Mass Properties of the Union of Millions of Polyhedra

Wm Randolph Franklin
Rensselaer Polytechnic Institute
wrf@ecse.rpi.edu
http://www.ecse.rpi.edu/Homepages/wrf

July 15, 2003

Abstract

We present UNION3, a fast algorithm for computing the volume, area, and other mass properties, of
the union of many polyhedra. UNION3 is well suited for parallel machines. A prototype implementa-
tion for identical random cubes has processed 20,000,000 polyhedra on a dual processor Pentium Xeon
workstation in about one hour.

UNIONS3 processes all the polyhedra in one pass instead of repeatedly combining them pair by pair.
The first step finds the candidate output vertices. These are the 3-face intersections, edge-face intersec-
tions, and input vertices. Next, the candidates are culled by deleting those inside any polyhedron. The
volume is the sum of a function of each survivor. There is no statistical sampling. Input degeneracies are
processed with Simulation Of Simplicity. Since UNION3 never explicitly determines the output polyhe-
dron, messy non-manifold cases become irrelevant. No complicated topological structures are computed.
UNIONS3's simple flat data structures permit it to fork copies of itself to utilize multi-processor machines.
The expected time is linear in the number of input, even when the number of intersections is superlinear.

The principal data structure is a 3-D grid of uniform cells. Each cell records overlaps of itself with any
edge, face, or polyhedron. Intersection tests are performed only between objects overlapping the same
cell. However, if a cell is completely contained in some polyhedron, (“covered”), then no intersection
tests are performed in it, since none of those intersections would be visible. Indeed, altho there may
be a cubic number of intersections, all but a linear number occur in these covered cells, and are never
computed. Therefore the final time is linear.

Keywords: boolean operation, union, polyhedron, volume, mass property, uniform grid, parallel
geometry computation.

Contents

1 Introduction 2

2 Volume Determination 2
3 Time Analysis 5

4 Memory Limits and Parallel Implementation 7

5 Implementation Tests 8
6 Summary 9

1 Introduction

3-D geometric applications sometimes create an object as the union of a large set of polyhedra. For example,
in CAD/CAM, the volume swept by a cutting tool may be approximated by one polyhedron for each segment
of the tool path. On occasion we don't need the resulting polyhedron itself, but only certain mass properties.
This presents several opportunities for optimization.

First, the usual method for computing the volume of the union of many polyhedra proceeds by forming a
log N level computation tree that combines successively larger intermediate polyhedra pair by pair. The
execution time is probably (log V)? to N2(log N)? depending on the size of the intermediate polyhedra

and the efficiency of the polyhedron intersections. There may be many intermediate vertices even when the
output polyhedron has few.

Next, efficiently combining polyhedra is more difficult than combining polygons. Sweeping space with a
plane, while keeping order among all the active faces, is more intricate than sweeping a plane with a line
that keeps track of active edges.

Third, if we need only the volume, or similar mass property, of the computed polyhedron, then it is un-
necessary completely to compute the union polyhedron first. Indeed, we need only its vertices with their
neighborhood geometries.

This paper presents an algorithm with several optimizations addressing the above issues. Then it describes
an implementation for the restricted input case of identical cubes, which has processed test cases as large as
20, 000, 000 cubes.

This algorithm is well suited to parallel machines, and this implementation forks copies of itself for large
inputs. This contrasts favorably to topological sweep methods, which are harder to parallelize.

2 Volume Determination

The volume of a cube with verticés, y,) may be expressed &=), s;z;y;2;, wheres; = +1. For any
particular vertexs = +1 iff an odd number of the three faces adjacent to that vertex are on the high side of
the cube.

The volume of any rectilinear polyhedron, whose edges and faces are all aligned with the coordinate axes,
is still V =). s;x;y,2;, if the definition ofs is generalized for every possible local vertex geometry. Our
implementation uses this formula.

The above formula easily extends to other mass properties, such as moments of inertia of any order.
Likewise, lower dimensional mass properties, such as face area and edge length may be computed as

Y szy andL =) sz with the s in each case a function of the local geometry of the vertex. Thruout this

paper “volume” includes area and length.

All above extends to general polyhedra, as described in Franklin (1987); Narayanaswami and Franklin

Franklin 2 Polyhedron Union Volume

(1991), altho the implementation is considerably harder. Indeed, there are varying classes of formula, de-
pending on how much topology is available.

Suppose that we have only the set of incidences of output vertices, edges lines, and face planes, together
with which side is inside. For instance, for a cube, each vertex would induce six such incidences. Then if
P is the vertex positionE is a unit vector along the edge incident onftjs a unit vector normal t@ in

the plane of the face, anl is a unit vector normal to bot® and £* pointing into the polyhedron, then the
volume isY = — 3" P.E P.F' P.B . Similar formulae obtain for other mass properties.

Mirtich (1996) also describes efficient polyhedron formulae.

There are three classes of output vertices resulting from uniting a set of polyhedra: (1) a vertex of one of the
input polyhedra, (2) an intersection of an edge with a face, and (3) an intersection of 3 faces.

An output vertex must not be contained in any polyhedron. Therefore, the process goes as follows. (1)
Generate a candidate output vertex of one of the above types. (2) Test to see if it's outside all the polyhedra.
(3) If so, then compute its sign based on its neighborhood, and add another term into the running total of the
volume.

We define “intersection” to exclude components of the same polyhedron. That is why edge-face and 3-face
intersections are different cases, even tho every edge might be considered as the intersection of two adjacent
faces.

The naive algorithm would test all triples of faces for intersection, requifing N3 time. However we use
a uniform grid data structure to reduce that, as follows.

1. Superimpose a 3-D grid with' x G x G cells on the universe. A reasonable cell size is half the
average polyhedron size.

2. For each cell, maintain a list of items, to be determined later, overlapping it.
3. For each polyhedron, determine which grid cells it completely encloses. Mark those ceilesd

4. For the next several steps, whenever an item would be inserted into a cell, do not insert it if that cell
is covered.

5. For each polyhedron, determine which cells it overlaps with. Add the polyhedron to those cells’ lists.
6. Ditto for each face and edge.

7. lterate thru the cells. For each cell:

(a) Test all triples of faces, which are from three different polyhedra, for intersection. Three faces
intersect if the intersection point of their three planes is contained in each face polygon. For
each triple that does intersect, say at péintest if P is outside all polyhedra. If it is, then look
up its sign in a table, based on the directions of its three faces, and add a term to the running
total for the volume.

Franklin 3 Polyhedron Union Volume

(b) Test all pairs of edges and faces, from two different polyhedra, for intersection, and process the
intersections as before. A face and edge intersect if the intersection point of the face plane and
the edge line is inside both the face and edge. The intersection’s sign is a complicated function
of the directions of the two faces adjacent to the edge, and of the intersection face.

8. Ilterate thru the vertices, testing whether each is outside all the polyhedra. For each outside vertex,
then determine its, and addzyz to the volume running total.

Determining whether poirfP is contained in any polyhedron proceeds as follows.

1. Compute which cell?, containspP.
2. If C is covered, thefP is contained in some polyhedron.

3. Otherwise, test whether any polyhedrortis list containsp.

Our implementation handles only identical cubes, altho the theory extends to general polyhedra. Allowing
only cubes removed numerical roundoff problems and simplified the implementation, while still demon-
strating the algorithm.

This implementation handles degeneracies via Simulation of Simplicity (SoS), (Edelsbrunneiiekel, M

1988) for volume computation. For instance, whenever a point is tested against a face, the three polyhedra
whose faces intersected to create that point are brought along. In cases of a coordinate equality, the polyhe-
dron numbers are compared to break the tie. However, then the computed area and length differ from the
result of a regularized set union. Say that two polyhedra share a face. With SoS, either both faces will be
counted, or neither will, depending on which polyhedron has the lower number.

The importance of the covering cell concept requires emphasis. The bad case for any intersection algorithm
is when the objects are large, so that there are a cubic number of 3-face intersections. However we don't
need all the intersections, but only those that are outside all polyhedrajsgible The number of visible
intersections grows much more slowly than the total number of intersections. Indeed, under some reasonable
assumptions, it grows only linearly. Therefore, the covering cell concept can reduce the intersection time
from cubic to linear. It also reduces the query time to test point containment from linear time per point down
to constant time per point. Indeed, the average number of polyhedra contained in each cell is constant, with
reasonable cell sizes.

A major objection to the uniform grid is that it will fail when presented with real world data, since the real
world is not uniform. This point is obvious, butrong Altho it is counterintuitive, it can be shown that, in

these applications, the grid structure tolerates nonuniform input as well as a hierarchical structure such as
the quadtree, and the implementation is simpler.

The bad case for both a grid and a quadtree would be many close edges that do not intersect. A topolog-
ical sweep handles that, but requires a complicated data structure that is difficult to parallelize and takes
O(N log N) time. However, firstlog N is nontrivial for currentV. Second, topological sweeps are much
harder in 3D. Finally, and most important, the sweep finds all intersection vertices, includmgl\éﬂ)

hidden ones.

Franklin 4 Polyhedron Union Volume

3

Let

Time Analysis

number of input vertices

> > >

N
L
G number of grid cells on a side

Then, being only slightly informal,

length of each edge, on a scale where the universexig x 1

Number of cells that each edge overlaps £G+1

Number of cells that each face overlaps LG +1)?
Number of cells that each polyhedron overlaps ELG +1)3
Average number of edges per céll,N,,. = NG3(LG+1)
Average number of faces per celt, Ny, = NG 3 (LG+1)
Average number of polyhedra per ceéll, N, = N(L+ G*l)3

Average number of cells covered by a given polyhedron (@ax(LG — 1,0))3

Probability of a specific cell not being being covered by
any polyhedrort ¢
Expected number of 3-face intersection tests, w/o using

e~ N max(L-G~1,0)?

covered cells G°N ?pc
Expected number of 3-face intersection tests, using cav- 33
ered cells® Njy; 4G Nipe
Expected number of 3-face intersections, excluding those 56
in covered cells. Note that many of tié; ¢, 3-face tests gN"L
fail. £ N3,
Expected number of face-edge intersection tests, w/o us- 5
ing covered cells G NypeNepe
Expected number of face-edge intersection tests, using .
covered cellsNy.; 4G N ppcNepe
Expected number of face-edge intersections, using caqv- 53
ered cells Ny, gN*L
Time to test if one point is outside all polyhedra, w/o using N
covered cells ppe
Time to test if one point is outside all polyhedra, using

qNppe

covered cellsg T,
Number of input vertices not in a covered céd,N,,,. = ¢gN
Number of points that need testing for inclusion in any
polyhedron= N,

Total time,= polyhedron and cell setup time number of _
intersection tests- point inclusion testing time]’

Franklin 5

NSfa: + Nfe:v + anc

N +G? + Nafi + Nyer + Tp Nyt

Polyhedron Union Volume

Therefore,

278 2716 q2L7
T = (P43 + T2 43 N*
(q et e
oL . _ql' o6 LY L g 2L el gl L g
61 + 15T +¢°L0 +3 3 .. 20 1 qLS+6 -+ 15T\ N
+<G5+ cr T3 g 43t g gt 20 g el 6 15

2L2 2 L2 L 2L
+<3q +q2L3+q+qL3+q+3q+3q+3q>N2+N+G3

G G3 G3 G G? G?

One easy value faf is 1/ L. In this case,

T =8¢°N*'L? + (8¢°L° + 64qL%) N* + (8¢L* +8¢°L*) N> + N + L°

If we don't utilize covered cells, effectively = 1, so

T =16 N’L3 +8N*L? + 72 N3 LS + N + 73

A further reasonable assumption is that the sum of all the volumes stays consfdrjrass, i.e.,L =
N-Y3, Then
T=98N =0(N)

How does all this improve when we use covering cells? There are no covering cells unless the cells are
smaller than the polyhedra, so assufhe- 2/L. Then

q=e€
Then,
T=0(L"24N)=0(G>+ N)

regardless of whether the sum of all the volumes is constant, A more sophisticated analysis with a better
choice of G would reduce this t6 = (V). (This will be included in a later version of this paper.)

This analysis has a few limitations.

1. If the sum of all volume gets very large, then the union volume approaches@L Ifs> 1 then
all (G — 2)3 interior cells will be covered, while the, noncovered, cells adjacent to the universe’s
exterior will have ever more polyhedra, edges, and faces. The above analysis doesn’t capture this
unevenness, which becomes important since the processing time in each cell grows as the cube of that
cell's contents.

2. All the constant factors are ignored. A more detailed analysis might confirm the experimental ob-
servation thatz larger thar2/ L, perhaps large enough that the expected number of items per cell is
constant, is often better.

3. However, storage grows almost as fast:ds For largeN, there may not be sufficient storage for the
optimal G.

Franklin 6 Polyhedron Union Volume

4 Memory Limits and Parallel Implementation

A major limit with the Pentium family of processors is that each process is limited to only*3@@rtual
memory, altho the real memory can be at least as large as 12GiB. (Utilizing 12GiB would require four
parallel processes.) This limit forces any large problem to be decomposed into 3GiB chunks. More compact
data structures, such as described here, require fewer chunks. Our storage budget is roughly as follows:

1. 6 bytes per cube, for the lower left corner using short ints.

2. 4 bytes per grid cell, for a pointer to the vector of its contents, or for various flags if the vector is
empty.

3. 4 bytes per each overlap of an active cell with an edge, face, or cube. “Active” means that the cell is
not covered by a cube, and, if we are multiprocessing, the cell is being handled by this process.

4. 12 more bytes per active cell for the STL vector internals.

5. An unknown amount for unused storage in the vectors and storage fragmentation. These could be
eliminated as follows. Process the polyhedra into the cells twice. During the first time, just count how
many objects overlap each cell, but don’t store which objects overlap each cell. Then, use those counts
to allocate exactly each cell's required storage. Finally, process the polyhedra into the cells a second
time, this time storing the overlap information. Alternatively, instead of processing the polyhedra
twice, the overlap data could be temporarily stored on disk.

Allowing more general polyhedra would increase this storage budget considerably. However storing global
topology such as edge loops and face shells would never be necessary. Also, this algorithm would always
be much more compact than any data structure with a linked list of the edges around each vertex etc.

Altho decomposition is necessary to process large datasets, many algorithms for this problem cannot be
easily decomposed. The input polyhedra overlap each other. So, they cannot just be partitioned into groups
since some polyhedra in one group will overlap polyhedra in other groups. Another method might be to
disentangle the overlaps by cutting some polyhedra into several pieces, one for each group. However, this
will increase those polyhedra’s will surface areas, and invalidate the area computation.

The parallel version of our algorithm goes as follows, using only about 100 lines of new code. The cells
are partitioned between the processes. When a subprocess would perform any operation on a cell not in its
group, that operation is not done. Each subprocess writes its total volume to a pipe. The parent process
reads each subprocess’s computed volume from its pipe, and sums them.

Lightweight threads are also a future possibility, because most of the execution time is spent traversing the
data structure to accumulate the volume. The only variables that are written are loop control variables and
the volume running total. If each thread uses its own running totals, then there will be no writes at all to
shared variables. This compares quite favorably to the difficult task of maintaining, in parallel, a complicated
topological data structure while sweeping thru space.

11GB=10°, 1GiB=2"°.

Franklin 7 Polyhedron Union Volume

5 Implementation Tests

The HW is a dual 2.4 GHz Xeon with 4GiB of real memory. The SW is SuSE 8.2 linux and the Intel
C++ compiler. The program is about 1000 lines of code, excluding debugging lines, comments, and blank
lines. The input cubes are generated with a combination of three Tausworth random number generators,
which is much better than the widely used class of linear congruential generators. One problem with even
the best linear congruential generators is that, if we let the generated numbestiven the 3-D points

(i, xiy1, xiy2) fall on a relatively small number of parallel planes.

Here are some sample runs.

cubes approx grid # pro- CPU time per memory per
inverse resolution cesses process (sec) process
edge
length
10,000 30 60 1 25 15M
30,000 50 100 1 7.3 47M
1,000,000 100 200 1 346 938M
1,000,000 200 200 | 139 559M
1,000,000 200 400 2 195+185 982+982M
3,000,000 200 400 2 496+495 2.3+2.3G
3,000,000 200 200 2 350+350 709+709M
3,000,000 200 200 1 856 1.68G
10,000,000 300 300 2 1846+1846 2.4+2.4G
10,000,000 400 400 2 797+793 2.94+2.94G
10,000,000 1,000 400 P 2576+2580 2.13+2.13G
10,000,000 1,000 500 a 476+445+460+403 1.40+1.40+1.40+1.40G
20,000,000 1,000 500 42084+2004+2106+2182 2.6+2.6+2.6+2.6G

Here are some stats from the largest case. Lengths are scaled so that the univerdexsl. The actual

edge length is 32768/(approx inverse edge length), rounded to a multiple of 10 (to make the numbers easier
to read when debugging).

Franklin 8 Polyhedron Union Volume

Number of cubes 20,000,000
Edge length 0.00916
Number of processes 4
Number of grid cells 125,000, 000
Number cell — cube overlaps 61,890,769
Number cell — face overlaps 254,823,296
Number cell — edge overlaps 349,733,052
Sum of the cubes’ volumes 0.015
Volume of the union 0.009
Sum of all the cubes’ surface areas 100.583
Surface area of the union 99.053
Sum of all the cubes’ edges 219,727
Edge length of the union 219,708
Number of input vertices 160,000,000
Number of those vertices that were outside all cubes 157,561,445
Number of 3-face intersections 37,170
Number face—edge intersections 7,259,255

The hard limit affecting the implementation is the available real memory. (If the total virtual memory of

all the processes greatly exceeds the real memory then the amount of paging can hurt performance by more
than an order of magnitude.) This limit also inhibits the use of a finer grid, which would reduce the time in
some cases. In this largest case, that limitation meant that there were no covered cells.

One solution to the memory problem is to subdivide the problem, then execute the parts sequentially, not in
parallel. This is now in testing.

How do we know that the above numbers are correct? Altho errors are always possible, several indicators
give us confidence. First, altho the final volume, whose rand@ i3, intermediate subtotals range up to
5.10'6. Any error is likely to produce a clearly illegal volume. Second, we constructed nasty test cases
involving many cubes exactly overlapping or aligning along faces. (This also tested the SoS code.) The
computed volume was always correct.

Third, for random input, we can estimate the volume as follows. /Fandependent and uniformly dis-
tributed cubes, each of volume the expected union volume ¥§,; = 1 — (1 —v)¥ ~ 1 —e ¥V . The
agreement between the predicted and computed volumes is excellent.

6 Summary

This prototype implementation demonstrates that simple data structures, with no global topology, are an
excellent method for processing large geometric datasets in 3D. However, this technique supports other
operations, not yet implemented, such as online computation of mass properties, as polyhedra are inserted
and deleted. Insertion is easy. Deletion requires identifying the candidate output vertices that are now
visible since they were hidden only by the deleted polyhedron. Computing properties of more complicated
boolean operations is feasible. Producing the explicit output polyhedron is also possible, tho considerably
more complicated. We are now considering how to extend this to collision detection of moving objects, each

Franklin 9 Polyhedron Union Volume

composed of the union of many simple polyhedra.

References

Edelsbrunner, H. and Ntke, E. P. (1988), Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithmig,‘Proc. 4th Annu. ACM Sympos. Comput. Geom.’, pp. 118-133.

Franklin, W. R. (1987), Polygon properties calculated from the vertex neighborhioc@spc. 3rd Annu.
ACM Sympos. Comput. Geom., pp. 110-118.

Mirtich, B. (1996), ‘Fast and accurate computation of polyhedral mass properdie&raphics Tools
1(2), 31-50.

Narayanaswami, C. and Franklin, W. R. (1991), ‘Determination of mass properties of polygonal CSG objects
in parallel’, Internat. J. Comput. Geom. Apf4), 381-403.

July 15, 2003, 12:37

Franklin 10 Polyhedron Union Volume

