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Extended Abstract 
This presentation proposes a new approach for reconstructing a three-dimensional object from a single 
two-dimensional freehand line drawing, as means for a CAD user interface. Reconstruction is the 
inverse projection of the sketched geometry from two dimensions back into three dimensions. While 
humans can do this reverse-projection remarkably easily and almost without being aware of it, this 
process is mathematically indeterminate and is very difficult to emulate computationally. The approach 
is based on two phases: In the first training phase, 2D-3D geometric correlations are learned from a 
corpus of 3D objects and their sketches. This phase is carried out offline. In the second reconstruction 
phase, given a sketch to be reconstructed, an optimization process recovers the depth coordinates of 
sketch vertices so that the learned correlations are maximized. The reconstruction phase is difficult 
because a hierarchical “Necker-cube illusion” makes the optimization landscape fractal, with an 
exponential number of local minima. New techniques for overcoming this difficulty will be presented. 
A sketch is inherently a collection of lines on a flat surface, representing an arbitrary 2D projection of an 
arbitrary 3D object. The drawing can be thought of as an edge-vertex graph. The noisy projection from 
3D to 2D removed the depth information from each vertex of this edge-vertex graph, and it is our goal to 
recover that missing depth. As shown in Figure 1, any arbitrary set of depths {Z} that are re-assigned to 
the vertices of the graph constitutes a 3D configuration whose projection will match the given sketch 
exactly. Each such assignment gives, in principle, a valid candidate 3D reconstruction.  
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Figure 1: A sketch provides only two of the coordinates (the x,y) of object vertices. A 3D reconstruction must recover the 
unknown depth coordinate (z). (a) In parallel projections, this degree of freedom is perpendicular to the sketch plane; (b) in 
a perspective projection, it runs along lines that meet at the viewpoint. In either case, there are an infinite number of 
candidate objects – the problem is indeterminate. Each candidate object is represented by a unique set of Z coordinates, e.g. 
sets {Z1}, {Z2} and {Z3}. 

To recover the lost depth information, a reconstruction algorithm needs to extract spatial information 
from the inherently flat sketch. Although this step is mathematically indeterminate, humans seem to be 
able to accomplish this with little difficulty. Moreover, despite the infinitely possible candidate objects, 
most observers of a sketch will agree on a particular interpretation. This consensus indicates that a 



sketch may contain additional information that makes observers agree on the most plausible 
interpretation. A number of approaches have been proposed [5]. These are not surveyed in this abstract. 
The proposed approach comprises three phases: (a) The learning phase, where a computer learns the 
statistical correlations between 3D objects, projections, drawing styles, and 2D drawings, and encodes 
these correlations in a compact form like a neural network, a Bayesian network, or a probability density 
function. This stage is done offline using a large corpus of training sketches and models.  (b) The 
inflation phase – for a given sketch, an optimization processes tries to find the optimal depth of the 
vertices of the sketch such that it matches the previously learned correlations. (c) The fleshing phase – 
wraps surfaces around the wireframe and transforms it to a solid model. This presentation focuses on the 
first two stages. 
We define a 3D-2D geometric correlation as the probability that a certain 2D configuration represents a 
certain 3D configuration. For example, consider Figure 2a below. The 3D line-pair AB creates a 3D 
angle α3D=∠AB. When the line pair is projected onto the sketch plane, it produces line-pair ab. The 
projected angle is α2D=∠ab. Measuring correlation between α3D and α2D over many arbitrary 
projections of objects in a certain repertoire, we can derive the probability density function pdf(α3D, α2D) 
for that repertoire of objects and projections. We can then use this probability density function (PDF) to 
define a cost function that identifies the most likely 3D object.  
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Figure 2: Measuring 2D-3D correlations. (a) second order, (b) third order. 

Instead of simply measuring angles, we also can measure line lengths. Here we would measure the 
correlation between length ratio in 3D ρ3D=A/B to length ration in 2D ρ2D=a/b. Similarly, we might 
chose to correlate A/B with ∠ab, or ∠AB with a/b, and so forth. Moreover, we can expand these 
correlations to third order, by correlating various length-angle relationships among three lines, such as 
the cone angle of three lines in 3D A×B⋅C versus the cone angle in 2D min(a⋅b, b⋅c, c⋅a), as shown in 
Figure 2b. Higher order correlations may also be recorded in the form of trivariate probability density 
functions (PDFs) such as pdf(α3D, α2D, ρ2D). Increasing the order of the correlations is equivalent to 
increasing the context-dependency of the reconstruction. A bivariate PDF looks at two drawing 
segments, whereas trivariate looks at combinations of a larger number of segments. As the order of the 
learned PDFs is increased, more training data and more efficient PDF learning mechanisms are 
necessary (e.g. neural or Bayesian networks, instead of a simple lookup table). It is also plausible, based 
on neurological observations of the human visual system, that high-order correlations are combined 
hierarchically [7]. 
The PDFs are essentially convolutions of priors of distributions of geometrical properties of possible 
objects with geometrical properties of projections. For an ideal case (unbiased object geometry and pure 
projections) some relationships can be calculated analytically [4,3], but in practice, depicted objects are 
drawn from a biased repertoire (they are not uniformly random), projections are noisy, and sketching 



styles vary. Figure 3 below shows some 2D PDFs collected for 100,000 randomly generated wedge-
intersection scenes with noisy orthographic projections.  
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Figure 3: Measuring 2D-3D second order correlations. Dark areas show high correlation. Strips on right and bottom of 
each table show marginal probabilities. The observed patterns represent heuristics, e.g. the dark corner in the third plot 
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Once geometric correlation functions are known, it is possible to compute the probability of a particular 
depth set {Z} being the source of a given 2D sketch. This amounts to measuring a 3D angle α3D of line 
pairs in the candidate reconstruction, and t e corresp nd
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where δα’s are uncertainties of the measurements and the sketching process. This probability is 
accumulated (multiplied) for all line pairs/triplets in the candi
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date object and the sketch using all learned 

e number of 
vertices in the sketch minus one) makes this a difficult combinatorial optimization process.  

onential number of local minima, similar to the 
shuffled hierarchical if-and-only-if (HIFF) problem [6]. 

correlation PDFs, to yield the overall candidate probability.  
Once the likelihood of a candidate reconstruction can be calculated as above, then the reconstruction 
process ‘amounts’ to an optimization problem, where the objective is to find a set of depth coordinates 
{Z} that maximizes the likelihood. The high dimensionality of the search space (equal to th

We now understand properties of this optimization landscape that suggest why the 2D to 3D 
reconstruction process does not scale well with standard optimization techniques: It has a fractal 
substructure. For any given solution set Z, the inverse solution –Z is also equally valid (this is known as 
the Necker cube illusion). However, this is true not only for the entire drawing, but also for parts of it: 
For example, there are two equivalent global optima for interpreting a drawing of a block – the forward 
and the reverse solutions. The next closest sub-optima will be a block with one side interpreted with the 
forward solution, and the other side with the reverse solution – but that solution is furthest away from 
the optimal solutions in the search space (Hamming distance). This structure continues recursively, so 
that the search space has a fractal structure with an exp

We have recently developed new large-scale optimization methods suitable for this type of problem [8]. 
Our method, based on identifying coupling between degrees of freedom and decomposing the problem, 
has been shown to significantly outperform standard large-scale optimizers, such as simulated annealing 
and genetic algorithms, for problems with a high degree of coupling such as the sketch reconstruction 
problem. The method uses the eigenvectors of the Hessian of the cost function to dynamically transform 
the problem space so that linkage is tight: Linkage is the relationship between the functional dependency 
among parameters and their proximity in the problem representation. It is a key to the success of a 
decomposition-based optimizer like an evolutionary algorithm. A performance comparison using our 
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Preliminary results 
We tested the proposed principles on a few simple line drawings [2], using a simple lookup-table for 2D 
PDFs and a simple gradient optimizer. The results are displayed as an input line drawing, and the 
resulting 3D solution rendered from multiple viewpoints with arbitrarily colored faces. The output was 
generated automatically directly from the
without specification of heuristics. Figure 5 shows two structures, not seen by the system
training period, reconstructed correctly.  
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Figure 5: 2D Single freehand sketch input (left) and views of automatically generated 3D reconstruction.  
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