from O in the opposite
direction of w. (See Figure 1 (a).) We call the projection of a wrench induced by a
point contact on a polygon edge edge wrench. The edge wrenches of a simple polygon
P are a collection of vertical line segments in the wrench space, so the projection of
them will be vertical line segments as in Figure 1 (b). Sometimes, we will refer this
projection of the set of edge wrenches for an edge edge wrench line segment.

(b) (c)(a)

O

Π

Figure 1: (a) Edge wrenches in the wrench space and a projection and a reflection of two
wrenches on a plane. (b) A projection of the wrenches of polygon edges. (c) A projection of
the concave vertex line segments in solid line, and convex vertex line segments in dotted line.

When we move from one edge to the next, the wrench will suddenly jumps from
one edge wrench to the next one as well, because the normal direction suddenly jump.
Naturally this jumping occurs only at vertices, and it can be represented as a line seg-
ment connecting the previous edge wrench and the next one. The connecting line for
concave and convex vertices are called concave and convex line segments respectively.
Figure 1 (c) shows the edge wrenches with concave and convex line segments in solid
and in dotted lines respectively. Note that a vertex line segment does not represent the
range of the wrench from one edge wrench to the next. (In the wrench space, the range
of the wrenches from one edge to the next is a sine curve.) Also note that the order of
the edge wrenches in Figure 1 (c) is not monotone with respect to a horizontal line.

Lemma 2.1 Let w1, w2, w3, w4 be four edge wrenches for a simple polygon P . Two
wrenches w3 and w4 with a given edge wrenches w1 and w2 form a tetrahedron that
contains the origin strictly inside, if and only if the projection of w1w2 and the reflec-
tion of w3w4 onto a plane intersect at an interior point.

3



Proof: (⇒) Suppose that the origin O lies strictly inside the tetrahedron formed by
w1, w2, w3 and w4. By Theorem 2.1, O can be expressed as follows: λ1w1 + λ2w2 +
λ3w3+λ4w4 = 0, where λi > 0, (1 6 i 6 4). This can be rewritten as λ1w1+λ2w2 =
−λ3w3 − λ4w4, which implies that there exist two points Pα and Pβ in the middle of
w1w2 and w3w4 respectively, such that Pα, Pβ and O are collinear as in Figure 2 (a).
Hence the projection of Pα and the reflection of Pβ on a plane Π are one point on
Π, which is the intersection of the projection of w1w2 and reflection of w3w4. (See
Figure 2 (b).) Note that the intersection is in the interior of w1w2 and w3w4, because
O is strictly inside the tetrahedron.

(b)(a)

w1w3

w4

O

w2Pβ

Pα
Pα

w4

w1

w3

O
w2

Pβ

Figure 2: (a) A description of Lemma 2.1. (b) The origin O lies on a line PαPβ , where Pα is
on w1w2 and Pβ on w3w4.

(⇐) Suppose that the projected and reflected line segments intersect at an interior
point. If we walk from the intersection point p along the line→ pO, we hit w3w4, then
O, and then w1w2. The origin O is not on w3w4, if it does, it implies that the edges
corresponding to w3 and w4 touch each other, which contradicts that P is a simple
polygon. Thus O is strictly inside the tetrahedron of w1, w2, w3 and w4.

We color the projections of the wrenches blue, and the reflections red. Because
one plane cannot have all the projections of the wrenches, we use three pairwise non-
parallel planes perpendicular to the FxFy-plane. Now we have a red and blue line
arrangement on each of the three planes. According to Lemma 2.1, the intersections
between one red and one blue line segments should be reported. To report these inter-
sections efficiently, we do not want to report the intersections between blue segments
or between red segments. Theorem 2.3 will be used to solve Red-Blue intersection
problem. Throughout this section, n denotes the number of the edges of a polygon P ,
m denote the number of concave vertices, and K denotes the output size.

Theorem 2.3 [2] There is an algorithm to report all the intersecting line segments for
a given query line segment. The query time is O(n

1

3 log
1

3 n + k), and preprocessing
time is O(n log n), where n is the number of the line segments, and k is the output size.

2.1 Form closure with pairs of concave vertices

We study the problem of reporting all pairs of concave vertices which allow a form
closure grasp by placing two frictionless point contacts at the concave vertices. The
algorithm works as follows. Identify the concave vertex line segments, and place the
red projections and the blue reflections on the planes.

There are m blue and m red line segments. Using Theorem 2.3, we query the
intersecting blue line segments for each of the red line segments. The preprocessing

4



time is O(m log m), and it runs in O(m
4

3 log
1

3 m + K)-time to report K Red-Blue
intersections. The output size K can be Ω(n2), but it can also be zero.

Theorem 2.4 All form closure grasps on a polygon with two concave vertices can be
computed in O(m

4

3 log
1

3 m + K) time.

When the polygon is rectilinear, all the pairs of concave vertices with form closure
configurations can be enumerated in O(m log2 m + K) time, using orthogonal range
searching trees.

2.2 Form closure with triples of one concave vertex and two edges

Placing three frictionless point contacts at a concave vertex vc and the interior of two
edges e, e′ can achieve form closure. In this section, we given an algorithm to report
all such triples of (vc, e, e

′). One difference from Lemma 2.1 is that two wrenches w3

and w4 can be chosen from each of the edge wrenches for e and e′.

Lemma 2.2 One concave vertex and two edges have a form closure grasp if and only
if the projections of the quadrilateral formed by two edge wrenches for e and e ′, and
the reflection of the concave vertex line segment intersect each other in the interior.

The quadrilateral defined by two edge wrenches for e, e′ is the collection of the
line segments w1w2, where w1 is in the interior of the edge wrenches for e, and w2

in the interior of those for e′. To report all the triples of (vc, e, e
′), we first make a

blue quadrilateral with the edge wrenches for each pair of edges. Then we reflect the
concave vertex line segments, and color them red. Figure 3 (c) shows an arrangement
of the red line segments and the blue quadrilaterals. A blue quadrilateral intersecting
a red line segment in the interior make a triple (vc, e, e

′).

(b)(a) (c)

edge
wrench
for e

edge
wrench
for e′

Figure 3: (a) Both the endpoints lie strictly outside of the quadrilateral. (b) At least one
endpoint lies in the quadrilateral including its boundaries. (c) An arrangement of blue quadri-
laterals and red line segments.

There are two cases of a red line segment intersecting a blue quadrilateral in the
interior: (i) when both the endpoints lie strictly outside of the quadrilateral, and (ii)
when at least one endpoint of the line segment is in the quadrilateral including its
boundaries. (See Figure 1 (a) and (b).) A red line segment of case (i) intersects at
least one side of the blue quadrilateral in the interior. Such pairs can be reported by
the Red-Blue line segment intersection algorithm. A red line segment of case (ii) has
at least one endpoint or its midpoint inside the quadrilateral. Each quadrilateral can
be divided into two triangles, and we use a multi-level data structure with segment
trees and line segment intersection data structures in [2] to report all the triangles that
contain a given point inside. The endpoints and the midpoints of the red line segments
are the query points. Remember that the query point should be strictly inside of the

5



triangles, but it can lie on the diagonal of the quadrilateral. This way, the algorithm
reports all the quadrilateral intersecting a line segment two endpoints of which are on
its boundaries, but nothing for the line segment that intersects a quadrilateral only on
the side. (See Figure 3 (b).)

There are O(n2) quadrilaterals, but there are O(n) vertical lines from the endpoints
of the triangles, thus O(n) vertical slabs. These slabs can be stored in a segment tree
with line segment intersection data structures at the second level that store the duals of
the triangle boundary lines. The construction time for all cases is O(n2 log2 n), and

the query time for each of the O(m) queries is O(n
2

3 log
1

3 n+log n×n
2

3 log
1

3 n+k) =

O(n
2

3 log
4

3 n+k). The total time to report all triples of (vc, e, e
′) is O(n2 log2 n+K).

There exist polygons for which K is O(n3), and for which K is O(n2).

Theorem 2.5 All form closure grasps on a polygon with one concave vertex and two
edges can be computed in O(n2 log2 n + K)-time.

When the polygon is rectilinear, all the triples of (vc, e, e
′) that can achieve form

closure can be enumerated in O(m log n +K) time, using orthogonal range searching
trees.

2.3 Form closure with triples of two concave vertices and one edge

Placing two frictionless point contacts at a pair of concave vertices vc, v
′

c may not
achieve form closure. Placing one more point contact in the interior of an appropriate
edge e, however, can achieve form closure with vc and v′c. In this section, we study the
problem of reporting all triples of (vc, v

′

c, e) with a form closure grasp.

Lemma 2.3 Two concave vertices and one edge have a form closure grasp if and only
if the reflection of the edge wrenches for e and the convex hull of the two projected
concave vertex line segments intersect each other in the interior.

Proof: (⇒) Suppose that a grasp at vc, v
′

c and at edge e achieves form closure. Let
(w1, w2) and (w3, w4) be the wrenches induced by vc and v′c, and w5 be the wrench
induced by a contact at e. By Theorem 2.1, there exists a wrench w5 at the edge
wrench for e such that w5 = −1

λ5
(λ1w1 + λ2w2 + · · · + λ4w4) for some non-negative

and non-trivial constants λ1, λ2, · · · λ5. A similar argument as in Lemma 2.1 says
that the reflection of the edge wrench intersect the quadrilateral of the projections of
w1, · · · , w4 in the interior. (See Figure 4 (a).)

(⇐) Let p be an intersection point in the interior of the blue quadrilateral and the
red lien segment. The line from p to O will hit the interior of one of the triangular
regions formed by w1, · · · , w4, then O, and then the interior of the edge wrench for e.
This implies that O is strictly inside the convex hull of w1, · · · , w5.

With Lemma 2.3, we have the following algorithm. Project the concave vertex line
segments on the planes. Compute a convex hull for each pair of the line segments, and
color them blue. Reflect the edge wrenches on the planes, and color them red. Report
all the red-blue pairs that have intersections in the interior, as in Section 2.2.

We have O(m2) triangles, O(m) slabs, and O(n) query line segments, so the con-
struction time for both data structures is bounded by O(m2 log2 m), and the query
time in both data structure for each of the O(n) red linesegments is bounded by

6



(b)(a)
O

w1

w2

w3
w4

w5 edge
wrench
for e

Figure 4: (a) The convex hull of w1, · · · , w5 contains O strictly inside. (b) An arrangement
of the blue convex hulls and the red line segments.

O(log m×m
2

3 log
1

3 m + k). Thus the total time to report all the form closure triples

is O(m2 log2 m+nm
2

3 log
4

3 m+K). The output size K can be Ω(n3), but it can also
be O(m2).

Theorem 2.6 All triples of one concave vertex and two edges of a simple polygon with
a form closure grasp can be reported in O(m2 log2 m + nm

2

3 log
4

3 m + K)-time.

When the polygon is rectilinear, all the triples of (vc, v
′

c, e) with a form closure
grasp can be enumerated in O(n log2 m + K) time, using orthogonal range searching
trees.

2.4 Extension

Wentink [17] studied the problems of immobilizing a polygon not only with point
contacts but also with edge contacts. She provided a O(n2 log2 n+K)-time algorithms
to enumerate all form closure configurations of one edge contact and two point contacts
and of a fixed or adjustable angle contacts and one point contact. Using Lemma 2.1,
this algorithm can also be improved to O(n log n + hn

1

3 log
1

3 n + K)-time, where h

is the number of edges of the convex hull, and K is the number of pairs consisting
of one convex hull edge E and one edge e of the polygon, such that a form closure
configuration exists with an fixed or adjustable angle contact along E and a point
contact at e.

3 All edge triples that immobilize a simple polygon

We first introduce some notations and definitions used in this section. Facing the in-
terior of a simple polygon P from an edge e, the normals at the left and the right
endpoints of e are denoted as sl(e) and sr(e) respectively. The set of normal lines of
e between sl(e) and sr(e) is denoted as ŝ(e). Since placing a contact at vertices may
damage the part, vertices are not generally accepted as contact positions. If contacts
are allowed to be at concave vertices, the corresponding slab boundaries should be in-
cluded in the normal slabs. In this section, however, we do not include slab boundaries
in normal slabs.

Let l(e) be the supporting line of an edge e, and let H(e) be an open half-plane
bounded by l(e), which locally contains the interior of P . (See Figure 5.) When
the intersection of H(e),H(e′) and H(e′′) forms a triangle, then e, e′, e′′ are said to
be a triangular triple. (Compare Figure 5 (a) with (b).) A necessary and sufficient
condition for three edges to have a configuration of three point contacts to immobilize
a simple polygon is provided by Czyzowicz et al. [4].

7



Lemma 3.1 Three point contacts along three edges e, e′, e′′ can immobilize a two-
dimensional polygon if and only if:
1. ŝ(e) ∩ ŝ(e′) ∩ ŝ(e′′) 6= ∅ (common intersection condition) and
2. H(e) ∩H(e′) ∩H(e′′) is a triangle (triangular triple condition).

(a) (b)H(e)

H(e′)
H(e′′)

H(e)

H(e′)

H(e′′)

Figure 5: The edges e, e′, e′′ in (a) are a triangle triple, while those in (b) are not.

We take a similar approach as in [16]. Interval trees and orthogonal range search
trees (see [5]) will be used to find all the edge triples that have a common normal
intersection, and among these, triangular triples will be filtered out using orthogonal
range search trees and convex layer structures (see [3]). These data structures will be
combined as a multi-level data structure.

The sketch of the global approach is as follows. A data structure will be built to
store the information of all the edges assuming each directed edge e as the positive x-
axis, so O(n) data structures will be built. In each data structure, we query with each
edge e′ of n − 1 edges to find all the edges that satisfy the conditions in Lemma 3.1
with e and e′.

(a) (b)

e6

e4(c)

e5

e1

e2

e3
e1

e2

e3

e4
e5

e6 L R

Figure 6: (a) A polygon with directed edges. (b) The edges in L, and (c) in R.

We first give each edge a direction so that the interior of the edge lies on the left.
(See Figure 6 (a).) Further, we divide the edges into two groups L and R; when an edge
forms an angle between −π

2
and π

2
with the positive x-axis, it will be in L; otherwise,

in R. (See Figure 6 (b) and (c).) Top boundary is the slab boundary lying above the
other among sl(e

′) and sr(e
′) of ŝ(e′). (See Figure 7.)

From now on, we focus in the case when the geometric information of all the edges
are described with a directed edge e as the positive x-axis, unless it is stated otherwise.
Now we present a necessary and sufficient condition for three edges to have a non-
empty common normal intersection region. Figure 7 shows a visual description of the
following condition.

Condition 3.1 [16] Two normal slabs ŝ(e′) and ŝ(e′′) have a common normal inter-
section with ŝ(e) if and only if:
(i) when the open intervals of sl(e) ∩ ŝ(e′) and sl(e) ∩ ŝ(e′′) overlap, or
(ii) when the open intervals of sr(e) ∩ ŝ(e′) and sr(e) ∩ ŝ(e′′) overlap, or
(iii) the top boundaries of ŝ(e′) and ŝ(e′′) intersect in ŝ(e).

In cases (i) and (ii), an interval tree is used to identify all the intervals that overlap
a given interval sl(e) ∩ ŝ(e′) or sr(e) ∩ ŝ(e′). In case (iii), observe that the order of

8



(i) (ii) (iii)

sl sr sl sr
esl sr

Figure 7: Three cases of three normal slabs having common normal intersection.

the top boundary positions at sl(e) and sr(e) are swapped. Let x(e′) and y(e′) be
the y-coordinate of the intersection point at sl(e) and sr(e) respectively, ŝ(e′), and
x(e′′), y(e′′) are defined likewise. The top boundaries intersect each other in ŝ(e), if
((x′ 6 x′′) ∧ (y′ > y′′)), or if ((x′ > x′′) ∧ (y′ 6 y′′)). All the edges satisfying
the condition (iii) with e′ can be reported using a two-dimensional orthogonal range
search tree. Thus we have the edges that have a common normal intersection with e

and e′.
Among these edges, the triangular triples will be filtered out in the dual space. Let

a′ be the slope of l(e′), and q be l(e) ∩ l(e′). Remember that the directed line l(e) is
the positive x-axis now. The slope a′ can be either positive or negative. In each case,
there are only two different directions of l(e′), i.e., l(e′) is from L or R. Thus l(e) and
l(e′) make four cases as in Figure 8.

(i) (iii)(ii)

l(e)
l(e′)

(iv)

l(e′)

l(e′)

l(e′)
l(e) l(e) l(e)

q q q q

Figure 8: (i) (a′ > 0) ∧ (l(e′) ∈ L), (ii) (a′ > 0) ∧ (l(e′) ∈ R), (iii) (a′ < 0) ∧ (l(e′) ∈ L),
and (iv) (a′ < 0) ∧ (l(e′) ∈ R). The intersection of H(e) and H(e′) is shaded.

In each case, the queries to find the triangular triples are as follows. In cases (i)
and (iv), we find all the lines in R, which are above q, and the slopes of which are
between 0 and a′, and in case (ii), we find all the lines in R, which are above q, and
the slopes of which are smaller than 0, and find all the lines in L, which are below q,
and the slopes of which are greater than a′. Finally in case (iii), we find all the lines
in R, which are above q and the slopes of which are greater than 0, and find all the
lines in L, which are below q and the slopes of which are smaller than a′. Figure 9
shows the query regions in the dual space of l(e′′)’s, where the dual of q(aq, bq) is a
line q∗ : aqx + bq. The dual points of L and R are first stored in one-dimensional
orthogonal range search trees according to the slopes, and the points at each node are
stored in a convex layer structure for half plane queries. This concludes the algorithm.

(iii) (iv)(ii)(i)

a′

0

R
q∗

L

R

0
q∗

a′LR

a′

0
q∗

a′

0R
q∗

Figure 9: The query regions in the dual space.

Now we analyze the time complexity of this algorithm. Case (i) and (ii) use one-
dimensional interval trees with one-dimensional range search trees (for L and R) at

9



the second level, and a convex layer structure at the third level. Case (iii) uses a three-
dimensional range search trees with a convex layer structure at the fourth level.

One-dimensional interval and range search trees, and convex layer structures use
O(n) storage, have O(n log n) construction time, and O(log n) query time. Three-
dimensional range search trees use O(n log2 n) storage, have O(n log2 n) construc-
tion time, and O(log n3) query time. In total, case (i) and (ii) use O(n log n) stor-
age, and has O(n log n + n log n log(n log n)) = O(n log2 n) construction time, and
O(log n3 + K) query time. On the other hand, case (iii) use O(n log2 n) storage, has
O(n log2 n+n log2 n log(n log2 n)) = O(n log3 n) construction time, and O(log n4+
K) query time in total. These multi-level data structures are built for each edge, so the
whole algorithm takes O(n log2 n) storage, and runs in O(n2 log4 n + K) time.

Theorem 3.1 All K edge triples (e, e′, e′′) of a simple polygon such that ŝ(e)∩ ŝ(e′)∩
ŝ(e′′) 6= ∅ and H(e)∩H(e′)∩H(e′′) is a triangle can be reported in O(n2 log4 n+K).

4 Conclusion

We have studied the problem of computing all the combinations of edges and vertices
of a simple polygon that allow a form closure grasp with less than four point con-
tacts. Using the red-blue intersection algorithm and the point intersection searching
algorithm, we have proposed an O(m

4

3 log
1

3 m+K)-time algorithm for all K pairs of
concave vertices, O(n2 log2 n + K)-time algorithm for all K triples of one concave

vertex and two edges, and an O(m2 log2 m + nm
2

3 log
4

3 m + K)-time algorithm for
all K triples of two concave vertices and an edge, where n is the number of edges, and
m is the number of concave vertices of a simple polygon. An O(n2 log4 +K)-time
algorithm is proposed to compute all K edge triples with a second-order immobility
grasp for a simple polygon, using the condition in [4].

References

[1] R. Brost and K. Goldberg. A complete algorithm for designing planar fixtures using
modular components. In IEEE Transactions on Robotics and Automation, volume 12,
pages 31–46, 1996.

[2] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9(1):145–158, 1993.

[3] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. In IEEE
Symposium on Foundations of Computer Science, pages 217–225, 1983.

[4] J. Czyzowicz, I. Stojmenovic, and J. Urrutia. Immobilizing a shape. International Jour-
nal of Computational Geometry and Applications, 9(2):181–206, 1999.

[5] M. de Berg, M. van Kreveld, M. Overmars, , and O. Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, 1997. Heidelberg.

[6] A.J. Goldman and A.W. Tucker. Polyhedral convex cones. Linear Inequalities and Re-
lated Systems, pages 19–40, 1956.

[7] Gopal Gopalakrishnan and Ken Goldberg. Gripping parts at concave vertices. In IEEE
International Conference on Robotics and Automation (ICRA), pages 1590–1596, May
2002.

10



[8] X. Markenscoff, L. Ni, and C. H. Papadimitriou. The geometry of grasping. International
Journal of Robotics Research, 9(1):61–74, 1990.

[9] B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis of multifinger
positive grips. Algorithmica, 2:541–558, 1987.

[10] V-D. Nguyen. Constructing force-closure grasps. International Journal of Robotics Re-
search, 7(3):3–16, 1988.

[11] F. Reuleaux. The Kinematics of Machinery. Macmilly and Company, 1876. Republished
by Dover in 1963.

[12] E. Rimon and J. W. Burdick. New bounds on the number of frictionless fingers required
to immobilize planar objects. J. of Robotic Systems, 12(6):433–451, 1995.

[13] E. Rimon and J. W. Burdick. Mobility of bodies in contact—part I: A second-order
mobility index for multiple-finger graps. IEEE Transactions on Robotics and Automation,
14:696–708, 1998.

[14] E. Rimon and J. W. Burdick. Mobility of bodies in contact—part II: How forces are
generated by curvature effects. IEEE Transactions on Robotics and Automation, 14:709–
717, 1998.

[15] K. Salisbury. Kinematic and force analysis of articulated hands. PhD thesis, Standford
University, 1982.

[16] A. F. van der Stappen, C. Wentink, and M. H. Overmars. Computing immobilizing grasps
of polygonal parts. International Journal of Robotics Research, 19(5):467–479, 2000.

[17] C. Wentink. Fixture Planning—Geometry and Algorithms. PhD thesis, Department of
Computer Science, Utrecht University, 1998.

11


