
AN ALGORITHM ORIENTED MESH DATABASE (AOMD)
APPLICATION: DECIMATION

B. Kaan Karamete

Coventor Inc., MA., U.S.A. kaan@coventor.com

ABSTRACT

This paper discusses the efficiency and ease of implementation of a mesh coarsening or decimation (simplification) algorithm by
using Algorithm Oriented Mesh Database (AOMD). AOMD is first introduced by the author and his co-workers in recent study
[1]. The manuscript is aimed to give the reader the novel idea of coupling algorithm and database (or data structure) design such
that the database is evolved by the demands of the algorithm(s). AOMD design principles will be explained and the key factors
that affect the performance of the decimation algorithm will be explored as a case study. The issues related to mesh inter-entity
adjacencies, mesh-model associations, i.e., classifications and AOMD data structures will be discussed. The selected decimation
algorithm coarsens the mesh (2D or 3D) to the desired level by maintaining the topological and geometrical integrity of the input
mesh by means of successive edge collapses by keeping the mesh quality as good as possible. The details of the decimation
algorithm with emphasize on how the algorithm drives AOMD will be studied explicitly within the context.

Keywords: mesh generation, mesh-model database, computational geometry, decimation, AOMD

1. INTRODUCTION

There has always been a difficulty of adapting a mesh-model
data structure to a new algorithm whose best implementation
requires changes in the pre-designed mesh database. This is
exactly the aim of AOMD, i.e., the ability to provide means
for the re-design of the data structures without really creating
a new database. The idea of using flexible adjacency relations
between mesh entities is the main design concept of AOMD.
It also inherits the valuable concept of mesh-model
associations, i.e., classifications to satisfy the mesh–geometry
integrity from the works of Beall and Shephard [2]. This
paper can be thought to be an extension to the earlier
introductory study where we have introduced the main design
concepts of AOMD [1]. The reader will find more “ready to
grasp” ideas and a case algorithm implementation by using
AOMD in this paper. In the first section, basic building
blocks of AOMD will be studied by giving practical
examples. To keep the pace of thinking process with the
reader, the text of Section 2 will pose questions by reiterating
the possible alternative ways in AOMD design. Section 2 is

dedicated to the implementation of a decimation algorithm
with the use of AOMD to show how the data structures can
be changed by the desires of the algorithms. The secondary
intent of the paper and Section 2 is to provide the algorithmic
details of a decimation (mesh coarsening) process. In
computer graphics and numerical simulation engineering,
large meshes are prohibitive and should be avoided where
possible. A decimation algorithm is needed to simplify large
meshes that might have been generated from a range
scanning device or pre-meshed by a less capable mesh
generator. The aim is to reduce the number of mesh faces
while maintaining the geometrical integrity and shape of the
true geometry with quality meshes. A good survey of mesh
simplification algorithms is done by Paul Heckbert and
Michael Garland [3]. A number of mesh simplification or
decimation algorithms are depicted in that work. I will
specifically note the work of Hoppe, Turk, Garland,
Schroeder and Frey [4-8] due to the fact that they all have
utilized edge collapses, mesh optimizations after edge
collapses and mentioned about geometrical validity of the
operation(s). Hoppe tried to formulate the collapses by
optimizing energy functional, which is a measure of initial
vertex clustering and curvature. The order of vertex collapses

is discussed by Turk. The deviation from the initial mesh and
the quality of decimation is found by means of a quadratic
error minimization constructed from the distances between
the vertices and their adjacent average planes by Heckbert
and Garland as well as by Scroeder. Frey has controlled the
deviation of the simplified mesh by evaluating the distances
between the vertices and their orthogonal projection to the
ball of the vertex followed by mesh optimization by edge
swaps and vertex smoothings. Some of these algorithms are
quite complex and computational efficiency could be
problematic. Although the algorithm in this paper discovers
nothing new compared to the papers aforementioned above, it
will generalize the rules of mesh simplification in a very
simple conjecture and in an efficient manner. Geometrical
integrity will be preserved as the direct result of maintaining
mesh-model associations; classifications and by checking the
angle differences between the mesh face normals of the initial
and decimated configurations. Like Frey [8], the mesh will be
optimized after the possible set of vertex collapses by means
of a successive edge swapping procedure. The different levels
of decimation are generated by using local edge length
metrics that can be altered by any solution adaptation or a
third party procedure. The details of the algorithm and how it
is coupled with AOMD will be explained in Section 3. This
algorithm can decimate both volume and surface meshes.

2. BASICS of AOMD

Mesh-Model entities of AOMD, namely vertex, edge, face
and region has levels of hierarchy; vertex being the lowest(0)
and region being the highest(3). This is because lower order
mesh entities can be expressed in the closure of higher order
entities, as is the case in graph theory. Each entity has lower
and higher order entities with respect to its own level as
depicted in Figure 1.

 Vertex(0) Edge(1) Face(2) Region(3)

Vertex NA Upward(U)

Higher(H)

U/H U/H

Edge Downw(D)

Lower(L)

NA U/H U/H

Face D/L D/L NA

U/H

Region D/L D/L D/L NA

Figure 1. Downward(D) or Lower(L) and Upward(U)
or Higher(H) Order entities for each level (row to
column); e.g., for edge, vertex is its lower order
entity and face and region are higher to it.

 Vertex Edge Face Region

Vertex 0 1 0 0

Edge 1 0 1 0

Face 1 0 0 1

Region 1 0 1 0

Figure 2. Adjacency Status Tensor T(I,J). If
adjacency exists from (ith row) entity to (jth
column) entity then its cell value is set to 1,
otherwise 0. All edges around each vertex will be
generated and kept since T(0,1) = 1.

The adjacency relations are stored in a 4x4 tensor. We will
call this tensor as Adjacency Status Tensor and denote it by
T(I,J). User will set certain adjacency relations by setting the
cells of this tensor. In other words, by setting the cells of this
tensor AOMD is told to create the adjacency links implicitly
until a different user request is made. At any levels of
execution of an algorithm, user may change the values of T.
For example, at the beginning of a vertex smoothing
algorithm, T(0,2) can be set to request from AOMD to create
vertex to face adjacencies, i.e., the faces surrounding each
vertex. This request is currently global to an entity level, i.e.,
all the vertices will have a list of faces around them. The
good point is that user does not have to create this link
explicitly. As a second example, if the user creates faces
from vertices by a constructor call as below,

pFace_ face = F_create_(pMesh_ mesh,

 pVertex_ v0, v1,v2,

 int classification ,

 int tag); (1)

and have set T(1,2) a-priori, the edges will be created
implicitly and all the edges will have a list of adjacent faces
so that a question as below could be asked easily without any
additional programming:

pEdge_ edge = E_exists_(v0,v1);

pList_ faces = E_faces_(edge); // or (2)

pFace_ face = E_face_(edge,0); // if faces>0.

2.1 Classification

Classification is a way to associate mesh and model entities..
Each mesh entity has a classification field prescribing its
underlying model entity. For instance, mesh vertices can be
classified on model vertices, edges, faces or regions. In
general, as a rule, a mesh entity can only be classified on
model entities of equal or higher order than that of itself. We
can formulate this relation as MI [GJ iff J≥I, where GJ is the
Jth order model entity and MI as the Ith order mesh entity.
Having classification information helps us achieve many
operations possible more efficiently and more correctly such

as mesh refinement, coarsening, optimization and e.g.
boundary condition assignment to a cluster of mesh faces and
etc. In mesh refinement, the new vertices can be snapped to
the true geometry if the classification of the split entity is
known. In mesh coarsening, the geometric integrity can be
preserved by not allowing the edge collapse through model
faces if the edge classification is known. Otherwise we would
have to evaluate the validity of the collapse operation by
computing the angles or distance differences between the
new and the initial configurations usually by means of a
threshold value which can never be as reliable as the simple
classification check. It should be noted here that geometrical
validity of the edge collapse operation is still required. This
will be discussed in Section 3 in detail. Generally, almost all
mesh generation techniques require some sort of
classification information and the best practice is to keep this
information even after meshing to provide the possibility of
further mesh modifications or post-processing which can be a
computational field simulation algorithm or selective
visualization, etc.

However, there is an important problem of how to keep the
classifications correctly while providing one of the most
desirable features of creating mesh adjacencies implicitly by
AOMD(*). For instance, user may want to request from
AOMD to create edge to face adjacencies (T(1,2)) while
constructing faces from vertices as shown in (1). In (1), the
face is created from three vertices v0,v1,v2 on the
geometrical model entity of level classification and model
entity id of tag. Mesh edges are then either created from
pairwise vertex permutations (v0-v1,v1-v2,v2-v0) in the
given order or could already be existing. An edge can be used
by the face opposite to its vertex orders if the edge is existing
a-priori. This usually happens between two mesh faces. For
instance, edge M1

5 is used by the face M2
1 in reverse fashion

since the vertex order (orientation) of M2
1 is opposite to the

edge’s vertex direction as depicted in Figure 3.

Figure 3. Face edge uses; the edge is defined from
v0 to v1. f0 is using it in positive (dir=1) sense and
f1 is using it in opposite (dir=0) sense.

2.1.1 Internal data manipulations

Face constructor stated in (1) not only creates edges or
decides how to use existing ones, it also adds itself (face
pointer) to the upward face adjacency list of all of its edges
since T(1,2) is requested. The question of whether an edge
exists as stated in (2) can be found in two different ways. If
the vertex to edge adjacency (T(0,1)) exists then we can try to
find the common edge by checking the edge lists of these two
vertices. However, if T(0,1) is not set then AOMD creates an
edge hash list by chaining. Basically, edges are stored in a
list such that they can be searched and uniquely found from
its vertices. This search operation can be achieved by a good
key selection, which will result in least number of collisions
i.e., the edges with the same key value. It is devised that a
good key selection could be the sum of edge’s vertex ids [1].
All mesh entity ids are unique since when they are stored in a
mesh, an id generator keeps track of available entity ids and
assigns them to the entity. When an entity is deleted, its id is
stored on a stack. The id generator pops up an id from the
head of the stack when a new entity is created or if there
exists no available ids present then it increments the
maximum id assigned so far.

To eliminate large collisions, i.e., the edges having the same
vertex id sums, a trick of calculating the sum of random
numbers seeded by the vertex ids is applied. The sum is then
mod to the size of the hash list to find the location of the edge
in the hash list. The edge is appended to an expanding-
shrinking array list at that bucket location of the hash list.
Standard Template Library (STL) equivalent of this data
container is a hash-set with the same less than key being the
randomized vertex id sums. As a general rule, the search to
find a higher order entity from a list of lower order entities
can be done by means of hash sets where the hasher function
is the sum of randomized entity ids. If there exists a hash set,
its worst collision number and frequency is automatically
monitored within AOMD. if the rate of 10 or more collisions
occurs more than 10% then the set is rehashed by an order of
magnitude till a maximum hash limit is reached. Therefore,
AOMD internally keeps the possibility of creating, modifying
and deleting hash sets (chains) for edges, faces and/or regions
since all can be determined from their lower order entities.
This enables to answer the questions like F_exists_ and
R_exists_ for faces and regions given lower order entity lists
usually vertices within allowable CPU [1].

In entity deletions, the adjacency status tensor is checked
implicitly to determine to delete the entity from its downward
entities. For instance, if a face is deleted from the mesh by a
simple F_delete_(mesh,face) call then its existence from the
upward face lists of its downward entities is checked and
deleted. In addition, if the face is hashed then its signature
from the faces’ hash list is deleted as well to prevent memory
leaks.

Let us reiterate the question posed at (*) in Section 2.1, that
the edge classifications may not be assigned correctly if the
face is created from vertices. This is a fact that lower order
entity classifications can not be deduced either from higher or
lower entity classifications unless the same-level
classification of all entities are known, i.e., vertices on model

vertices, edges on model edges, faces on model faces. In
Figure 4, the edge classification between vertex 9 (M0

9) and
vertex 4 can be deduced neither from face 10’s classification
(on 0th model face G2

0) nor from vertex classifications.
However, if all the mesh edges classified on the model edges
would have been known then it would be straightforward to
define the classification of the edge between vertex 4 and 9.

Figure 4. Edge classification between vertex 9 and
4 could only be decided if all the mesh edges on
model edges are known.

Another approach could have been to device a walk strategy
to reassign all the classifications by computing angle
differences and adjacency relations. This way should only be
practiced if the mesh classification information is not readily
available or provided. Therefore, users should be extra
cautious to request the adjacency links and use of constructs
to eliminate classification problems. This is still the subject
of further AOMD research.

 2.2 Templates and Iterators
The mesh regions can be of type tetrahedron, hexahedron,
pyramid, prism, etc. There is a template for each of these
region types in AOMD to define region-face, face-vertex
connectivities [1]. It is required for AOMD to figure out how
to form the region if it is created from vertices or edges.
These template functions can be overridden if additional
region types would be added to AOMD. As an example, a
region can be created from vertices as below:

pRegion_ region = R_create_(pMesh mesh,

 pVertex_ v0,v1,v2,v3,

 constant RTip_ TETRAHEDRON,

 int classification, int tag); (3)

If T(2,3) is requested then faces are created from the
TETRAHEDRON template and region-face use directions are
found. A region may use an existing face in opposite
direction to its natural vertex order as stated in Section 2.1
for face-edge uses. The region itself is added to the upward
region lists of all of its faces. If T(1,3) is asked then the
region would be added to the region lists of all of its 6 edges
that can be derived from its template structure. After the

above constructor call, the following function calls could be
done without any additional programming:

pFace_ face = R_face_(region,0);

pList_ regions = E_regions_(edge);

int usedir = R_dirFace_(region,face); (4)

The geometrical model is implemented on top of the solid
modeling kernels as a wrapper. It consists of a set of generic
function names which is linked with the chosen solid modeler
at the compile time. This enables AOMD to operate on
different solid modelers without the necessity of changing its
model related function calls. For snapping a vertex on a true
geometry, e.g., the following function call can be used
irrespective of the solid modeler.

G_snapVertex_(pModel model, pVertex vertex); (5)

The above function uses the linked solid modeler’s specific
functions to be able to snap the vertex to the closest point on
the model. Mesh entities are stored on their classified model
entities in separate lists. If the mesh faces classified on a
particular model face are required then AOMD creates an
iterator of the entity kind for the user to iterate through the
classified mesh entities. The following iteration loop can be
used for this purpose:

pGFace_ model_face = F_modeling_(face_ face);

iterator it; (6)

while(face face=G_nextFace_(model_face,&it)){ …};

In the next section, the features of AOMD will be used by the
decimation algorithm as a case study.

3. DECIMATION ALGORITHM

The input to the decimation algorithm could be either a
surface mesh or a volume mesh. Let us assume that the input
is read from a finite element connectivity data and
coordinates; with or without classification information. The
decimation algorithm checks have two layers; first one is to
always account for the classification information (topological
checks); second one is to account for geometrical validity
(geometrical checks). The main goal is to coarsen the mesh
without sacrificing the main geometrical features and the
mesh quality. Note that if the solid model is available then
geometrical features are exactly known at every location.
Otherwise, mesh implicitly defines the model features since
mesh is an artifact or the discrete form of a solid model. The
difficulty is to coarsen the mesh by respecting implicitly
defined model features with quality meshes. The decimation
algorithm uses the edge collapse operation to fulfill this task.
The key issue in the successful implementation of the edge
collapse algorithm is to perform geometrical and topological
checks properly and reliably such that edge collapse always
results in valid configurations. For efficiency reasons,
topological (classification) checks should come first since
they do not require any computation. In an edge collapse
operation, the faces around the to-be collapsed edge and the

edges around one of the end vertices of the edge are deleted.
This vertex will be deleted and the edge will be collapsed
onto the other end (retained) vertex of the edge. The faces
around the to-be deleted vertex are stretched to the retained
vertex of the edge by forming new faces. If the vertex to be
deleted is classified on a model vertex, edge collapse should
be avoided. If the to-be deleted vertex classification and tag
is not equal to the edge classification, the operation should
be avoided as well. For instance, if the vertex is classified on
a model edge (M0

1 in Figure 5a) and the edge to be collapsed
is classified on another model edge or on a model face or
region, the collapse would have changed the topology of the
geometric model as depicted in Figure 5a. It should be noted
here that if there is a face other than the faces of the edge
whose area becomes flat, then the operation should be
avoided so as not to create invalid faces as shown in Figure
5a for the mesh face M2

3 for the collapse of M0
2. The only

valid collapse moves as depicted by I and II in Figure 5a,
results in the configurations as shown in Figure 5b. In case II,
the edge classified on the model edge G1

3 is collapsed along
the model edge. Note that the deleted vertex M0

1 is classified
on the same model edge. Geometrical validity check of the
edge collapse operation is illustrated in Figure 6. The new
faces after the collapse operation should have all positive and
non-zero face areas with respect to the orientations. On
surface meshes, this condition can be loosely stated by
satisfying an angle threshold (usually a low value ten
degrees) between the face normals of the initial and after
collapse configurations. In fact, this check is sufficient for
planar meshes since the case of inside out face creation
(reverse orientation in face’s vertex orders) results in an
angle difference of 180 degrees. If the angle differences
between N1’s or N2’s are greater than the angle threshold
then the collapse is avoided as shown in Figure 6.
Intersection checks are advised after the completion of
collapse algorithm to account for the fact that angle threshold
check may not be sufficient for detecting self-intersections
especially for rough surfaces. Another possibility is to lower
the angle threshold which might result in less decimation.

At the beginning of the decimation algorithm, a spacing value
for each mesh vertex is assigned by computing the average
edge lengths of the surrounding (adjacent) edges. Therefore,
the input mesh (assumed to be the set of faces composed of
integer vertex ids whose coordinates are also given) is read
such that mesh edges are created and vertex to edge
adjacencies are also made known. This is the required data
structure to be able to assign average edge lengths to the
vertices. AOMD satisfies T(0,1) implicitly in face creations
from vertices while reading the input data.

Figure 5. Definition and validity of edge collapses;
(a) double arrows show valid moves and single
arrows show invalid collapses. (b) After collapse
configurations for cases I and II.

If there is no classification information available the
classification field of edges may not be accurate as explained
in the preceding Section 2.1. This may be solved by walking
the faces through edges. Edges along model edges (implicitly
defined by the mesh) may be assigned if the angle difference
between the adjacent mesh faces of the edge exceeds an angle
threshold (e.g., 20 degrees). However, this step is not
absolutely necessary since our edge collapse mechanism is
backed up by the geometrical validity checks which avoid
collapses if the angle difference between the initial and after
collapse configurations is greater than an angle threshold as
well. Aside from the advantages of creating classification
information explained in Section 2.1, having classifications
may also be favorable in computational perspective since the
number of geometrical checks may be less in checking
collapses locally for every candidate edge.

Figure 6. Geometrical check of edge collapse:
collapse is avoided if the angle difference between
N1s or N2s is greater than an angle threshold.

The level of decimation is defined as a factor that lowers the
spacing field of the vertices. Therefore, vertex spacings
(average edge lengths) are updated by dividing the values by
a user prescribed factor (2,3,4, etc..).

For the successful implementation of the decimation
algorithm, faces around vertices and faces adjacent to edges
are needed. Therefore, T(0,2) and T(1,2) are requested from
AOMD. In practice, faces can be created either from vertices
or from edges. However, if the faces are created from edges,
T(0,1) is not required although AOMD can still find if an
edge exists from the two vertices by use of hash lists as
explained in Section 2.1.1. It is recommended to use T(2,1)
to overcome the additional data handling in manipulating
hash-lists or additional memory requirement for T(0,1).

The rest of the decimation algorithm is relatively simple since
we have already set the algorithmic design details by
choosing the best data structure for its successful
implementation. The edge collapse operation is tried for all
the mesh edges successively. There might be situations for
which the collapse operation could not be performed due to
geometrical reasons (large angle differences, invalid face
creations) at the end of one edge collapse cycle for all the
mesh edges. Edge collapses degrade mesh quality and may
create configurations for further collapses to become
impossible. The overall quality of the mesh needs to be
improved to perform more collapses and better triangulation.
One possible way of improving mesh quality globally is to
apply edge swaps to maximize minimum face angles (the
converse is also true) to the edges around each vertex locally.
The details of this algorithm can be found in [9] and [10].

The difference in face normals between initial and after swap
configuration is checked for the geometrical validity of the
edge swap operation similar to the check done for the edge
collapse case. The vertex locations are smoothed such that
the location of surrounding edges will be averaged to find the
new vertex locations. The new location should not affect the
difference between the face normals more than the angle
threshold so that the initial geometrical features are
preserved. Having increased the quality of the triangulation,
the edge collapses are tried once again. This cycle is repeated
until no more edge collapses are possible. In practice, for
efficiency purposes, the mesh quality improvement loop is
visited if the number of edge collapse sweeps is less than a
couple of iterations. The C/C++ program fragment for the
decimation algorithm is depicted below for reader’s
convenience. It iterates through all the mesh edges and tries
to collapse each edge if the vertex spacing of any one of the
edge vertices (v[0] or v[1]) is greater than the edge length
elength. After all the edge collapses are tried, the mesh
quality is improved by swapping the edges around each
vertex where we need to request T(0,1) from AOMD. The
examples of the decimation algorithm are given in Section 4.

 do{
 done=0;tmp=0;
 while(edge = M_nextEdge_(mesh,&tmp)){
 v[0]=E_vertex_(edge,0);v[1]=E_vertex_(edge,1);
 elength =E_length_(edge);
 s[0]=L_dataD_(v[0]->list,"spacing");
 s[1]=L_dataD_(v[1]->list,"spacing");
 for(i=0;i<2;++i)
 if(s[i]>elength)
 if(E_2Dcolapse_(mesh,edge,v[i])){
 done = 1;
 break;
 }
 }
 tmp=0;
 while(vertex=M_nextVertex_(mesh,&tmp)){
 V_swapOpEdges_(mesh,vertex);
 V_smooth_(mesh,vertex);
 }

 }while(done);

 Figure 7. Decimation Algorithm.

4. RESULTS AND DISCUSSION

The results of the above decimation algorithm can be seen on
the example cases in Figure 8 through Figure 16. The surface
mesh of the Stanford bunny model, which is originally
created by a range-scanning device, is shown in Figure 8. The
bunny is decimated by lowering the edge length scale 4 and 8
times in Figure 9 and 10 respectively. Figure 11 represents
the coarsest possible configuration with the angle threshold
of 10 degrees. It should be noted here that the decimated

meshes of Figure 9, 10 and 11 preserve the main features of
the bunny with quality meshes by reducing the number of
mesh entities considerably. The effect of angle threshold on
the decimation algorithm can be seen in Figure 12. The angle
threshold value for edge collapses is taken as 60 degrees in
Figure 12. It may be difficult to identify the mesh of Figure
12 as the bunny of the initial original mesh of Figure 8. The
geometrical features of the bunny are deteriorating at this
angle value and if the value is further reduced, we may not be
able to identify the bunny at all. The same set of comparisons
is done on the dragon model as depicted in Figures 13-17.
The amount of decimation for bunny and dragon models
corresponding to the Figures 8-11 and Figures 13-16 are
given in Table 1 and 2, respectively. Maximum compression
ratio of the models is between 1/10 and 1/20 in terms of the
number of mesh faces as depicted in Table 1 and Table 2.

Table 1. The amount of decimation for the bunny.

Figure No Vertices Edges Faces

8 35947 0 69451

9 4567 10294 6837

10 2961 5496 3645

11 2667 4626 3069

Table 2. The amount of decimation for the dragon.

Figure No Vertices Edges Faces

13 100250 0 202520

14 22166 66555 44464

15 11364 34099 22811

16 9115 27345 18306

It is worthwhile to discuss the differences of adjacency
requests between consecutive algorithms. In fact, as usual, we
have to make a decision between memory and CPU time
since we can delete the adjacencies, namely T(0,2) for the
completed edge collapse loop and create T(0,1) for vertex
smoothing and edge swap loop. In practice, additional
memory requirement for surface meshes even for large
(~100K mesh faces) cases is not drastic (<16Mbyte), and
sacrificed in favor of the gain in the computational time. The
decimation algorithm runs within a couple of seconds for the
bunny and less than 10 seconds for the dragon model on a
700MHz. PC.

In general, AOMD is designed to provide a flexible basis for
mesh-model inter-entity adjacencies. All the adjacency
creations and deletions are buried inside AOMD by keeping
the usage as simple as possible while performing the most
complicated adjacency relations correctly and efficiently. The
power of an efficient database can be measured by the ease of
use and the amount of work that can be achieved internally.
We believe that AOMD is the right database design for the
success of CAD and simulation engineering algorithms

simply because it lets the algorithms to customize itself. It is
hoped that AOMD design concepts will have positive impact
on meshing and related communities.

Figure 8. Original surface mesh of the Stanford
bunny.
(http:\\www.stanford.edu\data\3Dscanrep\bunny.tar.
gz). The mesh consists of ~36K mesh vertices and
~70K mesh faces.

Figure 9. Stanford bunny is decimated such that its
original edge length scale is reduced by 4 times.
The mesh consists of ~4.5K vertices, 10K edges
and ~6.8K faces.

Figure 10. Stanford bunny is decimated such that
its original edge length scale is reduced by 8 times.
The mesh consists of ~3K vertices, 5.4K edges and
~3.6K faces.

Figure 11. Stanford bunny is decimated as coarse
as possible with an angle threshold value of 10
degrees for edge collapses. The mesh consists of
~2.6K vertices, ~4.6K edges and ~3K faces.

Figure 12. Stanford bunny is decimated as coarse
as possible with an angle threshold value of 60
degrees for edge collapses. The bunny’s features
are hardly identifiable.

Figure 13. Original surface mesh of the dragon
model.(http:\\www.stanford.edu\data\3Dscanrep\dra
gon). Mesh consists of ~100K mesh vertices and
~200K mesh faces.

Figure 14. Dragon is decimated such that its
original edge length scale is reduced by 4 times.
The mesh consists of ~22K vertices, 66K edges and
~44K faces.

Figure 15. Dragon is decimated such that its
original edge length scale is reduced by 8 times.
The mesh consists of ~11K vertices, 34K edges and
~22K faces.

Figure 16. Dragon is decimated as coarse as
possible with an angle threshold value of 10
degrees for edge collapses. The mesh consists of
~9.1K vertices, ~27K edges and ~18K faces.

Figure 17. Dragon is decimated as coarse as
possible with an angle threshold value of 60
degrees for edge collapses. (~2.6K vertices, 4.3K
edges, 2.9K faces) Dragon’s features degrade.

REFERENCES

[1] Jean Francois Remacle, B. Kaan Karamete and MS
Shephard, “Algorithm Oriented Mesh Database
(AOMD)”, 9th International Meshing Roundtable,
Sandia National Laboratories, pp 349-359 October 2-
5 2000, New Orleans, Louisiana USA.

[2] MW Beall and MS Shephard, “A general topology-

based mesh data structure”, Int. J. Num. Meth. Eng.,
Vol 40 pp.727-758 (1997).

[3] Paul S. Heckbert and Michael Garland, “Survey of

Polygonal Surface Simplification Algorithms”,
Carnegie Mellon University Tech. Report, and
Multiresolution Surface Modeling Course
SIGGRAPH’97.
http://www.cs.cmy.edu/~ph/mcourse97.html.

[4] Hugues Hoppe, Tony DeRose, Tom Duchamp, John

McDonald and Werner Stuetzle. “Mesh Optimization”,
SIGGRAPH’ 93 Proc. pp. 19-26, Aug. 1993 http://
www.research.microsoft.com/research/graphics/hoppe

[5] William Schroeder, Jonathan A. Zarge and William E.
Lorensen. “Decimation of triangle meshes”, Computer

Graphics, (SIGGRAPH ‘ 92 Proc.), Vol: 26(2) pp. 65-
70, July 1992.

[6] Michael Garland and Paul Heckbert, “Surface

Simplification Using Quadric Error Metrics”,
 Proceedings SIGGRAPH 97.

http://sulfuric.graphics.cs.cmu.edu/~garland/quadrics.p
s.gz

[7] G. Turk, “Re-tiling polygonal surface”, Computer

Graphics, Vol: 26(2) pp. 55-64 (1992).

[8] Pascal Frey, "About Surface Remeshing", Proceedings,

9th International Meshing Roundtable, Sandia
National Laboratories, pp.123-136, October 2000

[9] B. Kaan Karamete, Rao V. Garimella, Mark S.

Shephard, “Recovery of an Arbitrary Edge on an
Existing Surface Mesh Using Local Mesh
Modifications”, Int. J. Num Meth. Eng., Vol 50-6 pp.
1389-1409 (2001).

[10] B. Kaan Karamete, Mark W. Beall and Mark S.

Shephard, “Triangulation of Arbitrary Polyhedra”, Int.
J. Num. Eng., Vol 49-2, pp. 167-191 (2000).

