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Abstract: We study the problem of fixturing a chain of hinged objects in a given
placement with frictionless point contacts. We define the notions of immobility and
robust immobility, which are comparable to second and first order immobility for a
single object [8, 7, 11, 12] robust immobility differs from immobility in that it addi-
tionally requires insensitivity to small perturbations of contacts. We show that (p + 2)
frictionless point contacts can immaobilize any chain of p # 3 polygons without paral-
lel edges; it is unclear that five contacts can immobilize any three polygons in general,
Any chain of p arbitrary polygons can be immobilized with at most (p + 3) contacts.
We also show that {g (p+2)] contacts suffice to robustly immobilize p polygons with-
out parallel edges, and that [2(p + 2)] contacts can robustly immobilize p arbitrary
polygons.

1 Introduction

Many manufacturing operations, such as machining and assembly, require the parts
that are subjected to these operations to be fixtured, i.e., to be held in such a way that
they can resist all external wrenches. Fixturing is a problem that is studied exten-
sively, see e.g. [2, 3, 6, 15, 16, 17]. We consider the planar version of part fixturing
(or immobilization), which appears e.g. in preventing all sliding motions of a part rest-
ing on a table. The concept of form closure, formulated by Reuleaux [9] in 1876,
provides a sufficient condition for constraining, despite the application of possible ex-
ternal wrenches, all finite and infinitesimal motions of a rigid part by a set of contacts
along its boundary. Any motion of a part in form closure has to violate the rigidity of
the contacts. Markenscoff et al. [7] and Mishra et al. [8] independently showed that
four frictionless point contacts are sufficient and often necessary to put any polygonal
object in form closure. In fact, their result applies to almost any planar rigid part.
Czyzowicz et al. [4, 5] showed that three contacts can immobilize a polygon with-
out parallel edges, and identified the conditions to be satisfied for the polygon to be
immobilized with three contacts. It can be verified graphically if a given set of contacts
satisfy the conditions. Rimon and Burdick [11, 12] also showed that three contacts
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can immobilize a rigid object, and this immobility is called second-order immobility.
Second-order immobility analysis takes place in the configuration space of the part and
regards the contacts as obstacles that limit the part’s ability to move. A fundamental
difference with half plane analysis by Reuleaux is that the second-order immobility
analysis takes the curvature of possible motions into account, instead of only the di-
rections. In their notion, first-order immobility is equivalent to form closure—the four
contacts immobilize the object regardless of the curvature of the boundaries where the
contacts touch. The inclusion of curvature effects is powerful enough to show that
three frictionless contacts suffice to immobilize any polygonal part without parallel
edges [10].

Most of the existing results on immobilization apply to rigid bodies, and hardly
anything has been done for non-rigid objects such as assemblies or deformable shapes.
As a first step in this direction, we study immobilization of an acyclic chain of objects
connected to each other by hinges. This can be seen as a case study of immaobilization
of non-rigid objects. A hinge allow the two adjacent objects to rotate around it. We
shall assume that the objects are polygonal, and the hinges are located at their vertices,
but it seems that most of the result will carry over to more general objects. It is our
aim to derive bounds on the number of contacts required to immobilize any chain of p
hinged polygons in a priorly specified placement.

Our approach is graphical, but also bears some resemblance to second-order im-
mobility analysis; we also analyze motions by identifying the areas where a point of
the part can be placed locally with given point contacts on the boundary. We show that
a chain of p polygons without parallel edges in a given placement can be immobilized
by (p+ 2) frictionless point contacts for all p # 3; in some cases, five contacts can can
immobilize three polygons, but in general, it is unclear that five contacts can achieve it.
We observe that the number of contacts required to immobilize a chain of p polygons
equals the number of degrees of freedom of the chain. All the proofs are constructive
in the sense that we give actual grasps with (p + 2) contacts for chains of p hinged
polygons. Allowing for parallel edges leads to an increase in the number of contacts
of one.

One observation about the first-order immobility is that any perturbation of any
combination of the (p+2) contacts maintains the immobility. This has motivated us to
also investigate the number of point contacts required to obtain a more robust fixturing,
which has the property—Ilike form closure—that any contact can be perturbed slightly
without destroying the immobility. We construct a robust immobility for a chain of p
polygons with [g(p + 2)] contacts if the polygons have no parallel edges, and with
[%(p + 2)] contacts if the polygons are allowed to have parallel edges. Informally
speaking, we achieve robustness at the cost of one additional contact per five or four
polygons.

The paper is organized as follows: We first introduce the concept of immobility
and robust immobility in Section 2. In Section 3 and Section 4, we present how many
fingers can immobilize or robustly immobilize a chain of p hinged polygons without
or with parallel edges in a constructive way. Finally, we will summarize the results
that we have and discuss further research topics in this direction in Section 6.



2 Immobility and robust immobility

Half-plane analysis was used by Reuleaux to check if an object is in form closure.
Every infinitesimal motion in the plane can be seen as a rotation around a point in either
counterclockwise or clockwise direction. When a contact is in the interior of a straight
edge, the normal line divides centers of counterclockwise and clockwise rotations.
The left side of the normal line has the centers of counterclockwise rotations and the
right side has those of clockwise ones, when facing the interior of the object from the
contact. (See Figure 1 (a).) In other words, the object can be rotated counterclockwise
around a point on the left side of the normal line, and clockwise around a point on the
right side.

When a contact is at a concave vertex, it induces two normals, because it is at
both of the edges. The intersection region for the counterclockwise (clockwise) rota-
tion induced by the two normals has the centers for the counterclockwise (clockwise)
rotation, as in Figure 1 (b).

(@) (b)

Figure 1: The half planes divide possible centers of rotations; (a) shows the situation
when a contact is on an edge; and (b) shows when a contact is at a concave vertex.

One difference of form closure and second-order immobility is in how the normal
lines are treated. Strictly speaking, any rotation is possible around the points on the
half line below and including the contact, while no rotation is possible around the
points on the rest of the line. Even then, half plane analysis cannot distinguish a subtle
case. (For more details, refer Czyzowicz et al. [5].) Form-closure analysis, contrary
to second-order immobility analysis, does not take advantage of this observation; it
conservatively assumes that any rotation is possible about any point on the line.

When the regions induced by the contacts holding an object have an empty inter-
section, the object is said to be immobilized. Four contacts are necessary and suffi-
cient to achieve first-order immobility or form closure, while three are often enough
for second-order immobility.

All the existing notions and analyses apply to rigid objects. It is particularly dif-
ficult to generalize Reuleaux’s form closure analysis to explain the immobility of a
chain of hinged polygons. Thus, we propose an intuitive analysis of immobilization in
the two-dimensional space of the part itself, by considering motions of specific points
of the objects.

We will identify the free areas where the hinged vertices can move locally with
point contacts on the object-boundaries. When the two free areas of the hinged vertex
of adjacent parts touch each other, and when it cannot move to another position without
breaking the rigidity of the body or the contacts, we say that the parts are immaobilized.

Now we would like to address one intuitive and essential difference between first-
order immobility (form closure) and second-order immobility from a practical view-
point: slight perturbations of frictionless contacts along the edges can maintain immo-
bility, which is unlikely for the second-order immobility. This motivates us to define



robust immobility.

Definition 2.1 We say that B is robustly immobilized when B is immobilized and
there exists a real number ¢ > 0 for each contact in the interior of an edge, such that
any perturbation of the contact in the e-interval in both directions along the edge still
keeps B immobilized.

Lemma 2.1 A two dimensional polygon B in form closure is robustly immobilized.

Proof: All objects can be put in form closure with at most four contacts [7, 8]. When
we use half-plane analysis, no three normals induced by the contacts meet at one point.
This means that the intersection points of each pair of normals have non-zero distances.

Figure 2: Two dimensional objects in form closure with (a) four and (b) three contacts
forane > 0.

When two normals are perturbed along the edges, the intersection points are in a
quadrilateral region defined by the perturbed line boundaries. (See the shaded quadri-
lateral regions in Figure 2.) Note that we do not perturb a contact at a concave vertex.
Since the intersection points have non-zero distances from one another, we can always
find an interval for each contact along which the contact can be shifted while keeping
the polygon immobilized.

Lemma 2.1 and the result of Markenscoff et al. [7], Mishra et al. [8], Rimon and
Burdick [10] and van der Stappen et al. [14] produce the following two lemmas.

Lemma 2.2 Any polygonal part can be robustly immobilized with four frictionless
point contacts.

Lemma 2.3 Any polygonal part without parallel edges can be immobilized with three
frictionless point contacts.

Now we introduce some notions and notations used in this paper. Let (B, Ba, - ,B))
denote an acyclic chain of p hinged polygons from the left. We assume that the two
edges of a single polygon incident to a hinge are not collinear. Let v; denote the hinge
connecting B; and B, 1. An arrangement of the contacts holding p hinged polygons is
represented as (nq,ng, - -+ ,n,), Where n; denotes the number of the contacts holding
Bi (1 < i < p). Animmobility or robust immobility with (n,ns,--- ,n,) contact
arrangement is called (n1,n9,--- ,n,) finger configuration. We also assume that the
two edges of different polygons incident to a hinge do not coincide nor overlap.

When a maximal inscribed circle of a polygon touches the polygon, and the sup-
porting lines of the touching edges contains the circle in a bounded (usually triangular)
region, which is always the case for polygons without parallel edges, placing contacts
at the touching points immaobilizes the polygon. Placing two contacts on either sides
of one of the touching points gives a robust immobility. A maximal inscribed circle
can be computed in O(n)-time, where n is the number of the vertices.



When a maximal inscribed circle of a polygon does not have this property stated
above, the polygon has two parallel edges. In this case, placing contacts at each of
the four edges incident to a pair of the furthest vertices of the polygon immobilizes it
robustly. This finger configuration can again be computed in O(n)-time.

3 Immobility

A polygon without parallel edges can be immobilized with three point contacts, while a
polygon with parallel edges may need one more contact to be immobilized. Likewise,
it turns out that a chain of p polygons with parallel edges in general needs more con-
tacts. First, we will start with immobility of hinged polygons without parallel edges,
and then hinged arbitrary polygons.

3.1 Polygonswithout parallel edges

We will subsequently discuss the immobilization of chains of two, three and four poly-
gons without parallel edges. The immobility of a single polygon, and of chains of two
and four polygons serve as building blocks for the immobility of longer chains.

3.1.1 Two polygons without parallel edges

There are two ways of immobilizing two polygons depending on the nature (convex or
concave) of the hinged vertices. Let « be the angle at a vertex v of a polygon. First
we look at the behavior of one polygon when two point contacts are placed along two
adjacent edges. It is a generalization of a result in [1].

Lemma 3.1 Let v be a vertex of a polygon, and let two point contacts .4, and A5 be
placed on the edges e; and e2 incident to v respectively. Let C be the unique circle
through A1, As and v. The area where v can locally move around under the constraint
of A; and A, is the interior and the boundary of C when v is convex, and the exterior
and the boundary of C when v is concave.

Proof: First we look at the case when v is a convex vertex. Assume that v can reach
outside of C under the restriction of .4; and A, by translation and rotation from the
current configuration ¢. Let 2 be the point outside of C as in Figure 3 (a). Let v’ be
the intersection point of the line A1z and C. It is a well known geometrical fact that
the angle ZAv' Ay = ZA1v A5 = a. A simple trigonometric calculation shows that
LA1zAy < LAjv A9, thus ZA12A45 < «, which is a contradiction. Therefore, the
vertex v of B can only move locally inside or along C.

We now look at the case when v is a concave vertex. Assume that v can be placed
inside of C under the restriction of A; and A by translation and rotation from the
current configuration ¢. Let z be the point inside of C as in figure 3 (b). Let v’ be the
intersection point of the boundary of C and the supporting line of A, z. Likewise, we
can see that ZA1v' Ay = ZA1v Ay = a. A simple trigonometric calculation shows
that LAz A9 > ZAvAs, thus ZA1245 > o, which is a contradiction. Therefore,
the vertex v of 5 can only move locally outside or along C.

Now we show how to immobilize two hinged polygons with four contacts. Let e;
and ¢ be the two edges of B3; that are incident to the hinged vertex vy, and ey and €5,
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Figure 3: The free area where v can locally move around under the restriction of the
two contacts .4; and A5 is: (a) the interior and the boundary of C when v is convex,
and (b) the exterior and the boundary of C when v is concave.

be such edges of Bs. We first focus on the case when vy is a convex vertex of both
B, and Bs. (See Figure 4 (a).) Choose a line [ containing v; such that e; and ¢} are
strictly on one side of [, and that e, and ¢/, are strictly on the other side. Let I’ be the
perpendicular line of [ at v;. Take a circle C; for B; that satisfies the following two
conditions:

1. The circle C; is centered at a point on !’ such that C; touches [ at the hinged
vertex vy, and

2. C; intersects e; and €/ in their interiors.

Take a circle Cy for By that satisfies the above two conditions. Place four contacts at
the intersection points of the circles and the polygons.
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Figure 4. Two hinged polygons with four contacts.

When one hinged vertex is concave, the construction is the same as in the previous
case except for a few details. Without loss of generality, assume that the hinged vertex
of B, is concave. First, the line [ is chosen such that all the adjacent edges are strictly
on one side of /[—see Figure 4 (b). Second, take a circle C» for B, that satisfies the two
conditions given above. Finally take a circle C; such that C; is smaller than Cs.

Lemma 3.2 Four contacts can immobilize two hinged polygons.

Proof: We call the area where the hinged vertex can move freely free area. Lemma
3.1 says that the free area is inside or outside of the circle, and the circular arc is the
boundary. In any case, the two free areas C; and C, touch each other at v;. Note that,
when v is at a point on the boundary, B; has a unique configuration, that is, it cannot
rotate nor translate maintaining the current position of v; without breaking the rigidity



of the contacts. And the same is true for 35. This implies that 3, and 5 can be only
at a certain configuration to remain connected by a hinge in the plane of the polygons.
Therefore, the two hinged polygons are immobilized with four contacts.

In general, two hinged polygons can not be immobilized with less than four con-
tacts; when one of the polygons has only one contact, rotation of this polygon around
the hinge away from the contact is possible in most cases.

3.1.2  Four polygons without parallel edges

Four polygons without parallel edges can be immobilized with six contacts by immo-
bilizing the first and the last polygons. The contact arrangement is (3,0,0,3). The
following Lemma shows why they are immobilized.

Figure 5. Four hinged objects without parallel edges can be immobilized with six
contacts.

Lemma 3.3 Two adjacent polygons 3, and B3 are immobilized if B, and B, are im-
mobilized.

Proof: Since the hinges v, and v is fixed, By and B3 can only rotate around v, and
vg respectively. Vertex v, of B, and B3 can move along the circular arcs in dotted
lines respectively as in Figure 5. Only at the intersection point, v, can lie such that the
distance |[v7v3| and |vzu3] are preserved at the same time.

3.1.3 Immobilizing p > 5 polygons without parallel edges

To immobilize five and six hinged polygons, the contacts can be arranged starting from
the immobilization of four polygons: (3,0, 0,3). Replace the polygon held with three
contacts with two polygons held with four contacts. Thus the contact arrangements
for five and six polygons are (3,0,0,2,2) and (2,2,0,0,2,2) respectively. Seven
polygons still can be immobilized with nine contacts using a contact arrangement of
(3,0,0,3,0,0,3).

Now we will immobilize a chain of p > 8 hinged polygons using the contact
arrangements for two and four hinged polygons. From the right end of the chain,
cut off a trailing multiple of four polygons until four, five, six or seven polygons are
left. Immobilize these left polygons as described above, and immobilize the trailing
quadruples using the arrangement (0, 0, 2, 2) repeatedly.

Theorem 3.1 A chain of p hinged polygons without parallel edges can be immobilized
with (p+ 2) contacts, when p # 3, which is a tight bound. Six contacts can immobilize
three polygons without parallel edges.



3.2 Immobility of polygonswith parallel edges

With parallel edges in the polygons, three contacts cannot immobilize a polygon any
more, but one polygon with parallel edges can be immobilized with four contacts by
Lemma 2.2. On the other hand, four contacts can still immobilize two arbitrary poly-
gons (Lemma 3.2), because the proof of Lemma 3.2 does not use the condition that the
polygons have no parallel edges.

Three arbitrary polygons can be immobilized with six (= (p + 3)) contacts as fol-
lows. Immobilize the first two polygons 57 and B with (2,2) contact arrangement.
The last polygon B3 will rotate around the hinge. Immobilize B3 with two contacts, by
placing one on each of the incident edges to the hinged vertex. The contact arrange-
ment is (2, 2,2). (See Figure 6.)

Lemma 3.4 Six contacts can immobilize three polygons with parallel edges.

]

Figure 6: A contact arrangement that immobilizes three arbitrary polygons.

Four polygons with parallel edges can be immobilized with seven (= (p + 3))
contacts, using (2,2, 0, 3) contact arrangement. Immobilize the first two polygons 5
and Bs with four contacts. Take a maximal inscribed circle of the last polygon Bj. If
the touching points of the circle and B4 gives an immobility contact arrangement, we
are done. Otherwise, two of the touching edges are parallel edges. Translate the circle
along these two parallel edges so that it touches B, at two points. Place a contact A
at one touching point, and .45 and .43 on both sides of the other touching point like B4
in Figure 7.

Figure 7: Four arbitrary polygons can be immobilized with seven contacts.

Lemma 3.5 Seven contacts can immobilize four polygons with parallel edges.

Proof: The vertex vs of B3 can rotate around vs, while vg of B4 can move along a line
parallel to the parallel edges. Remember that the hinge of B3 and B, follows a circular
arc and a line segment respectively. The intersection of the curve and the line segment
is unique and at this configuration, Bs and 534 cannot change their configurations with-



out breaking the rigidity of the polygons or the contacts. Therefore, the three polygons
are immobilized.

Now we will look at how a most (p + 3) contacts can immobilize p polygons
with parallel edges. From the right end of the chain, cut off a trailing multiple of
four polygons until at most four polygons are left. Immobilize these left polygons as
described in Lemma 3.2, 3.4 and 3.5. Immobilize the trailing quadruples using the
arrangement of (0, 0, 2, 2) repeatedly. Note that the contact arrangement of (0,0, 2, 2)
can still be used for each quadruple on the right, because even with parallel edges,
the contact arrangement of (2, 2) still works for two arbitrary polygons (Lemma 3.2).
Hence when one polygon or three, four polygons are remained on the left after cutting
off multiples of quadruple, (p + 3) contacts can immobilize the p polygons; when two
polygons are remained on the left, (p + 2) contacts can immobilize the p polygons.

Theorem 3.2 A chain of p hinged arbitrary polygons can be immobilized with at most
(p + 3) contacts.

The number of contacts (p + 3) is tight in the sense that there exist p polygons that
cannot be immobilized with less than (p+ 3) contacts. For example, when there is one
polygon left after cutting off multiples of quadruples, (p + 3) contacts are necessary
to immobilize them by Lemma 2.2.

4 Robust immobility

Like in the case of immobility, we have different results for robust immobility of chains
of polygons with and without parallel edges.

4.1 Robust immobility of polygonswithout parallel edges

Some building blocks will be also used here to achieve robust immobility, which
are the contact arrangements for one polygon, two, three, and four hinged polygons.
Lemma 2.3 says that any polygon can be robustly immaobilized with four contacts. We
proceed to show how to robustly immobilize two, three and four polygons.

4.1.1 Two polygons without parallel edges

A contact arrangement for the robust immobility of two polygons with five contacts
can be constructed from that for two polygons with four contacts. Note that both
hinged vertices cannot be concave at the same time. Without loss of generality, let B,
have a convex hinged vertex. Let e, and ¢/, be the edges of B, incident to the hinge
v, and e; and €} be those of B; incident to v as in Figure 8. Line [ is chosen in the
same way as in the immobilization of two polygons in Section 3. Take a circle that
touches /; at v and that intersects e; and e} in their interiors. Place two contacts at
these intersections. Rotate line [ around v clockwise and counter-clockwise so that the
two perturbed lines Iy and I do not overlap B> locally. Take a circle that touches Iy
at v and that intersects e, and €/ in their interiors. Call the intersection points .4, and
As. Take another circle that satisfies the following three conditions: (i) it touches [, at
v, (i) it intersects e, and ¢, in their interiors, and (iii) it passes through one of .A; and



A (it is Ay in Figure 8). Place the contacts at the intersection points of the edges and
the two circles.

(@) O L

Figure 8: Two hinged polygons are robustly immobilized with five contacts, (a) when
both of the hinged vertices are convex, and (b) when one hinged vertex is concave.

Lemma 4.1 Five contacts can robustly immobilize two hinged polygons.

Proof: The two contacts on 31 makes the boundary of the free area where v of
can move around a circular arc. The three contacts on By define two circles with v:
one passing through A4,, .45 and v, and another through 4, A3 and v. (See Figure 8
(@) and (b).) The thick arcs from the two circles make the partial boundary of the free
area where v of B, can move around. The two free areas touch each other at a single
point on their boundaries, and it is easy to show that the two polygons are immaobilized
using the arguments explained in Lemma 3.2.

There exists a set of perturbations of all contacts on the two polygons that define differ-
ent circles such that the two areas still touch each other at one point on their boundaries.
Thus, the two polygons are robustly immobilized.

4.1.2 Three polygons without parallel edges

Now, we show how to robustly immobilize three polygons. Compute maximal in-
scribed circles C; and Cs of B; and Bs respectively; let ¢; and c3 be their centers. Let
I1 and I be the lines at the hinges v, and v, that are perpendicular to the line 7773 as
in Figure 9 (a). We assume two things for a while for simplicity. First, the touching
points of the circles and the polygons are in the interior of the edges like 131 in Figure 9
(a). Second, the line segments ¢1o7 and wae3 are not collinear with 777s.

When 5, is immobilized with three contacts, the three normals induced by the
contacts meet at one point. Remember that the polygons do not have parallel edges. If
we perturb one contact, the normals form a triangular region, consisting of centers of
possible rotations only in one direction: clockwise or counterclockwise. Infinitesimal
rotations of v, of 37 around a point p in this triangular region move v in a direction
along a half-line emanating from v orthogonal to the line poy. All these half-lines lie
in a wedge-like region—the shaded region on the left side of [ in Figure 9 (a). Itis
important that we can always choose the direction of rotations, so that v; move strictly
towards the left or the right side of /. For B; in Figure 9 (a), v1 can be only on the left
side of [;. The two boundary lines of the shaded wedge region are perpendicular to
the lines through v; and tangent to the triangle. Notice that the wedge region does not
include any segment of [, except vy ; otherwise, 3 can rotate around v,. We construct
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the same contact arrangement for B3 so that the wedge region for s lies strictly on the
right side of /5.

Figure 9: (a) A robust immobility of three hinged polygons with six contacts when ¢y,
vy and wvo are not collinear. (b) When ¢1, v1 and v5 are collinear, a new position of ¢;
can be computed.

Now let us look at the case when one of the contacts touches a vertex. Without
loss of generality, let B3 have such a contact arrangement (see Figure 9 (a)). In this
case, the vertex must be concave, and the contact arrangement for B3 achieves form
closure [13]. The other polygon By can be in the same situation; otherwise, it can be
held with three contacts such that the hinge v; can move away from Bs, thus towards
the left side of [1, as in Figure 9 (a).

Now we look at the case when one of ¢y or c3 is collinear with 7705, Suppose that
c1 is collinear with 773, and that C; touches B, at some edges in the interior only. The
meeting point of the three normals can be perturbed by moving two normals together
along the third one as in Figure 9 (b). After perturbing the center ¢y, we can use the
same method described before to robustly immobilize the three polygons.

Lemma 4.2 Six contacts can robustly immobilize three hinged polygons without par-
allel edges.

Proof: To maintain the distance between v, and vy of Bs, v and vy should stay at
the apexes of the wedges. Since 37 and B3 cannot rotate around v, or v, they are
immobilized. There exists a set of perturbation intervals of the contacts which keeps
the three polygons immobilized, therefore, they are robustly immobilized.

4.1.3 Four polygons without parallel edges

Four hinged polygons can be robustly immobilized with eight contacts by robustly
immobilizing the first and the last polygons with four contacts respectively; the contact
arrangement is (4, 0,0, 4).

Lemma 4.3 Two adjacent polygons B, and B3 are robustly immobilized if 5, and B,
are robustly immobilized.

Proof: The two polygons in the middle are immobilized by Lemma 3.3. Since the
neighbors are robustly immobilized, the whole chain is robustly immobilized.
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4.1.4 Robust immobility of p > 5 polygons without parallel edges

Five hinged polygons can be robustly immobilized with nine contacts by robustly im-
mobilizing the first polygon with four contacts, and the last two polygons with five
contacts. The contact arrangement is (4,0, 0,3,2). Since the first and the last poly-
gons are in robust immobility, the whole chain of polygons is robustly immobilized
according to Lemma 4.3.

Robustly immobilizing p > 5 polygons can be executed as follows. From the
right end of the chain, cut off a trailing multiple of five polygons, until at most five
polygons are left. These left polygons can be robustly immobilized as describe in
Lemma 4.1, 4.2 and 4.3. Each group of five polygons can be immobilized with the
contact arrangement of (0,0, 3,0, 3).

Theorem 4.1 A chain of p hinged polygons without parallel edges can be robustly
immobilized with [¢(p + 2)] contacts.

4.2 Robust immobility of polygonswith parallel edges

We will use the Lemmas 2.2, 4.1, 4.2 and 4.3 as building blocks. Except the contact
arrangement of (3,0, 3) for three polygons (Lemma 4.2), all of these can be used for
polygons with parallel edges We proceed to show how to robustly immobilize three
polygons.

Take maximal inscribed circles for By and Bs. If one of them allows a contact
arrangement for immobility by placing contacts at the touching points, we can use
(4,0,3) or (3,0,4) contact arrangement. The construction for the three contacts is the
same as in Lemma 4.2. Assume the contrary. Two of the touching edges of B3 and
its maximal inscribed circle are parallel edges. Translate the circle along these two
parallel edges so that it touches B4 at two points. Place a contact .A; at one touching
point, and .45 and .43 on both sides of the other touching point like B3 in Figure 10.
Now robustly immobilize B, with four fingers.

Figure 10: Seven fingers can immobilize three arbitrary polygons.

Lemma 4.4 Seven point contacts can robustly immobilize three arbitrary polygons.

Proof: This chain is immobilized with the same argument as in Lemma 3.5. The first
polygon is already in robust immobility, and the three fingers can be perturbed along
the parallel edges of B3 without changing the line along which vo moves. Therefore,
the seven finger arrangement immobilize the three polygons robustly.

Now we show how to robustly immobilize p > 5 arbitrary polygons. From the
right end of the chain, cut off a trailing multiple of four polygons until at most four
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polygons are left. Each quadruple can be robustly immobilized by the contact arrange-
ment of (0,0, 3,2). The remaining one, two, three or four polygons can be robustly
immobilized as described above with four, five, seven and eight fingers respectively.

Theorem 4.2 A chain of p arbitrary polygons can be robustly immobilized with (% (p+
2)] contacts.

5 Immobilizing other types of hinged polygons

In some cases, hinged polygons may not form an open chain. It can be in a single
cycle, a tree, a general graph, or an open chain with one polygon at the end attached
to a wall. Here we will consider the cases when the hinged polygons form a cycle and
when an end of the chain is attached to a wall. The previous results can easily be used
for these cases.

First let’s look at the case of a cycle. A cycle needs at least two polygons as in Fig-
ure 11. Two polygons forming a cycle can be considered as one polygon, hence three
and four point contacts can immobilize or robustly immobilize them as in Figure 11
(@) and (b).

(a) (b) (©)

Figure 11: (a) Two polygons forming a cycle. (b) Two polygons forming a cycle: this
can be considered to be one polygon. (c) A cycle with more than two polygons.

When p > 3 polygons form a cycle, this can be divided as two groups: any two
adjacent polygons, and the rest. (See Figure 11 (c).) The rest polygons can be seen as
a free chain of (p — 2) hinged polygons—the gray polygons in Figure 11 (c). Immo-
bilizing or robustly immobilizing the chain of gray polygons immobilizes the whole
cycle. This leads us to the next theorem.

Theorem 5.1 A cycle of p hinged polygons without parallel edges can be immobilized
with p point contacts, when p > 3,p # 5; two and five polygons can be immobilized
with three and six point contacts respectively. A cycle of p hinged polygons without
parallel edges can be robustly immobilized with (%p} point contacts; two and five
polygons can be immobilized with four and six contacts repectively.

A{\A\;‘é

Figure 12: A chain of p polyogns one end of which is attached to a wall.

Figure 12 shows the case when one end of a chain is attached to a wall. Let
Bi,Ba,- - , B, be the polygons from the one attached to the wall. This can be (ro-
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bustly) immobilized in a similar way. Skip the two polygons B; and Bs, and (ro-
bustly) immobilize the rest. The number of the point contacts needed for immobility is
p—2+2=pwhenp > 3and p # 5; six contacts are needed for five polygons. Like-
wise, the number for robust immobility for p > 3 polygons is [£(p — 2+ 2)] = [p].

When one polygon is attached to a wall, one contact can immobilize it, if a polygon
has an edge whose internal edge normal goes through the vertex attached to the wall.
The reason is as follows. The polygon B; can only rotate around the vertex v attached
to the wall. The rotation of B, relative to the point contact .4 can be seen as rotation
of A around v. Place A at the edge whose normal goes through v as in Figure 13
(a). Because the edge is tangent to the circle around v, the rotation of A violates the
rigidity of the polygon and the contact.

a4

(@)

Figure 13: (a) This polygon can be immobilized with one point contact. (b) This
polygon cannot be immobilized with one point contact.

Unfortunately, two contacts are needed to immobilize a polygon attached to a wall
in general. The polygon in Figure 13 (b) does not have any such edge. This leads us to
the next lemma.

Lemma 5.1 Two point contacts can immobilize and robustly immobilize one polygon
attached to a wall.

Let v; be the hinge between B; and B5. For two contacts to immobilize two
polygons attached to a wall, the last polygon Bs must satisfy the following condi-
tion: (i) if By has two edges whose normals meet at the line o7o7 and (ii) if the half-
planes induced by these edges have counterclockwise rotational centers above o773,
and clockwise rotational centers below 77w3, two point contacts can immobilize the
two polygons. (See Figure 14 (a).)

Let C be the circle around v that v1 follows, and let [ be the half-plane whose line
is the tangent line of C at v, and the half-plane does not contain C. If Bs does not
satisfy the conditions (i) and (ii) described above, the immediate rotation of B4 around
some point in the wedges will not confine the immediate motion of v, in the half-plane
1. Note that the condition (ii) is not necessary, but the condition (i) must be satisfied.

Figure 14: (a) These two polygons can be immobilized with two contacts. (b) These
two polygons cannot be immobilized with two contacts.

Unfortunately, B> may not have such an edge pair that satisfy the condition (i),
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like the polygon Bs in Figure 14 (b). Thus we need three point contacts to immobilize
them. To robustly immobilize them, surprisingly we also need three point contacts;
use a similar method to that for three polygons in Section 4. This leads us to the next
lemma.

Lemma 5.2 Three point contacts can immobilize two polygons attached to a wall, and
four can robustly immobilize them.

The next theorem summarizes the results so far.

Theorem 5.2 When a chain of p > 3,p # 5 hinged polygons without parallel edges
has an end attached to a wall, it can be immobilized with p point contacts; one, two
and five polygons can be immobilized with two, three and six (= p + 1) point contacts
respectively. Moreover, it can be robustly immobilized with [%p} point contacts.

6 Discussion

We have shown that (p + 2) contacts can immobilize a chain of p (# 3) polygons
without parallel edges, and that at most (p + 3) contacts can immobilize p arbitrary
polygons. We also showed that [g (p+2)] contacts can robustly immobilize p polygons
when the polygons have no parallel edges and that (%(p + 2)| contacts can robustly
immobilize p general polygons. Immobilizing three polygons without parallel edges
with less than six contacts remains open.

We believe that (p + 2) contacts are necessary to immobilize the hinged poly-
gons, because the chain has (p + 2) degrees of freedom. Two dimensional and three
dimensional objects can be immobilized robustly with four and seven point contacts
respectively, which is the degrees of freedom plus one. Therefore, we think that (p+3)
fingers might be able to immobilize the chain.

Throughout the paper, we have assumed that the placement in which the chain
has to be immobilized is given. The number of contacts required for immobilization
is expected to be smaller when the placement can be chosen freely. In the future,
we intend to study whether or not this is indeed the case. We also plan to work on
immobilizing other types of hinges and more general structures of connected polygons
other than chains.
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