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Abstract 

Introduction 
The past decade has seen the emergence of computational metrology as a separate discipline. It deals with 
fitting and filtering discrete geometric data that are obtained by measurements made on manufactured parts. 
It plays an important role in manufacturing industry. A manufactured part may be measured to characterize 
the manufacturing process that produced it or to assess the conformance of the part to designer-specified 
tolerances. In either case, measurements are made on the surface of the part and the measured data are then 
reduced to a few numbers or attributes by increasingly sophisticated computational techniques.  
 Before we proceed further, it is useful to establish some basic facts about manufacturing and 
measurement. These are best captured in the following two axioms. 
• Axiom of manufacturing imprecision: All manufacturing processes are inherently imprecise and 

produce parts that vary.  
In fact, this axiom of manufacturing imprecision contains a hidden primal fact that no man-made artifact 
has ideal geometric form. That is, no manufactured object can be perfectly cylindrical or perfectly spherical 
and so on. There is increasing experimental evidence that the geometry of manufactured surface behaves 
more like a fractal. This means that fractals offer a better approximation to manufactured surfaces than 
smooth surfaces. So, at least conceptually, a manufactured surface can be modeled as a fractal set and the 
only information we can obtain about it comes from a discrete set of points sampled on that surface.     
• Axiom of measurement uncertainty: No measurement can be absolutely accurate and with every 

measurement there is some finite uncertainty about the measured attribute or measured value. 
The measurement uncertainty axiom adds a sobering realization to our computational endeavor. If we take 
the discrete set of measurements as input to our computations, it is good to remember that these input 
values can never be taken as absolutely accurate. It is equally important to remember that results of our 
computations should be accompanied by statements about their uncertainty, which is partly inherited from 
the input uncertainty and partly attributable to the computational scheme itself. 
 It should be noted that these two axioms are independent. It is possible to build a modeling 
framework where manufacturing is imprecise but measurements have negligible uncertainty, and vice 
versa. But to model reality more closely, both axioms should be considered operative. With these 
preliminaries, we can now proceed to address fitting and filtering problems. 
 
Fitting 
We have seen already that no manufactured surface can have the platonic ideal form. Fitting is the task of 
associating ideal geometric forms to non-ideal forms (such as, for example, discrete set of points sampled 
on a manufactured surface). Engineers are interested in fitting for the following reasons: 
• Datum establishment: Datum is a reference geometric object of ideal form established on one or more 

non-ideal geometric forms on a manufactured part. Datums are used for relative positioning of 
geometric objects in parts and assemblies of parts. 

• Deviation assessment: It is often important to determine how far a manufactured surface has deviated 
from its intended ideal geometric form. This deviation can be quantified by fitting. 

Historically such fitting was accomplished by the use of surface plates, collates, mandrels, and specialized 
measurement fixtures. More recently, manufacturing industry has started using modern measurement 
devices such as Coordinate Measuring Machines (CMM). This has accelerated the use of fitting by 
computation. Its initial success is placing increasingly complex demands on our ability to compute. 
 The computational scheme used for fitting is one of optimization. For example, it may be of 
interest to fit a plane to a set of points in space such that the sum of the squares of the distances of the 
points from the plane is minimized. This can be recognized as a least squares fitting problem. Such 
problems have been studied in science for over two centuries and we can draw from this wealth of 



knowledge to find satisfactory solutions. But there are also other seemingly simple fitting problems that can 
tax our computational skills. For example, an engineer may want to find the smallest cylinder (that is, a 
cylinder with the smallest diameter) that encloses a set of points in space because it gives him some 
quantitative information about how a part will fit in an assembly. This can be easily posed as a 
minimization problem, but computational methods to solve this problem are not simple. 
 It is customary to divide the fitting problems broadly into the following two categories on the 
basis of the objective function that is optimized. 
• Least squares fitting: Here the objective is to find an ideal geometric object (a smooth curve or 

surface) that minimizes the sum of squared deviations of data points from this object. It includes linear 
least squares, total least squares, and non-linear least squares techniques.   

• Chebyshev fitting: Here the objective is to minimize the maximum deviation. Some of these fitting 
problems have been studied by discrete and computational geometers in the last twenty years. This has 
added some valuable insight in designing algorithms to solve such problems. 

National and international standards groups are actively working on standardized definitions for the 
objective functions and constraints for the fitting problems.  
 Finally, it may be added parenthetically that fitting is one of the most direct and practical means of 
educating engineering students in optimization and computational geometry.      
  
Filtering 
Filtering is the task of obtaining scale-dependent information from measured data. At a more mundane 
level, filtering can be used to remove noise and other unwanted information from the measured data. In the 
context of engineering metrology, engineers are interested in filtering mainly for the following two reasons. 
• Surface roughness: Many engineering functions depend on how rough or smooth a piece of surface is. 

Designers define bounds on certain roughness parameters obtained by observation on rather small 
scale to ensure functionality of parts. These small-scale variations are subtracted from the surface 
measurement data before form and other deviations are assessed.             

• Manufacturing process diagnosis: Manufacturing processes leave tool marks on surfaces. By 
measuring surfaces at fine scale, it is possible to track the detect tool erosion and its effect on the 
surface quality. 

Historically, filtering techniques were pioneered by communication theorists. Developments in analog and 
digital signal processing strongly influenced how filtering was carried out in surface metrology. More 
recently, developments in digital image processing have been influencing computational surface metrology. 

The computational scheme used for filtering is one of convolution. Engineers use the following two 
types of convolutions. 
• Convolution of functions: Filtering is often implemented as discrete convolution of functions. In the 

most popular version, the measured data is convolved with the Gaussian function. It has a smoothing 
effect on the surface data. 

• Convolution of sets: Morphological filters are implemented using Minkowski sums. These can be 
regarded as convolutions where the input set is convolved with a circular or flat structuring element. 

Recent developments in wavelets seem to indicate that the scale-dependent information can be processed 
more effectively using wavelet filters.  
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