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Abstract

The richness and expressive power of geometric constraints causes unintended ambiguities and inconsis-
tencies during their solution or realization. For example, geometric constraint problems may be turn out to
be overconstrained requiring the user to delete one or more of the input constraints, and the solutions must
then be dynamically updated. Without proper guidance by the constraint solver, the user must have pro-
found insight into the mathematical nature of constraint systems and understand the internals of the solver
algorithm. But a general user is most likely unfamiliar with those problems, so that the required interaction
with the constraint solver may well be beyond the user’s ability. In this paper, we present strategies and
techniques to empower the user to deal effectively with the overconstraint problem while not requiring him
or her to become an expert in the mathematics of constraint solving.

We formulate this problem as a series of formal requirements that gel with other essentials of constraint
solvers. We then give algorithmic solutions that are both general and efficient (running time typically linear
in the number of relevant constraints).

Keywords: Geometric constraint solving, overconstrained problem, redundant constraints, conflicting con-
straints, inconsistent specifications.

1 Introduction

Product design for manufacture is an activity driven by descriptive information. Increasingly, design includes
the explicit inclusion of design constraints into the specifications, especially geometric or geometry-related
constraints that impose conditions on the shape of the product. That is, the designer states specific constraints
without telling the system in detail how to satisfy them. One goal is to make it convenient for specifying design
intent rather than procedure. A second goal is to provide the designer with a succinct, minimal representation
of the product which they can specify and edit intuitively. It is then the task of the underlying constraint solver
to derive a plan by which to realize and update the constraint representation. i.e, to solve the constraint system
and update the solution in response to changes made to the system.

Geometric constraint systems arise in many applications besides CAD, including technical drawing and
teaching geometry [39, 23, 38, 30, 19, 21, 22, 36, 2, 4, 16, 17, 10, 11, 12, 13, 14, 18,9, 15, 7, 8, 27, 28, 3, 29, 24, 1].
Several successful methods have been presented for planning and executing a strategy for solving constraint
systems. This is particularly true for solving geometric constraint systems in the plane, although some of the
newer approaches including [11, 12, 13, 14, 3, 29], to 3d constraint systems as well.

Informally, a geometric constraint system consists of a finite set of geometric objects and a finite set of
constraints between them. The geometric objects are drawn from a fixed set of types such as points, lines,
circles and conics in the plane, or points, lines, planes, cylinders and spheres in 3 dimensions. The constraints
include logical constraints such as incidence, tangency, perpendicularity, etc., and metric constraints such as
distance, angle, radius etc. The constraints can usually be written as algebraic equations whose variables are
the coordinates of the participating geometric objects.

The solution of a geometric constraint system is a class of valid instantiations of the geometric elements
such that all constraints are satisfied. It is understood that a solution is sought in a particular geometry, for

*Purdue University, Work supported in part by ARO Contract 39136-MA, NSF Grant CCR 99-02025, and by the Purdue
Visualization Center

TUniversity of Florida, Work supported in part by NSF Grant CCR 99-02025, NSF Grant EIA 00-96104; corresponding author:
sitharam@cise.ufl.edu



example the Euclidean plane, the sphere, or Euclidean 3-space. For recent reviews of the extensive literature
on geometric constraint solving, see e.g. [13, 20].
Constraint solvers should meet atleast 3 competing challenges.

1. Generality of expression;
2. Efficiency of realization; and
3. Resolution of ambiguities or inconsistencies, and updating (dynamic maintenance).

Note that generality is in a trade-off relationship with efficiency. As the expressive power or generality of the
system increases, worst-case performance worsens. Furthermore, multiple solutions may have to be explored,
conflicting requirements resolved, redundancies eliminated. Often, these problems overtax the solver and the
designer is asked to intervene manually, altering some constraints and dropping others altogether. A given
constraint problem may be overconstrained, well-constrained, or underconstrained (formally defined later). Only
well-constrained problems are actually solved: under- and overconstrained problems have to be detected some-
how and turned into well-constrained problems, upon the designer’s intervention. When intervention is required,
the constraint solver should offer guidance by presenting viable choices:

e They should not require mathematical proficiency on the user’s part;

e They should neither be limited arbitrarily, nor should they include choices irrelevant to the core problem;
and

e they should be unique in some well defined sense so that the user can expect repeatability of the set of
choices presented.

Efficient Realization Needs DR Plans

A good decomposition of the geometric constraint system is indispensable in dealing with the challenges listed
above. Consider the efficiency goal: The cost of solving a geometric constraint system is directly proportional
to the size of the largest subsystem that is solved simultaneously with an algebraic or numerical algorithm. This
size dictates the practical utility of the constraint solver, since the time complexity is at least exponential in the
size of the largest such subsystem. Hence the optimal decomposition should minimize the size of the largest such
subsystem. Elsewhere, we have analyzed this problem and explained how to find a near-optimal decomposition-
recombination (DR) plan. Finding a DR-plan can be considered pre-processing: a robust DR-plan would remain
unchanged under minor changes to numerical parameters.

DR-plans were used informally by many constraint solvers, but the formal definition of a DR-plan (recalled
in Section 2.1) along with performance measures were first given in [13], where an analysis and comparison of
various constraint solvers with respect to these measures was also given. Based on these performance criteria,
an algorithm, called the Frontier vertex algorithm (FA), was designed in [14]. The FA DR-planner underlies
the FRONTIER constraint solver [31, 32, 33, 26] (available as GNU opensource software) [34], which analyzes
general 3d constraint systems.

Informally, a geometric constraint solver uses the DR plan to solve problem E by repeatedly applying the
following three steps at each iteration i.

1. Find a small solvable subsystem S; of the (current) system E; (at the first iteration, this is simply E).
This step is indicated by a rectangle in Figure 1.

2. Solve S; using a direct algebraic or numerical solver.

3. Using the output of the solver, replace S; by an abstraction T;(S;), thereby simplifying the system E; as
T;(E;) = E;11. This step is indicated by an oval in Figure 1.

An informal requirement on the simplifiers 7T; is the following: E; can be (real algebraically) inferred from E;1;
i.e, we would like every real solution of E;1 to be a solution of E; as well.

The solver terminates when the small, solvable subsystem S; found in Step 1 is (a simplified representation of)
the entire algebraic system E;. A DR-plan can be viewed as a directed acyclic graph where each node represents
a solvable subsystem S; (or T;(S;), also called a cluster) and its descendants represent the different subsystems



E

3

E, E2: T.(E) EFT,(E) E=T,, T(E)
Figure 1: Solving a well-constrained system by decomposition and recombination.
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Figure 2: Geometric constraint graph showing well-constrained subgraphs and 2 DR-plans: all vertices have
weight 2 and edges weight 1

(found earlier) that were combined to form S;. Figures 2, 3, 4 (left), 5 (left), 6 (left), all show geometric
constraint systems represented as constraint graphs (formally defined in Section 2), and their corresponding
DR-plans. If the whole system is underconstrained (as in Figure 6), the solver should still isolate and solve the
maximal solvable subsystems.

Inconsistency, Ambiguity and Dynamic Maintenance using DR-plans

Since efficient constraint solvers generally construct a DR-plan, it can and should be used for dealing with
ambiguities and inconsistencies with the user’s help. This includes how to deal with multiple solutions and
how to isolate the under- and overconstrained problem parts. The plan should be a tool to offer the user an
incremental list of constraints to add or remove, requiring the least amount of additional work to update the
solution and DR-plan.
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Figure 3: Main example constraint graph G1 and DR-plan all vertices have weight 2 and edges weight 1
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Figure 4: FRONTIER screenshots. Left: non triangle-decomposable constraint graph and DR-plan: all vertices
have weight 2 and edges weight 1. Right: input sketch two 3d solutions and chosen one

The literature has dealt with these issues with varying success. Several heuristics have been proposed for selecting
from an exponential, but finite number of solutions of a well-constrained system, [4, 5, 29, 2, 31, 34, 32, 33, 26].
They are based on preserving relative orientation of elements in the input sketch, [2, 29]. These methods can
be quite effective and have been used commercially. When the constraint problem changes in a fundamental
way, however, a new sketch could be needed. In response, [31, 32, 33] has proposed a new method that works
for general decomposition systems and gives the user a visual walk-through of the construction to allow her
to isolate the intended solution. See Figures 4, 5. The method scales down efficiently for the special case of
triangle decomposable systems.

Underconstrained sketches arise often in practice, so some very good heuristics have evolved for CAD applica-
tions. No satisfactory method exists for a systematic navigation of the infinite solution space of underconstrained
systems, but many constraint solvers including [21] and [9] detect them. In fact, [14] shows that the maximal
well-constrained subsystems of underconstrained systems can be read off as the “sinks” or “roots” of a valid
DR-plan. See Figure 6. In many cases, the solver infers heuristically additional constraints from the input
sketch of the constraint system, and there are sound ways to do that [6, 37, 40], with input from the user
[34, 26, 31, 25, 32, 33]. In addition, the DR plan can be maintained dynamically so that when a constraint
system is changed, minimal updates are needed to solve it [34, 26, 32, 33].

Detection of overconstrained clusters is also achieved by existing DR-planners, including [21], [9], and a
modification of [24] described in [14]. However, efficiently utilizing the DR-plan to incrementally isolate the
minimal but complete set of overconstraints that can be deleted, and efficiently updating the DR-plan after
deletion have not been addressed adequately so far.

Main Contribution

Current solvers ask the user to remove constraints in an over-constrained situation but give poor guidance which
constraints to delete. When a redundant or contradictory constraint is first encountered, the entire cluster is
flagged. This identification depends nondeterministically on the DR plan, hence does not penetrate to the core
of the problem and is unacceptable in practice.

Investigating overconstrained problems with one redundant or contradictory constraint, we first define pre-
cisely what is meant by this term, and how to identify conceptually the entire minimal subset of constraints that
are in conflict. We show that this subset is unique and well-defined. We offer a simple solution that is general
and works in arbitrary dimensions. We then point out the drawbacks: its relative inefficiency, since it ignores
the DR-plan whose availablility can be assumed, and its inflexibility. We then give an efficient (generally linear
time) solution that retains full generality and moreover



Figure 5: Screenshots from FRONTIER: (Left) 2d sketch, DR-plan and 1 solution possibility for a subsystem;
(Right) Various solution possibilities for the entire system, and the final output after choosing subsystem solution
on left figure
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Figure 6: (Left) Underconstrained system and DR-plan showing many “roots” or “sinks”, (Right) FRONTIER’s
menus — update mode (top right)



Figure 7: Underconstrained assembly example with 1 extra degree of freedom, and constraint graph

e Traverses the given DR-plan top down to incrementally output this unique set of constraints in reverse
solving order, minimizing the need to solve again previously solved portions of the DR-plan;

e Selects constraints from those parts of the constraint system that the user identifies;

e Isolates information that can be routinely stored and maintained as part of the DR-plan, making the
above process even more efficient; and

e Automatically updates the DR plan with minimal reorganization, once one of the offending constraints is
removed as chosen by the user.

This algorithm is first described for triangle decomposable systems, and thereafter for general systems. A method
is sketched for extending the algorithm incrementally to general k-overconstrained graphs. The algorithms have
been implemented as part of FRONTIER [31, 32, 33, 26] (available as GNU opensource software) [34].

Organization

In Section 2 we explain geometric constraint graphs and DR-planners and necessary specifics of the Frontier
Vertex DR-planner. Section 2 also gives a first formalization of the 1-overconstraintproblem, shows that it is
well-posed, gives a network flow-based solution, discusses its drawbacks, and reformulates the problem to account
better for the requirements listed before. Section 3 gives an efficient algorithm solving the reformulated problem
for a commonly occurring class of 2d constraint systems. Section 4 gives an efficient algorithm for general
constraint systems in arbitrary dimensions, including a note on one possible way to extend the algorithm to
general k-overconstrained graphs. Conclusions and open issues are indicated in Section 5.

2 Background, Problem Statement, and Initial Solution

Given a constraint problem, a complete DR plan can be constructed without accessing the algebraic solver.
A solvable subsystem S; is located combinatorially using a degree of freedom analysis of the constraint graph,
simplified suitably, and the substituted into the larger system E;, thereby obtaining E; ;. This makes the DR
plan generically independent of the valuation of the metric constraints and of the complexity of solving S;. The
formal definition of the DR, plan is thus based on viewing the constraint system as the constraint (hyper)graph.

2.1 Constraint Graphs and Solvability

The geometric constraint graph G = (V, E,w) of the constraint problem is a weighted graph with n vertices
(representing geometric objects) V and m edges (representing constraints) E; w(v) is the weight of vertex v and
w(e) is the weight of edge e, corresponding respectively to the number of degrees of freedom available to object
v and number of degrees of freedom (dofs) removed by constraint e. Figures 4 (right) and 7 show 3d examples
and their constraint graphs.



In general, the constraint graph is a hypergraph with each hyperedge involving any number of vertices. A

subgraph A C G that satisfies
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is called dense, where D is a dimension-dependent constant. Moreover, d(4) = > . w(e) — Y 4 w(v) is
called the density of the graph A. The constant D is typically (dgl) where d is the dimension. D represents
the dof or degrees of freedom associated with the dense graph. In planar Euclidean geometry, we expect D = 3,
in Euclidean 3-space D = 6. If we expect a cluster to be fixed with respect to a global coordinate system, then
D =0.

We give some combinatorial properties of constraint graphs that will be shown later to be related to properties
of the corresponding constraint systems.

A dense graph with density greater than —D is called overconstrained. Note that certain trivial overcon-
strained graphs are common and require special treatment. These are: a single point in 2d or 3d, i.e., graphs
with a singleton vertex of weight 2 or 3; a pair of points and a distance constraint between them in 3d, i.e.,
graphs with 2 vertices of weight 3 and an edge of weight 1 between them. These cases are special because the
geometric structures have rotational symmetry. In the following, we exclude larger geometric structures that
have rotational symmetry other than the cases listed. A single dense edge of any kind may be considered trivial
and treated as a special case for efficiency reasons.

A dense graph all of whose subgraphs have density at most —D is well-constrained. A graph G is called
well-overconstrained if it satisfies the following: G is dense, G has at least one overconstrained subgraph, and
remains dense when replacing all overconstrained subgraphs by well-constrained subgraphs. A dense graph
is minimal if it has no proper, nontrivial, dense subgraph. All minimal dense subgraphs are well-constrained
or well-overconstrained, but the converse is not the case. A graph that is neither well-constrained nor well-
overconstrained is said to be underconstrained.

Fact 2.1 A dense, nontrivial, underconstrained graph must contain an overconstrained, nontrivial proper sub-
graph. Conversely, if a graph G of density —D contained a nontrivial subgraph of density > —D, then G must
be underconstrained. Thus, if a dense G is nonminimal, it may embed a subgraph of density > —D and in that
case, G would be underconstrained.

A generically solvable system always has a well-constrained or well-overconstrained graph, but the converse
is not necessarily the case. There are minimal dense graphs whose corresponding systems are generically
unsolvable. For a detailed discussion of genericity and the limits of this type of purely combinatorial degree
of freedom analysis, see e.g., [14]. Therefore, we restrict ourselves to constraint systems for which well or
well-overconstrainedness of the constraint graph implies generic solvability of the constraint system.

2.2 The Frontier Vertex Algorithm (FA-DR planner )

Here we sketch the important features of the FA-DR planner that are necessary for the exposition of the main
results. Prior to [13, 14], the DR-planning problem and appropriate performance measures for the planners
were not formally defined. Most DR planners were based on decomposing the graph by fixed patterns, such
as triangles of 3 points and 3 distance constraints, tri-connectedness etc). This works well in many situations,
especially in 2d. Such 2d constraint systems [6, 27, 28, 29] that can be so solved are called triangle decomposable.
Other methods were more general, and used connectivity and graph matching based approaches [21, 22], [24, 1].
Especially in 3d and also many 2d constraint systems are more complex and these methods do not guarantee
high quality, close to optimal decompositions ; see, e.g, Figures 4, 7, and 3. In general, the graph needs to be
decomposed into minimal dense subgraphs of arbitrary topology that are as small as possible, their density and
minimality the only defining property. An extensive comparison of all of these types of constraint solvers with
respect to various formalized performance measures was given in [14]. Our Frontier vertex algorithm (FA) [9],
is fully general and optimizes several of the performance criteria defined in [14]. The generality of our algorithm
is not entirely reflected in the examples of this paper, which were chosen to facilitate exposition. More general
examples can be found at the FRONTIER website [34]. Intuitively, the recursive FA uses the following two
steps repeatedly:
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Figure 8: From Left. Constraint graph G with edge weight distribution. A corresponding flow in G*. Another
possible flow. Initial flow assignment that requires redistribution later

1. Find and isolate a minimal dense subgraph (the decomposition step).

2. Simplify transforming the subgraph into the cluster C' (the recombination step).

2.2.1 Isolating Clusters: Finding Minimal Dense Subgraphs

The algorithm in [11] that the FRONTIER system employs is a modified incremental network maximum flow
algorithm. The idea is to start with the empty subgraph G’ of G and add to it one vertex at time. When
a vertex v is added, we consider the adjacent edges e incident to G'. For each, we try to “distribute” the
weight w(e) + D + 1 to one or both of its endpoints as “flow” without exceeding their weights, referred to as
“distributing the vertex v.” As illustrated by Figure 8, we may need to redistribute some of the flow again later.

If we are able to distribute all edges, then G' is not dense. If no dense subgraph exists, then the algorithm
will terminate in O(n(m + n)) steps and announce this fact. If there is a dense subgraph, then there is an
edge whose weight plus D + 1 cannot be distributed, even with redistribution. The last vertex added when this
happens can be shown to be in all dense subgraphs A C G'.

Distributing an edge e in G now corresponds to pushing a flow equal to the capacity of (s, e) from s to ¢ in
G*, in the standard bipartite representation of G. This is possible either directly, by a path of the form (s, e, v, t)
in G*, or it requires flow redistribution, by the usual method of augmenting paths. If there is an augmenting
path, then the resulting flows in G* provide a distribution of the weight of each edge e in the current subgraph
G'. The weight w(e) of each edge e connecting the vertices a and b is split into two parts f¢ and f such that
2+ £ = w(e) and, for each vertex v € G/, 2 e=(v,x) ¢ < w(v). If there is no augmenting path for the residual
flow on (s,€), then a dense subgraph has been found.

Once a dense subgraph G’ has been found, a minimal dense subgraph inside it can be found by dropping
a vertex v and redoing the flow in G'. If a new dense subgraph G" is so found, then v is dropped and the
procedure is repeated. If no such dense subgraph is found, then v must definitely belong to every minimal dense
subgraph inside G'. In this way, we can find a minimal dense subgraph in G'.

2.2.2 Simplifying Clusters

Once a minimal dense subgraph S; is located in G;, the next step is to simplify it, thereby transforming the
constraint graph G; into a simpler graph G;1, such that the densities of subgraphs of G; are preserved in G4
as much as possible and an optimal DR-plan can be found. It would be simplistic to always condense a cluster
to a vertex of G;y1. The cluster interacts with the rest of the constraint graph through its frontier vertices;
i.e., the vertices of the cluster that are adjacent to vertices not in the cluster. The vertices of the cluster that
are not frontier, called the core vertices, are contracted into a single vertex. This single vertex is connected
to each frontier vertex v of S; by an edge whose weight is the the sum of the weights of the original edges
connecting internal vertices to v. Here, the weights of the frontier vertices and of the edges connecting them
remain unchanged. The weight of the core vertex is chosen so that the density of the simplified cluster is —D,
where D is the geometry-dependent constant.

The process of finding solvable clusters S; and simplifying them is repeated, until the solvable S,,, found is
the entire remaining graph G,,. Figure 9 illustrates how FA constructs clusters for the final DR-plan of Figure
3.



Figure 9: From left: FA’s simplification of graph according to DR-plan in Figure 3; clusters are simplified in
their numbered order: C4 is simplified before C7 etc.
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Figure 10: From left. Cluster C7 of Figure 9. C7 before transformation: Tg: (C7) — bold edges are relevant
edges used for resolving C7 and both bold and marked edges are unchanged edges. Underlying subgraph G¢,
corresponding to C7 (from graph in Figure 3). Third key property of FA - W must be a child of C

The graph transformation performed by FA is described formally in [14, 15] using simplifier maps that
provide the vocabulary for proving certain properties of FA and illustrating its superior performance. Moreover,
details of the data structures for an implementation have been reported in [32, 33]. There, it is also explained
how to deal with special clusters such as trivial, rotationally symmetric, and externally overconstrained clusters.

2.2.3 Key Properties of FA

The following properties of FA are needed for describing and proving correctness of our main algorithm in
Section 4. In addition, some key terminology is defined here.

Property 1

The correctness of FA follows from the fact that each internal node in the FA DR-plan represents a well-
constrained cluster C, obtained in step 2 above, by applying a simplifying transformation T¢ to a well-
constrained subgraph consisting of child clusters of C. This subgraph is also denoted T, L(C) and is isolated as
S; in the decomposition step of some it iteration of FA. See Figure 10.

If the original graph G is well or well-overconstrained and nontrivial, then the DR-plan is a dag with a single
root or sink. If G is underconstrained, then FA finds all of its maximal well or well-overconstrained subgraphs:
each sink of the DR-plan represents such a subgraph. The FA DR-plan has the provable property that if the
only changes made to G are within a cluster C' and these preserve the well-constrainedness of C' then they will
also preserve the well-constrainedness of the ancestor clusters of C' in the DR-plan.

Property 2

The frontier vertices and edges of the clusters C' are in 1-1 correspondence with vertices and edges of the
original graph G. Furthermore, the edges in the subgraph T}, ' (C) between the child clusters C; are also in 1-1
correspondence with edges in the original graph G, as illustrated in Figure 10. They represent constraints that
are used to resolve or recombine C' from the the resolved clusters C;. They are called the relevant edges for
C'. Conversely, each edge e in G is relevant for a unique cluster C' in the DR-plan. The cluster C is called the
relevant cluster for the edge e. Figure 5 is a FRONTIER screen capture showing candidate solution of the root
cluster of the FA DR-plan being recombined or resolved from a chosen solution of child clusters.



Sometimes, as in the graphs of Figure 2 and Figure 5, the constraints between clusters are implicit; i.e, they
are constraints implied by shared objects or common frontier vertices between clusters. These are not explicitly
listed among the relevant constraints for resolving C'. In this case, the only relevant constraints at top level
cluster are not explicit constraints but rather implicit shared object constraints.

Property 3

Before simplification, the cluster C is minimal (note that cluster minimality is different from the earlier definition
of a minimal dense subgraph). Le., no proper subset of 2 or more child clusters C; of C induce a dense subgraph
of G. Moreover, if the original subgraph G¢ underlying C' is nontrivial and contains a nontrivial well or well-
overconstrained subgraph W, and if the intersection of W with any one of the child clusters C; of C in T, 1(0),
is a trivial, overconstrained subgraph, then W must itself have been represented as a child cluster C; in T, 1(C,~).
See Figure 10.

Property 4

Two clusters of the DR-plan do not overlap on non-trivial well-(over)constrained graphs, unless one actually
contains the other. The property also holds for the original subgraphs corresponding to the clusters. This
property prevents an exponential blow-up of the number of clusters found during the construction of the DR-
plan. Accordingly, the total number of clusters in an FA DR-plan is bounded by O(|V|?), where |V| is the
number of vertices of the original graph and d is linear in the dimension of the original geometric space. The
depth of the DR-plan is bounded by |V|, although in practice the number of clusters is also O(|V|).

The minimal dense subgraph detection needed to isolate each of these clusters could take as many as
O([VI>(IV] + | E|)) steps where |E| is the number of edges of the original graph. In 2d, the overall complexity
of the FA DR-planner is bounded by O(|V[*(|V| + |E|)) steps; in practice FA typically takes only O(|V|?|E|)
steps.

Property 5

If G is overconstrained, then for any nontrivial well-overconstrained subgraph W (that may not appear as a
cluster in the DR plan D(G)), we can read off from D(G) the unique minimal nontrivial cluster C' (minimal
among those appearing in D(G)), whose corresponding subgraph G¢ contains W. Other DR-planners besides
FA (such as [21] and a modification of [24] described in [14]) also detect such clusters. But the crucial point
to note is that G¢ could be significantly larger than W. It still remainds to efficiently find a minimal well-
overconstrained subgraph of W.

In the case of FA DR-plans, uniqueness of this cluster C follows from Property 4. Here, minimality of C
means that no descendant cluster contains W. This cluster C is denoted S(D(G)) and is the unique minimal
cluster C appearing in D(G) where T, ' (C) is overconstrained. Furthermore, since the child clusters C; of C are
(by the FA simplification) always represented as well-constrained subgraphs in T, L(C), the overconstrainedness
of T;'(C) results entirely from the shared object constraints and the relevant constraints used for resolving C
by recombining the C;.

Property 6
The FA DR-plan respects a hierarchy of well or well-overconstrained features that are specified as part of the
the input. That is, these features appear as clusters in the output DR-plan.

2.3 An Initial Problem Statement and Solution

An edge of the constraint graph G is reducible if we can reduce its weight by 1 without making G' undercon-
strained. Such edges can be found in well-overconstrained graphs. If G is underconstrained, then a reducible
edge belongs to at least one of the maximal well-overconstrained subgraphs of G. By the cut-based definition
of underconstrained graphs, the reducible edges do not belong to any minimal cut of weight D in G unless the
cut is trivial. An overconstrained graph is I-overconstrained, if it, or each of its maximal well-overconstrained
subgraphs, becomes well-constrained as soon as one reducible edge has its weight reduced by 1. In the following,
we assume that 1-overconstrained graphs are nontrivial. We state formally the problem addressed in this paper
and, based on the basic constraint graph properties, we give an initial solution.

Problem: Give an efficient algorithm that takes as input a 1-overconstrained graph G, and outputs its set of
reducible edges, L(G).

Fact 2.2
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(i) Any montrivial 1-overconstrained graph G may have many (1-)overconstrained subgraphs, but it has a
unique minimal, nontrivial, 1-overconstrained subgraph U. That is, no proper subgraph of U is 1-overconstrained.

(i3) An edge is in U if and only if every (1-)overconstrained subgraph of G contains it.
(i5) U is 1-well-overconstrained.

(i) U consists of exactly the reducible edges of G.

Proof: (i) Suppose U is not unique and there are two distinct minimal, nontrivial 1-overconstrained subgraphs
U; and U,. Then either their intersection is 1l-overconstrained, or their union has density at least D + 2,
contradicting the 1-overconstrainedness of G. If their intersection is 1-overconstrained, then U; and U, cannot
be minimal. Statement (ii) follows from (i) and from minimality and uniqueness of U. Statement (iii) follows
from U’s minimality and by Fact 2.1.

For (iv), assume that the minimal 1-overconstrained graph U is not L(G). First, assume that one of the
edges e outside U is reducible and reduce its weight by 1 obtaining G’. Then G’ still has density —D, but it has
a subgraph U of density —D + 1, and, by Fact 2.1, G' must be underconstrained, contradicting the assumption
that e was reducible. Conversely, assume that one of the edges in U is not reducible. Then reducing its weight
by 1, the new graph G’ must be underconstrained, but it is still dense. In G', however, U and all other 1-
overconstrained subgraphs of G are no longer 1-overconstrained, since they all contain U. This contradicts Fact
2.1. 0

Initial Algorithmic Solution

Using Fact 2.2, we can immediately obtain an O(|V |>(|V'|+|E|)) network flow based algorithm for our problem,
by adapting the minimal dense subgraph location algorithm of Section 2.2.1. This works for completely general
geometric constraint hypergraphs in arbitrary dimensions. Simply locate a minimal subgraph of density —D +1
by first finding a subgraph of density at least —D + 1, distributing an additional flow of D + 2 beyond the weight
of the edge. Once this graph is found, locate a minimal 1-overconstrained subgraph U in it by deleting vertices
one by one, so finding a subgraph of density —D + 1 within the resulting subgraph. The subgraph U so found
must be L(G) by Fact 2.2.

2.4 Drawbacks and Modified Problem Statement

The problem statement and solution above are unsatisfactory since they do not satisfy the requirements discussed
informally in the Introduction:

Requirement 1:

Given a DR-plan D(G) as input, the algorithm should be significantly more efficient (preferably linear time) than
the one given above, by utilizing an existing DR-plan to find the reducible edges of G. (The above algorithm
ignores any DR-plan information).

Requirement 2:

The list of reducible edges should be compiled incrementally by traversing down the DR-plan, cluster by cluster,
starting from the unique overconstrained cluster S(D(G)) as described in Property 5 of FA.

Upon examining S(D(G)), the first part of the edge list will consist of the reducible edges in G that are
unchanged edges of S(D(G). That is, these edges are relevant in recombining already solved child clusters
of S(D(G)). The next sublists output are the reducible edges in G that are relevant to the child clusters of
S(D(G)) and so on.

In general, if a cluster A in D(G) is an ancestor of a cluster B then the sublist for A will be output before
the sublist for B. Thus, the edges or constraints in L(G) are output in the reverse order in which they would
be solved.

Requirement 3:

The sublist of reducible edges for a particular cluster C' should be output on demand, preferably in a manner
that inspects exclusively the clusters on the path in the DR-plan from the cluster S(D(G)) that contains C,
upto the cluster C.

This requirement is meaningful for instance in the case of FA DR-plans, because those plans reflect a
designer’s conceptual feature hierarchy.
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Figure 11: Left: Clusters H; and Hs can be dropped from consideration. Right: Cluster pruning alone does
not necessarily yield the critical subproblem.

Requirement 4:
The DR-plan should be updated efficiently when a reducible edges is reduced. The update should inspect only
clusters that are actually changed by the reduction.

In the next section, we concentrate mostly on Requirements 1, 2 and 3. Requirement 4 follows from our
algorithmic solution with some routine work, and we only discuss it informally.

3 'Triangle Decomposable 2d Constraint Systems

For most 2d constraint systems arising in applications, it is sufficient to use the triangle decomposition algorithm
of [6] whose clusters are formed by combining three child clusters pairwise sharing one geometric element. When
points and lines are the geometric vocabulary, all vertices have weight 2 and edges have weight 1; hence 1 well-
overconstrained graphs have a number of edges |E| that is linear in the number of vertices |V|. Elementary
clusters consist of two vertices and an edge between them. As shown in [6], overconstrained problems are
detected by two clusters sharing more than one geometric element, so that the 1 well-overconstrained case
implies two clusters that share two geometric elements. This includes adding an extra weight-1 constraint into
the cluster, since such a constraint, along with two incident weight-2 vertices, can be considered a cluster. We
explain how to obtain the the set of reducible edges. Note that the edge weight 1 implies that a reducible edge
is reduced by removing it.

Let K3 and K> be the overlapping clusters, u; and us the shared vertices between them. Our algorithm first

examines the decomposition tree to find cluster merges in K; and K» in which both u; and uy are in the same
cluster, as illustrated in Figure 11 (left). It is clear that if the clusters H; and H» can be removed, then the
resulting, smaller cluster remains 1-overconstrained. Moreover, since both H; and Hy must be wellconstrained,
deleting any constraint within those clusters cannot change the original problem into a well-constrained one.
Thus, iteration of the pruning step obtains a cluster K’ that must contain the unique, minimal 1-overconstrained
subgraph and hence all of the reducible edges by Fact 2.2.
As noted in [13, 14], constraint-graph decomposition is not deterministic, but it satisfies the Church-Rosser
property. Therefore, cluster pruning, in general, does not necessarily preserve the set of reducible edges, and
an example is shown in Figure 11 (right). What is needed is a tree re-ordering that exhibits the remaining
redundancies. The decomposition method of cutting [40] achieves this, as follows.

Let G = (V,E) be the constraint graph known to be 1l-overconstrained. The cutting step finds a vertex
v € V such that the weight w(v) is equal to the sum of the weights of the incident edges. Such a vertex can
be constructed as the last step of the solution plan, and can therefore be removed from G without changing
whether G is structurally over-, well-, or underconstrained. Cluster pruning can be considered a generalized
cutting step. We thus obtain the following algorithm for identifying the critical subproblem:

1. Repeat cluster pruning until no further clusters can be removed.

2. Repeat the cutting step until no further vertices or subclusters can be removed.
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Figure 12: Left: A constraint graph Middle: its decomposition structure; Right: The result of edge reduction

The algorithm, as stated, has quadratic complexity. This can be lowered to O(|E|log(|E|)) = O(|V|log(|V]))
using a priority queue. However, we can achieve a linear-time algorithm.

Consider the cluster and mark the two shared points. All other vertices are unmarked. Then, consider the
vertices in the reverse order in which they were added to the cluster. We will accumulate the set U of reducible
constraint edges. U is initially empty. Perform the following for each vertex v encountered:

1. If the vertex v is not marked, delete it and delete the constraints by which it was added.
2. If v is marked, then

3. If there are other vertices in the remaining cluster that are marked, then include into U the edges of the
constraints by which v was added and mark the vertices incident to the constraint edges.

4. Otherwise, if v is the only marked vertex, terminate the process.

It is intuitively clear that the marked edges are precisely the reducible constraints that contribute to the
overconstrained situation. Using reference counts, we can implement the test of remaining marked vertices in
constant time, so that the algorithm overall is linear-time.

Example. Consider the cluster shown in Figure 11(Left). Vertices 1 and 10 reveal the l-overconstrained
situation when merging the lower and the upper cluster. Assume that the lower cluster has been constructed by
choosing the edge (1, 2) as cluster core and sequentially extending the cluster in the order of vertex enumeration.

Initially, vertices 1 and 10 are marked, and in the lower cluster the vertices are examined in reverse numerical
order. Vertex 11 is examined first. Since it is not marked, it is deleted along with the edges (7,11) and (9,11).
When examining vertex 10, we add the constraint edges (8,10) and (9,10) to U and mark vertices 8 and 9.
Examining 9 next, we add edges (8,9) and (6,9) to U and mark 6. On examining 8, we add (3,8) and (6,8) and
mark 3. Vertex 7 is unmarked and is deleted along with edges (4,7) and (6,7). Eventually, the process ends
with a set

L= {(87 10)7 (97 10)7 (87 9)7 (67 9)7 (37 8)7 (67 8)7 (37 6)7 (27 6)7 (17 2)7 (17 3)}

Note that the vertices 11,7,4,5 are unmarked. O

The algorithm is straightforwardly extended to cluster pruning. Here, we have to maintain a mark reference
counter for the clusters themselves, in addition to the intra-cluster reduction explained before. Therefore, the
critical constraint set can be found in linear time.

Updating Triangle-Based DR-Plans: Constraint Removal

Removing a constraint corresponds to removing an edge from the constraint graph. To minimize the changes
of the decomposition, we only modify or destroy clusters that are based on this edge; that is, clusters whose
induced subgraph includes the edge. Figure 12 (left) is a constraint graph G and Figure 12 (middle) illustrates
the decomposition structure of the G. For example, if the edge (2,4) is removed, the cluster C is destroyed
and the cluster C; is modified, but other clusters remain unchanged. Figure 12 (right) shows the result of the
removing operation.

Note: One difficulty of this algorithm arises from the fact that removal of a constraint may not preserve or retain
triangle decomposability of the resulting graph. In the case of solvers that rely on triangle decomposability,
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therefore, we identify additionally the subset of constraints whose removal retains triangle decomposability. This
can be done by deleting each constraint in turn and testing decomposability. Since 1-overconstrained problems
are identifiable early, and in view of our experience that the critical subproblems of such overconstrained
problems are usually not very large, this approach is efficient.

4 The Algorithm for general DR plans

We now describe the algorithm OVERLIST, which takes as input a general geometric constraint hypergraph G
that may not be triangle decomposable and is known to be 1-overconstrained. Therefore, as in the previous
section, |E| = O(|V|). The algorithm uses FA to generate a DR plan D(G) and and outputs the complete list
L(G) of reducible edges in G incrementally with respect to D(G), and in such a way as to satisfy all of the
requirements of Section 2.4. First, we present the core algorithms. Adaptations of the algorithm are briefly
sketched in Section 4.1, followed by illustrative examples in Section 4.2. Correctness proof and the complexity
analysis follow.

Algorithm OVERLIST uses a DR-plan D(G) and the unique smallest nontrivial 1-well-overconstrained sub-
graph corresponding to a cluster S(D(G)) in D(G). Recall that the subgraph corresponding to S(D(G)) may
be significantly larger than the unique minimal 1-well-overconstrained subgraph of G which, in general, need
not appear as a cluster in D(G). This is a limitation not only of the FA DR-planner, but other DR-planners
such as [21] and [24] that in some form or another detect overconstrained clusters. This is the starting point of
our main contribution.

The tuple (G, D(G), S(D(QG))) is input to the algorithm PLANOVER, the main technical contribution of this
section. Algorithm PLANOVER further calls 2 recursive subroutines UNRAVEL and UNRAVEL* that incrementally
output the list L(G) while traversing the sub-DR-plan of D(G) rooted at the cluster-node S(D(G)). See Figure
17 for the overall control flow of these algorithms. While the main contribution here is the Algorithm PLANOVER
which takes the FA DR-plan as input, the text in Figure 17 also illustrates the importance of the FA DR-plan’s
key properties from Section 2.2.3, by using the example graphs G2,G3,G4,G5 and G6 (Figures 13, 14 15 and
16), which are variants of the example graph G1 in Figure 3.

ALGORITHM OVERLIST(G)

Step 1: Run the FA DR-planner to get the DR-plan D(G) and the cluster S(D(G)) representing the unique
smallest 1-well-overconstrained subgraph of G that appears as a cluster in D(G). Since G is known to be
1-overconstrained, we know that this subgraph is nontrivial.

Step 2: PLANOVER(G, D(G), S(D(Q))

ALGORITHM PLANOVER(G,D(G),S(D(Q))
L(@):=0; C :=S(D(@))
UNRAVEL*(C, 0); Output L(G)

ALGORITHM UNRAVEL*(C, P)
Lc := set of unchanged edges (from G) in T;'(C) between the child clusters C; of C;

L(G) = L(G) U L¢; Output L¢

Pc := set of contact points, i.e, those vertices of the child clusters C; in T;'(C) that are (a) either present
in more than one C; (these represent “shared-object” or “incidence” constraints); or (b) participants in some
edge(constraint) in Lo. Note that these contact points are necessarily Frontier vertices of the C;’s and are hence
unchanged vertices from G)

Py =PoUP
For each child cluster C; of C in D(G),
UNRAVEL(C;, P N C;)

ALGORITHM UNRAVEL(C, P)
If C represents a singleton vertex of GG, then return NULL
Else,
If all the points in P lie inside a single child cluster C; of C in T;'(C)
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Figure 13: Left - Graph G2: edge h changes from G1 ; Right - Graph G3 edge e changes from G1; in both
cases, no change in FA DR-plan

then UNRAVEL(C}, P) (if there is more than 1 such child cluster C;, pick any one)

Else UNRAVEL*(C, P)

Notes on the pseudocode:

— Algorithm OVERLIST is never called on clusters C' corresponding to trivial well-overconstrained subgraphs of
G, since S(D(G)) corresponds to a nontrivial subgraph, by the results in Sections 2.2.

— In Algorithm PLANOVER, the complete list of edges L(G) is output at the end, however, the list is also
incrementally output when sublists are encountered at clusters of D(G) during UNRAVEL* — as explained below.
— UNRAVEL*, is never called on clusters C' corresponding to singleton vertices of G; hence both Lo and Po are
well-defined.

— In the description of UNRAVEL*, the C; are obtained from D(G) — see Section 2.2; also, Lo could be empty
if C resulted from only implicit or “shared-object” constraints between its child clusters.

— In the description of UNRAVEL*, L¢ is output at this stage as the incremental sublist of L(G) obtained from
C. By Section 2.2.3 the edges in L(C') represent the relevant explicit constraints used to recombine or solve C
from the already solved child clusters C;. Thus it immediately follows that the Requirement 2 of the problem
statement in Section 2.4 is met by this algorithm

— In the description of UNRAVEL*, P} N C; represents those contact points in C; that are inherited from C.

— In the description of UNRAVEL, the call UNRAVEL(C;, P) is well defined for the following reason: the points
in P are always vertices from G that are unchanged in C, they are not only frontier vertices in C' but also
well-defined as frontier vertices of C’s children C; in T ' (C)

4.1 Some Adaptations of the Algorithm

A key property of our algorithm is that with small adaptations, it can easily and efficiently answer the following
types of user queries; see Requirement 3 of the problem statement in 2.4): “Is this edge e reducible?” or “Given
a particular cluster C of the given DR-plan D(G), show me the list Lo of reducible edges relevant to C, if it
exists.”

Observation 4.1 The Algorithm UNRAVEL is called only on a subtree of D(G). In fact, it is a subtree of the
subplan of D(G) that is rooted at S(D(G)). The sublist L is formed only on those vertices of this subtree where
UNRAVEL* s called.

This observation is illustrated in Section 4.2 and can be used as follows. For an edge-reducibility query,
locate the unique minimal relevant cluster C for e. Then, for both types of queries, the algorithm can give
immediately an efficient solution that requires only looking at the path of clusters from S(D(G)) to C in the
DR-plan D(G). This path is called the unravelling path: check whether UNRAVEL gets called on all of these
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Figure 14: Graph G4: edge e and i change from G1; Right: changed DR-plan

B CO=S(D(G5))
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Figure 16: Graph G6: edge f and g changed from G1: Right: changed DR-plan as well as input cluster S(D(G))
for PLANOVER
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. (G = Overconstrained graph)

OVERLIST

FA

D(G) = DRPLAN
S(D(G))

(G, D(G), (D(G)))
PLANOVER
UNRAVEL (*)

L(G)
Caseof G2 & G3:
* D(G2) & D(G3) areidentical to D(G1)
* S(D(G2)) & S(D(G3)) are dso identical to S(D(G1))
* L(G2) & L(G3) .i.e. output of PLANOVER changes since G2 & G3 are different from G1

Caseof G4 & G5:
* D(G4) & D(G5) both change from D(G1)
* S(D(G4)) & S(D(G5)) are unchanged
* Changein L(G4) & L(G5) .i.e. output of PLANOVER crucially depends on change in D(G4) & D(G5)

Case of G6:

* S(D(G6)) changes from S(D(G1))
* Change in L(G6) .i.e. output of PLANOVER crucially depends on this change

Cases G4,G5,G6 when compared to case Gl illustrate that correctness of OVERLIST depends not only on
PLANOVER but also on the properties of FA’s output (.i.e. entire input to OVERLIST).

Figure 17: Overall control flow of algorithms; Text: differences in the example variants G1, G2, G3, G4 of
Figure 3, and Figures 13, 14, 15, 16
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clusters, starting from the top of the path and following the contact points. The rest of the graph can be
ignored. Finally, check whether UNRAVEL* gets called at C'. If so, then the relevant edges of C are reducible
edges that would be output as Lo by Algorithm PLANOVER above.

Note in particular that our algorithms are easily implemented on top of existing DR-planners (provided their
DR-plans satisfy the basic properties of Section 2.2.3 of the FA DR-plans). This follows from the fact that the
entire information flow in our algorithms is expressed as attributes that can be stored and updated routinely
as part of the DR-plan, such as: relevant cluster in the DR-plan for a given edge, relevant edges for a given
cluster, the contact points that they define, and the inheritance of these contact points.

4.2 Illustrative Examples

Consider the 2d constraint system of Figure 3 and Algorithm OVERLIST. Figure 18 illustrates the key points of
the algorithm for Graph G1.

In the case of the graph G2 of Figure 13(left) (formed from G1 by changing the edge h), the DR-plan D(G2) =
D(G1) and also the cluster S(D(G2)) = S(D(G1)). However, due to the change of h, UNRAVEL(C21) directly
calls UNRAVEL(C20); unlike in the case of G1 UNRAVEL is not called for C14 and C17. The new L(G2) turns
out to be all edges in subgraphs corrsponding to C'4 and C20.

In the case of the graph G3 Figure 13(right) (formed from G1 by changing the edge e), the DR-plan D(G3) =
D(G1) and also the cluster S(D(G3)) = S(D(G1)). However, due to the change of e, UNRAVEL(C6) gets called
unlike in the case of G1 and G2. The new L(G3) turns out to be all edges in original graph G3.

In the case of the graph G4 Figure 14 (formed from G1 by changing the edges ¢ and e), the DR-plan D(G4)
output by FA must be different from D(G1) due to the properties in Section 2.2.3. However, the cluster
S(D(G4)) = S(D(G1)). In this case, UNRAVEL(CT) directly calls UNRAVEL(C4'); UNRAVEL is not called for
singleton clusters (vertices) 21 and 22. Thus edges (17,21), (18,22), (21,22), (22, 23) are excluded and the edge
i changed in L(G3) to give L(G4).

In the case of the graph G5 Figure 15 (formed from G1 by differently changing the edges ¢ and €), the DR-plan
D(G5) output by FA must be different from D(G1) and D(G4), due to the properties in Section 2.2.3. However,
the cluster S(D(G5)) = S(D(G1)). In this case, UNRAVEL(C7) calls both UNRAVEL(C4") and UNRAVEL(CS).
L(G5) is again L(G3), with i changed.

In the case of the graph G6 Figure 16 (formed from G1 by differently changing the edges g and e), the DR-
plan D(G6) output by FA must be different from D(G1), due to the properties in Section 2.2.3 and moreover,
S(D(G6)) = CT7' is not the same as S(D(G1)). In this case, UNRAVEL(CT') calls both UNRAVEL(12) and
UNRAVEL(C'T), which in turn directly calls UNRAVEL(C4). Por is the set {19,20,15,12}. L(G6) is exactly the
set of edges in the subgraph of G6 corresponding to the cluster C'4, along with the changed edges e, f, g.

These examples show 2d (non triangle decomposable) geometric constraint systems for the sake of exposition.
The general decomposition capabilities of the FA DR-planner permits Algorithm OVERLIST to handle general
3d systems as well (try the software in [34]).

4.2.1 A Note on Implementation

The FA DR-plans for the examples given here and many other geometric constraint systems were obtained by
running our FRONTIER geometric constraint solver. See for example Figure 4. These and other examples —
both 2d and 3d, and involving other types of objects and constraints besides points and distances — are available
at the FRONTIER public domain site, where the source code can also be downloaded. The algorithms described
here will be incorporated into FRONTIER’s update mode, see Figure 6(right).

4.3 Proof of Correctness and Complexity

The correctness of Algorithms OVERLIST and PLANOVER relies crucially on the properties of the FA DR-plan
given in Section 2.2.3. This is elucidated by the control flow and the text in Figure 17, which distinguishes
between the variants in Figures 13, 14, 15 and 16.

The following theorem shows that Requirements 1 and 2 of the problem statement in Section 2.4 are met
by algorithm OVERLIST. Requirement 3 was discussed in Section 4.1.
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Figure 18: Working of OVERLIST showing calls to UNRAVEL for the graph G1 and DR-plan of Figure 3;
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Theorem 4.2 Let Lo be any sublist of edges output during a call to UNRAVEL* (no sublist Lo is output without
such a call) and L(G) be the union of all of these sublists as output by PLANOVER, when the algorithm OVERLIST
is run on an input constraint graph G. Then the following hold.

1. Every edge in Lc represents a relevant explicit constraint for resolving C' from its child clusters in the FA
DR-plan D(G) (output in Step 1 of OVERLIST). If a cluster C is an ancestor of a cluster D, then the
edges in Lo (if any) are output before the edges in Lp (if any).

2. Every edge in Lo belongs to the (unique) minimal, nontrivial 1-(well)-overconstrained subgraph of G (and
is hence reducible in G by Fact 2.2).

3. Any edge that is not in the complete output list L(G) (i.e, it is not in any of the sublists Lc) is not
reducible in G.

Proof: Ttem 1 follows from the definition of the Lo in UNRAVEL* and from the recursive nature of UNRAVEL.

Proof of Item 2. We will show that every 1-overconstrained subgraph W of G contains every edge in Lo. This
implies Item 2.

By the properties of FA in Section 2.2.3, the subgraph Gg of G corresponding to the cluster S(D(G)) is 1-well-
overconstrained and contains the minimal 1-well-overconstrained graph.

Hence it is sufficient to show that every 1-(well)-overconstrained subgraph W of Gs contains every edge in L¢.
This follows from Item (iv) in Claim 1 below.

Claim 1: Let C be any cluster on which UNRAVEL is called, let G¢ be the corresponding subgraph of G.

(i) Any 1-well-overconstrained subgraph W of G s must intersect Go on a wellconstrained or well-overconstrained
subgraph W¢

(ii) Let Ge, be the subgraphs of G corresponding to the children C; of C, found in T;'(C). The intersection
We, = WeNGe, = W NGg,, if nonempty, is wellconstrained and nontrivial provided G, is nontrivial.
(the trivial cases of G, are handled straightforwardly).

(i3) (a) Either Wo C Gg,, i.e, Wo = W, for some i, or
(b) We, is nonempty for every child cluster C; of C.

(iv) If UNRAVEL* is called at C, then (iii)(b) holds; i.e, W¢, is nonempty for every child cluster C; of C and,
more importantly, We includes all edges in Lo and every contact point in Pe.

Proof. We prove Claim 1 by induction on the number lo of clusters along a path p in the DR-plan D(G)
from S(D(G)) to C on which UNRAVEL is called. This path consists of clusters that are both descendants of
S(D(G)) and ancestors of C. It is clear from the algorithm that if UNRAVEL(*) is eventually called on C, then
such a unique unravelling path p must exist, and UNRAVEL is called on all of the clusters on this path.

Basis: lc = 0, i.e, C = S(D(G)). In this case, We = W, so (i) holds immediately, and in fact, W¢ is
well-overconstrained. To prove (ii), (iii), (iv), we first prove the following claims.

Claim 2:

(a) We cannot be a subgraph (proper or not) of any of G¢,

(b) If some W, is nonempty, then it cannot be overconstrained unless it is also trivial.

Proof. If W were a subgraph of one of the G¢,’s or if W¢, was overconstrained, then G¢; would be well-
overconstrained, and by definition of S(D(G)), we would contradict our Case 1 assumption that C;’s parent
C = S(D(G)). This proves Claim 2.

Claim 3: None of the W¢, ’s is trivial overconstrained unless the corresponding G, is trivial overconstrained.

Proof. Assume not. This implies that Gg contains a well-overconstrained subgraph W that intersects at least
one of G¢, on a trivial overconstrained subgraph. However, by a key property of FA DR-plans in Section 2.2.3,
such a subgraph would have to directly yield or be represented as one of the child clusters of C, contradicting
Claim 2a. This proves Claim 3.
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Claim 2 and Claim 3 imply that there are at least 2 nonempty W¢, and if nonempty, then the W, are well or
underconstrained and nontrivial provided G¢; is nontrivial.

Next we show that the W, are nonempty for every child cluster C;. Suppose to the contrary that W¢ overlaps
only the G, for i € @, where @ is a proper (index) subset of the children of C' and |@Q| > 1. Let Lg be the
restriction of Lo induced by @, i.e, those edges in L¢ that are incident on only vertices in the G¢, for i € Q.
Let Gg be the subgraph of Gs induced just by the vertices in G¢, : i € Q. Now: density(Gg) is at least >

i€Q
density(G¢, )+ (total edge weight of Lg) which is at least ), density(Wc,)+ (total edge weight of Lg) which is
at least density(W¢). But since W was chosen to be overconstrained, this implies that Gg is overconstrained.
Since we know that none of the G¢; is overconstrained (recall that C' = S(D(QG))), by the properties of the
FA DR-planner in Section 2.2, it follows that the C;’s have the same (wellconstrained) density as the G¢,’s
and it would further follow that the subgraph of T;'(C) induced by the C; : i € @ is also overconstrained).
But this contradicts the minimality property in Section 2.2.3 of the cluster C' as having been found by an FA
DR-planner.

Next we show that none of the W, is underconstrained and all the contact points in P are contained in
We. Assume to the contrary that one of these does not hold. It is clear that one of the inequalities (*) and
(**) below must be proper: density(W¢) is < (*) >, density(We,)+ (total edge weight of Lg) which is <
(**) >, density(G¢,)+ (total edge weight of L) (since the G¢; are well or well-overconstrained by definition
of DR-plan and properties of FA in Section 2.2.3, and since the W¢, are not overconstrained). This latter
quantity is is equal to density(Ggs). But since Gg is just 1-overconstrained, it follows that Wz = W would not
be overconstrained which contradicts our choice of W as an overconstrained subgraph of Gs.

This completes the proof of the induction basis.

Inductive step: Assume Claim 1 is true for clusters C' with Il < m. For a cluster C with Il = m + 1, there
must be some other closest ancestor cluster Ey on the path p with Ig, < m on which UNRAVEL* is called. Let
Eo,E1,Es,...,E, =C,1<k<(lc —Ig,) be the clusters along the path p between E and C.

By the induction hypothesis on E, Wg, is nonempty, wellconstrained, nontrivial (unless G, is trivial) and
includes all the contact points Py N Gg,. In fact, all of these contact points must lie in (be inherited by)
GE,,-..,Gc: this is clearly true if k = 1 and E; = C. If not, i.e, if £ > 1, then this is true again because
otherwise UNRAVEL* would have been called on one of the clusters Ej,..., Ex_1, contradicting the choice of
E = Ej as closest ancestor to C where UNRAVEL* is called.

This means that Wg, N G¢ is nonempty and hence: This means that W¢ defined as W NG = Wg, N Ge
(since Go C G, ), is also nonempty. Therefore by the induction hypothesis (ii) applied to its parent Ej_1, it
follows that (i) holds for We.

To prove (ii), (iii), (iv) of the induction step, we consider two cases. Whether UNRAVEL* is called at C' or not.
In the former case, consider again the contact points Pg inherited from C’s closest ancestor Ey on p where
UNRAVEL* is called. As before in the inductive step for (i), W must contain all of the contact points Pr NGE,,
where E; is a child of Ey. Since UNRAVEL* is called at C, W must therefore have a nonempty intersection
with at least 2 of C’s children C;. This is a different proof of Claim 2a of the induction basis. The remainder
of the inductive step for this case goes through exactly as in the induction basis.

In the latter case, i.e, when UNRAVEL* is not called at C', Claim 2a is now false, and so is Claim 3. However in
this case we do not need to show (iv). To show (ii) and (iii), we modify Claim 2a and Claim 3 as follows. The
proofs of these modifications are straightforward from the fact that UNRAVEL* is not called at C.

Claim 2a’: W¢ is a subgraph of G¢, for at least one of its children C;, only if all the contact points Pg, of C'’s
parent E fall into C;.

Claim 3’: If W¢ is not a subgraph of some Gc¢,, then none of the W¢, ’s is trivial overconstrained unless the
corresponding G, is trivial overconstrained.

The remainder of the proof for this case proceeds exactly as in the induction basis. O(Ttem 2)

Proof of Item 8 There are only 2 cases of these edges that are left out of L(G): those that are in Gg, i.e, the
subgraph corresponding to S(D(G)) and those that are not. Edges outside Gs are not reducible by Section
2.2.3, so that takes care of the latter case.

The former case of edges inside G5 must appear as unchanged edges in T Y((C), i.e, relevant edges for
resolving a unique descendant cluster C of S(D(G)) for which UNRAVEL* is not called. These are the clusters
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Figure 19: Construction of W¢ for cluster C

C in which all contact points P}, - inherited through UNRAVEL on its parent E - fall into G¢; for one of the
child clusters C; of C.

For each such cluster C, we exhibit a subgraph W of Gs that is 1-overconstrained and does not include
any of the unchanged edges of G that are incident on more than 1 cluster in T, (C). This implies that none of
these edges belong to the minimal 1-overconstrained subgraph of G and by Fact 2.2 are not reducible.

This W is constructed as follows. See Figure 19. Take the unique unravelling path p (defined during
the proof of Item 2) between S(D(G)) = Ey, E1,...Er, = C (k > 1) in the DR-plan D(G). Walking down p
increment W in stages, one stage for every cluster E; on p where UNRAVEL* is called. Include into W< all the
subgraphs of all the children clusters of F; except for the ancestor of C, namely Ej,;. Include into W all the
unchanged edges of G that are incident on more than 1 cluster in T, L(E;) as well as the contact points in P,
(unchanged vertices of G) that are in Fjy1 — we call this the set L of dangling contact points. Finally, include
all the edges in G¢, into W¢. By construction, W contains none of the unchanged edges that are incident on
more than 1 cluster in T (C).

The argument for W¢ being 1-overconstrained runs as follows. By the fact that Gs is 1-overconstrained, it
follows that at any given stage I of incrementation, W can be made 1-overconstrained by embedding the set L
of dangling contact points (i.e, adding enough edge weight to make them) into a well-constrained subgraph. At
the final stage, observe that we perform exactly this embedding by including all the edges in the well-constrained
G, into WC. O(Item 3, and Theorem)

4.3.1 Complexity

The complexity of constructing the FA DR-plan D(G) for G is given in Section 2.2.3 and by Figure 17, it gets
included into the complexity of Algorithm OVERLIST: it represents the dominant complexity term.

However, the key point was to incrementally and flexibly output reducible constraints, given an already
existing DR-plan D(G). Le, the crucial facility of Algorithm PLANOVER (besides its generality) is the ability
to efficiently output sublists of reducible constraints in “latest-solved-first” order and to output on demand
the relevant reducible constraint sublist for a particular cluster (see Section 4.1). It is the complexity of these
procedures that are of interest. In other words, given a cluster C, what is the complexity of UNRAVEL for
outputting the list L¢, if one exists, as a function of the standard graph and DR-plan parameters, and the
depth of C' in the DR-tree.

The answer depends on whether and how standard information such as: relevant edges of a cluster, contact
points of a cluster and so on are maintained as part of the DR-plan. To isolate this aspect, let us assume the
complexity of processing at any given cluster C, i.e, computing L¢, Pc, P NC; ete. (not including the recursive
call) during UNRAVEL(C) is t(kc,rc). Here, the quantity k¢ is the number of child clusters in T;'(C) that
participate in C, the fan-in of the DR-plan at C, and is bounded by |V|; r¢ is the number of relevant edges in
C.

22



C13 C

0 C3 Cl0 C A
5
3 AT 6
AOrigind DRPlan of G1

Figure 20: Left: unoptimized DR-plan of G1 in Figure 3, after reduction of edge (1,7); unravelling path is
marked; Middle and Right: two optimization steps

Note: Our complexity analysis assumes that ¢ is a linear function — simple graph data structures ensure this,
even if contact points and relevant edges have to be computed from scratch without being maintained as part
of the DR-plan. If these data are maintained systematically using high-efficiency data structures, then ¢ could
be a polylogarithmic function, decreasing the following bound significantly. We also assume that each edge in
the hypergraph G has a bounded arity (2 in a usual graph), otherwise, the arity enters the complexity in a
straightforward manner as a linear factor.

Let I¢ represent the length of (number of clusters B on) the unravelling path pc (in D(G)) from S(D(G))
to C, which is bounded by |V| (due to properties in Section 2.2.3). Hence the complexity of outputting the list
L¢ (if one exists) — given a graph G, DR-plan information D(G) and S(D(G)) and a cluster C' — is bounded by:

> t(kp,rp). This clearly grows with l¢, according to Requirement 2 of Section 2.4. One rough complexity
Bepe
upper bound exhibiting this dependence is O(I¢(|V'|+|E|)). However, this is a loose upper bound since no edge
of the graph and no cluster in the DR-plan is ever inspected more than once, i.e, since for any C, > rp does

Bepe
not exceed |E|, and since Y, kp does not exceed |V |? (the number of clusters generated by FA DR-planner
Bepe

does not exceed O(|V|?), by Section 2.2.3). Thus the complexity of interest does not exceed O(max{|V|?, |E|}).
Combining the two bounds, the complexity of interest is bounded by: O(min{lc(|V| + |E|), max{|V|?,|E|})}),
even without prior DR-plan maintanence of contact point and relevant cluster information. In practice (see
examples in Section 4.2) — this bound does not exceed O(|E|).

4.4 Updating the DR-plan After Edge Reduction

We now reconsider Requirement 4 of Section 2.4. If the weight of one of the reducible edges in L¢ for a cluster
C is reduced by one, the DR plan D(G) may no longer be correct. How can the DR-plan D(G) be modified
efficiently to give an correct DR-plan? The modified plan should be near-optimal, but preferably be found
without reorganizing any of the (maximal) descendant clusters F' of S(D(G)) whose subgraphs G remained
wellconstrained after the reduction. This can be done using the relevant constraint lists Ly and contact points
along with inheritance information Pr and P}, that are used during UNRAVEL. As discussed in Section 4.3.1,
they can be maintained easily as standard information along with the clusters in the DR-plan. We leave out
the formal description and provide an intuitive description using pictures in Figure 20.

When one of the edges in L¢ is weight-reduced by 1, the clusters that are no longer wellconstrained are
exactly the clusters E along the unravelling path p in D(G) from S(D(G)) to C, excluding S(D(G)), whose
corresponding subgraph Gg was previously 1-well-overconstrained and now becomes wellconstrained. All other
clusters are preserved. The maximal preserved sub-DR-plans are rooted in the clusters F' which are exactly the
children of the clusters E, excepting the children that are directly on p, marked on the left of Figure 20. The
old DR-plan and the children on p are shown as dashed.

An initial valid but unoptimized DR-plan attaches all of the clusters F' directly as the children of S(D(G)),
however if there are many such clusters, such a plan could cause S(D(G)) to have a large fan in, i.e, the system
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to be solved in order to resolve or recombine S(D(G)) could be large, making the new DR-plan far from optimal.

Now the contact points inherited by the clusters F' can be used to optimize this initial DR-plan. The contact
points are read off from the Pj, for the ancestors E, of the clusters F', on the unravelling path p, including the
cluster S(D(QG)). The contact points should be considered in an oldest-first order; i.e, the contact points inherited
from S(D(QG)) are first to be considered in recombining the clusters F. This is because intuitively, S(D(G))
was the only cluster whose subgraph Gs was previously overconstrained, and hence any “compensation” for
the reduction of the edge from L¢ should start with the relevant edges and contact points at S(D(G)), and
propagate downwards along p. Successive steps in obtaining an optimized DR-plan are described in the sequence
of 2 pictures to the middle and right of Figure 20.

4.5 Extending to k-overconstrained graphs

One important observation is that Fact 2.2 extends to give a definition of a minimal, unique k-overconstrained
subgraph of a given k-overconstrained graph. Thus the 1-overconstraint method given here directly yields one
reasonable way of dealing incrementally with a k-overconstrained graph as follows: supply the user with k sets
of reducible constraints, in succesive stages, such that each set is, in a well-defined sense complete and minimal
for its stage: at the ith stage, the reduction of a constraint from the output set will ensure that the graph is
atmost k£ — i-overconstrained and has not become underconstrained.

5 Summary and an Open Problem

A geometric constraint solver algorithm employs highly specialized mathematics and occupies a central position
in many applications in computer-aided mechanical design. In most cases, the constraint solver is embedded in
other software and is not directly exposed to the user.

When formulating a constraint problem in an application context, it is possible that situations arise that re-
quire the user to interact with the solver. The required interaction may be a problem reformulation or assistance
to the solver to select a different solution variant. In those situations, intuitive methodologies must be developed
for users who are unfamiliar with the underlying mathematics and with the particular strategies employed by
the constraint solver algorithms. Such users must be able to effectively communicate their requirements without
having to understand the workings of the solver or the deeper principles on which it is based.

We have considered the issues requiring user interaction for overconstrained problems, where users may not
understand why their problem specification has redundant constraints. Here, we must present the user with all
relevant choices for deleting redundancies. Currently, solvers either give no information, simply labelling the
problem as overconstrained, or else flag only an effectively random subset of the reducible constraints at the
immediate cluster in which the problem was detected. But the constraints that have been identified may be
essential to application requirements. Thus, all relevant constraints must be identified.

Moreover, the constraints that have been identified must be output efficiently and flexibly as demanded by
the user, from particular subsystems of constraints that represent specific parts or features where the user has
design flexibility. Furthermore, the algorithm should efficiently use information that is central to the constraint
solver, and hence already exists, such as the DR-plan. Such data must also be updated efficiently or maintained
dynamically when one of the reducible constraints is removed by the user. We have formally identified these
requirements, and given efficient algorithms both for simple, but practical situations and for the general case as
well.

In this paper, we dealt with the (general 2d and 3d) cases of 1-overconstrained problems. Based on it, we
suggested an incremental method of dealing with k-overconstrained problem. However, the problem with the
general k-overconstrained case is that a formal definition of it appears to be significantly more complex (there
are many different, reasonable definitions), based on preliminary work in [35]. When placing constraints incre-
mentally during the design, the 1-overconstrained algorithm is sufficient. When combining already constrained
designs, or when editing them, the k-overconstrained case can arise. The incremental method, offered in Section
4.5, for dealing with the k-overconstrained case may not be adequate in some situations, where the the user
might potentially want to view and choose from entire k-tuples of constraints to reduce or delete, rather than
being offered reducible sets to choose from incrementally, in a prescribed order.
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