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ABSTRACT 

This paper discusses the efficiency and ease of implementation of a mesh coarsening or decimation (simplification) algorithm by 
using Algorithm Oriented Mesh Database (AOMD). AOMD is  first introduced by the author and his co-workers in recent study 
[1].  The manuscript is aimed to give the reader the novel idea of coupling algorithm and database (or data structure) design such 
that the database is evolved by the demands of the algorithm(s). AOMD design principles will be explained and the key factors 
that affect the performance of the decimation algorithm will be explored as a case study. The issues related to mesh inter-entity 
adjacencies, mesh-model associations, i.e., classifications and AOMD data structures will be discussed. The selected decimation 
algorithm coarsens the mesh (2D or 3D) to the desired level by maintaining the topological and geometrical integrity of the input 
mesh by means of successive edge collapses by keeping the mesh quality as good as possible.  The details of the decimation 
algorithm with emphasize on how the algorithm drives AOMD will be studied explicitly within the context. 

Keywords: mesh generation, mesh-model database, computational geometry,  decimation, AOMD

1. INTRODUCTION 

There has always been a difficulty of adapting a mesh-model 
data structure to a new algorithm whose best implementation 
requires changes in the pre-designed mesh database. This is 
exactly the aim of AOMD, i.e., the ability to provide means 
for the re-design of the data structures without really creating 
a new database. The idea of using flexible adjacency relations 
between mesh entities is the main design concept of AOMD. 
It also inherits the valuable concept of mesh-model 
associations, i.e., classifications to satisfy the mesh–geometry 
integrity from the works of Beall and Shephard [2].   This 
paper can be thought to be an extension to the earlier 
introductory study where we have introduced the main design 
concepts of AOMD [1]. The reader will find more “ready to 
grasp” ideas and a case algorithm implementation by using 
AOMD in this paper. In the first section, basic building 
blocks of AOMD will be studied by giving practical 
examples.  To keep the pace of thinking process with the 
reader, the text of Section 2 will pose questions by reiterating 
the possible alternative ways in AOMD design. Section 2 is 

dedicated to the implementation of a decimation algorithm 
with the use of AOMD to show how the data structures can 
be changed by the desires of the algorithms. The secondary 
intent of the paper and Section 2 is to provide the algorithmic 
details of a decimation (mesh coarsening) process. In 
computer graphics and numerical simulation engineering, 
large meshes are prohibitive and should be avoided where 
possible. A decimation algorithm is needed to simplify large 
meshes that might have been generated from a range 
scanning device or pre-meshed by a less capable mesh 
generator. The aim is to reduce the number of mesh faces 
while maintaining the geometrical integrity and shape of the 
true geometry with quality meshes. A good survey of mesh 
simplification algorithms is done by Paul Heckbert and 
Michael Garland [3]. A number of mesh simplification or 
decimation algorithms are depicted in that work. I will 
specifically note the work of Hoppe, Turk, Garland, 
Schroeder and Frey [4-8] due to the fact that they all have 
utilized edge collapses, mesh optimizations after edge 
collapses and mentioned about geometrical validity of the 
operation(s). Hoppe tried to formulate the collapses by 
optimizing energy functional, which is a measure of initial 
vertex clustering and curvature. The order of vertex collapses 



is discussed by Turk. The deviation from the initial mesh and 
the quality of decimation is found by means of a quadratic 
error minimization constructed from the distances between 
the vertices and their adjacent average planes by Heckbert 
and Garland as well as by Scroeder. Frey has controlled the 
deviation of the simplified mesh by evaluating the distances 
between the vertices and their orthogonal projection to the 
ball of the vertex followed by mesh optimization by edge 
swaps and vertex smoothings. Some of these algorithms are 
quite complex and computational efficiency could be 
problematic. Although the algorithm in this paper discovers 
nothing new compared to the papers aforementioned above, it 
will generalize the rules of mesh simplification in a very 
simple conjecture and in an efficient manner. Geometrical 
integrity will be preserved as the direct result of maintaining 
mesh-model associations; classifications and by checking the 
angle differences between the mesh face normals of the initial 
and decimated configurations. Like Frey [8], the mesh will be 
optimized after the possible set of vertex collapses by means 
of a successive edge swapping procedure. The different levels 
of decimation are generated by using local edge length 
metrics that can be altered by any solution adaptation or a 
third party procedure. The details of the algorithm and how it 
is coupled with AOMD will be explained in Section 3. This 
algorithm can decimate both volume and surface meshes. 

 

2.  BASICS of AOMD 

 

Mesh-Model entities of AOMD, namely  vertex, edge, face 
and region has levels of hierarchy; vertex being the lowest(0) 
and region being the highest(3). This is because lower order 
mesh entities can be expressed in the closure of higher order 
entities, as is the case in graph theory.  Each entity has lower 
and higher order entities with respect to its own level as 
depicted in Figure 1.  

 Vertex(0) Edge(1) Face(2) Region(3) 

Vertex NA Upward(U) 

Higher(H) 

U/H U/H 

Edge Downw(D) 

Lower(L) 

NA U/H U/H 

Face D/L D/L NA 

 

U/H 

Region D/L D/L D/L NA 

Figure 1. Downward(D) or Lower(L) and Upward(U) 
or Higher(H) Order entities for each level (row to 
column); e.g., for edge,  vertex is its lower order 
entity and face and region are higher to it.  

 
 
 

 Vertex Edge Face Region 

Vertex 0 1 0 0 

Edge 1 0 1 0 

Face 1 0 0 1 

Region 1 0 1 0 

Figure 2. Adjacency Status Tensor T(I,J). If  
adjacency exists from (ith row) entity to (jth 
column) entity then its cell value is set to 1, 
otherwise 0. All edges around each vertex will be 
generated and kept since T(0,1) = 1. 

The adjacency relations are stored in a 4x4 tensor. We will 
call this tensor as Adjacency Status Tensor and denote it by 
T(I,J). User will set certain adjacency relations by setting the 
cells of this tensor. In other words, by setting the cells of this 
tensor AOMD is told to create the adjacency links implicitly 
until a different user request is made. At any levels of 
execution of an algorithm, user may change the values of T.  
For example, at the beginning of a vertex smoothing 
algorithm, T(0,2) can be set to request from AOMD to create 
vertex to face adjacencies, i.e., the faces surrounding each  
vertex. This request is currently global to an entity level, i.e., 
all the vertices will have a list of faces around them. The 
good point is that user does not have to create this link 
explicitly.   As a second example, if the user creates faces 
from vertices by a constructor call as below, 

pFace_ face = F_create_(pMesh_ mesh,  

                   pVertex_ v0, v1,v2,  

                                 int classification , 

      int  tag);                               (1) 

  

and have set T(1,2) a-priori, the edges will be created 
implicitly and all the edges will have a list of adjacent faces  
so that a question as below could be asked easily without any 
additional programming: 

pEdge_ edge = E_exists_(v0,v1); 

pList_ faces   = E_faces_(edge); // or                  (2) 

pFace_ face  = E_face_(edge,0); // if faces>0. 

 

2.1 Classification 

 

Classification is a way to associate mesh and model entities.. 
Each mesh entity has a classification field prescribing its 
underlying  model entity. For instance, mesh vertices can be 
classified on model vertices, edges, faces or regions. In 
general, as a rule, a mesh entity can only be classified  on 
model entities of equal or higher order than that of itself. We 
can formulate this relation as MI [ GJ  iff J≥I, where GJ is the 
Jth  order model entity and MI as the Ith order mesh entity. 
Having classification information helps us achieve many 
operations possible more efficiently and more correctly such 



as mesh refinement, coarsening, optimization and e.g. 
boundary condition assignment to a cluster of mesh faces and 
etc. In mesh refinement, the new vertices can be snapped to 
the true geometry if the classification of the split entity is 
known. In mesh coarsening, the geometric integrity can be 
preserved by not allowing the edge collapse through model 
faces if the edge classification is known. Otherwise we would 
have to evaluate the validity of the collapse operation by 
computing the angles or distance differences between the 
new and the initial configurations usually by means of a 
threshold value which can never be as reliable as the simple 
classification check. It should be noted here that geometrical 
validity of the edge collapse operation is still required. This 
will be discussed in Section 3 in detail.  Generally, almost all 
mesh generation techniques require some sort of 
classification information and the best practice is to keep this 
information even after meshing to provide the possibility of 
further mesh modifications or post-processing which can be a 
computational field simulation algorithm or selective 
visualization, etc. 

However, there is an important problem of how to keep the 
classifications correctly while providing one of the most 
desirable features of creating mesh adjacencies implicitly by 
AOMD(*). For instance, user may want to request from 
AOMD to create edge to face adjacencies (T(1,2)) while 
constructing faces from vertices as shown in (1).  In (1), the 
face is created from three vertices v0,v1,v2 on the 
geometrical model entity of level classification and model 
entity id of tag. Mesh edges are then either created from 
pairwise vertex permutations (v0-v1,v1-v2,v2-v0) in the 
given order or could already be existing. An edge can be used 
by the face opposite to its vertex orders if the edge is existing 
a-priori. This usually happens between two mesh faces. For 
instance, edge M1

5 is used by the face M2
1 in reverse fashion 

since the vertex order (orientation) of  M2
1 is opposite to the 

edge’s vertex direction as depicted in Figure 3. 

 

Figure 3.  Face edge uses; the edge is defined from 
v0 to v1. f0 is using it in positive (dir=1) sense and 
f1 is using it in opposite (dir=0) sense.  

 

 

2.1.1 Internal data manipulations   

Face constructor stated in (1) not only creates edges or 
decides how to use existing ones, it also adds itself (face 
pointer) to the upward face adjacency list of all of its edges 
since T(1,2) is requested.  The question of whether an edge 
exists  as stated in (2) can be found in two different ways.  If 
the vertex to edge adjacency (T(0,1)) exists then we can try to 
find the common edge by checking the edge lists of these two 
vertices. However, if T(0,1) is not set then AOMD creates an 
edge hash  list by chaining. Basically, edges are stored in a  
list such that they can be searched and uniquely found from 
its vertices. This search operation can be achieved by a good 
key selection, which will result in least number of collisions 
i.e., the edges with the same key value. It is devised that a 
good key selection could be the sum of edge’s vertex ids [1]. 
All mesh entity ids are unique since when they are stored in a 
mesh, an id generator keeps track of available entity ids and 
assigns them to the entity. When an entity is deleted, its id is 
stored on a stack. The id generator pops up an id  from the 
head of the stack when a new entity is created or if there 
exists no available ids present then it increments the 
maximum id assigned so far.  

To eliminate large collisions, i.e., the edges having the same 
vertex id sums, a trick of calculating the sum of random 
numbers seeded by the vertex ids is applied. The sum is then 
mod to the size of the hash list to find the location of the edge 
in the hash list. The edge is appended to an expanding-
shrinking array list at that bucket location of the hash list. 
Standard Template Library (STL)  equivalent of this data 
container is a hash-set with the same less than key being the 
randomized vertex id sums. As a general rule, the search to 
find a higher order entity  from a list of lower order entities 
can be done by means of hash sets where the hasher function 
is the sum of randomized entity ids.  If there exists a hash set, 
its worst collision number and frequency is automatically 
monitored within AOMD. if the rate of 10 or more collisions 
occurs more than 10% then the set is rehashed by an order of 
magnitude till a maximum hash limit is reached. Therefore,  
AOMD internally keeps the possibility of creating, modifying 
and deleting hash sets (chains) for edges, faces and/or regions 
since all can be determined from their lower order entities. 
This enables to answer the questions like F_exists_ and 
R_exists_ for faces and regions given lower order entity lists 
usually vertices within allowable CPU  [1].  

In entity deletions, the adjacency status tensor is checked 
implicitly to determine to delete the entity from its downward 
entities. For instance, if a face is deleted from the mesh by a 
simple F_delete_(mesh,face) call then its existence from the 
upward face lists of its downward entities is checked and 
deleted.  In addition, if the face is hashed then its signature 
from the faces’ hash list is deleted as well to prevent memory 
leaks.  

Let us reiterate the question posed at (*) in Section 2.1, that 
the edge classifications may not be assigned correctly if the 
face is created from vertices. This is a fact that lower order 
entity classifications can not be deduced either from higher or 
lower entity classifications unless the same-level 
classification of all entities are known, i.e., vertices on model 



vertices, edges on model edges, faces on model faces. In 
Figure 4, the edge classification between vertex 9 (M0

9) and 
vertex 4 can be deduced neither from face 10’s classification 
(on 0th model face G2

0) nor from vertex classifications. 
However, if all the mesh edges classified on the model edges 
would have been known then it would be straightforward to 
define the classification of the edge between vertex 4 and 9. 

 

Figure 4. Edge classification between vertex 9 and 
4 could only be decided if all the mesh edges on 
model edges are known.   

Another approach could have been to device a walk strategy 
to reassign all the classifications by computing angle 
differences and adjacency relations. This way should only be 
practiced if the mesh classification information is not readily 
available or provided.  Therefore, users should be extra 
cautious to request the adjacency links and use of constructs 
to eliminate classification problems. This is still the subject 
of further AOMD research.      

 2.2 Templates and Iterators  
The mesh regions can be of type tetrahedron, hexahedron, 
pyramid, prism, etc. There is a template for each of these 
region types in AOMD to define region-face, face-vertex 
connectivities [1]. It is required for AOMD to figure out how 
to form the region if it is created from vertices or edges. 
These template functions can be overridden if additional 
region types would be added to AOMD. As an example, a 
region can be created from vertices as below: 

pRegion_ region = R_create_(pMesh mesh, 

     pVertex_ v0,v1,v2,v3, 

               constant RTip_ TETRAHEDRON, 

                        int classification, int tag);            (3) 

If T(2,3) is requested then faces are created from the 
TETRAHEDRON template and region-face use directions are 
found. A region may use an existing face in opposite 
direction to its natural vertex order as stated in Section 2.1 
for face-edge uses. The region itself is added to the upward 
region lists of all of its faces. If T(1,3) is asked then the 
region would be added to the region lists of all of its 6 edges 
that can be derived from its template structure. After the 

above constructor call, the following function calls could be 
done without any additional programming: 

pFace_ face = R_face_(region,0); 

pList_ regions = E_regions_(edge); 

int usedir = R_dirFace_(region,face);                    (4) 

The geometrical model is implemented on top of the solid 
modeling kernels as a wrapper. It consists of a  set of generic 
function names which is linked with the chosen solid modeler 
at the compile time. This enables AOMD to operate on 
different solid modelers without the necessity of changing its 
model related function calls.  For snapping a vertex on a true 
geometry, e.g., the following function call can be used 
irrespective of the solid modeler. 

G_snapVertex_(pModel model, pVertex vertex);  (5)   

The above function uses the linked solid modeler’s specific 
functions to be able to snap the vertex to the closest point on 
the model. Mesh entities are stored on their classified model 
entities in separate lists. If the mesh faces classified on a 
particular model face are required then AOMD creates an 
iterator of the entity kind for the user to iterate through the 
classified mesh entities. The following iteration loop can be 
used for this purpose: 

pGFace_ model_face = F_modeling_(face_ face); 

iterator it;           (6) 

while(face face=G_nextFace_(model_face,&it)){ …}; 

 

In the next section, the features of AOMD will be used by the 
decimation algorithm as a case study. 

 

3. DECIMATION ALGORITHM 

The input to the decimation algorithm could be either a 
surface mesh or a volume mesh. Let us assume that the input 
is read from a finite element connectivity data and 
coordinates;  with or without classification information. The 
decimation algorithm checks have two layers; first one is to 
always account for the classification information (topological 
checks);  second one is to account for geometrical validity 
(geometrical checks). The main goal is to coarsen the mesh 
without sacrificing the main geometrical features and the 
mesh quality.  Note that if the solid model is available then 
geometrical features are exactly known at every location. 
Otherwise, mesh implicitly defines the model features since 
mesh is an artifact or the discrete form of a solid model. The 
difficulty is to coarsen the mesh by respecting implicitly 
defined model features with quality meshes.  The decimation 
algorithm uses the edge collapse operation to fulfill  this task. 
The key issue in the successful implementation of the edge 
collapse algorithm is to perform geometrical and topological 
checks properly and reliably such that edge collapse always 
results in valid configurations. For efficiency reasons, 
topological (classification) checks should come first since 
they do not require any computation. In an edge collapse 
operation, the faces around the to-be collapsed edge and the 



edges around  one of the end vertices of the edge  are deleted. 
This vertex  will be  deleted and the edge will be collapsed 
onto the other end (retained) vertex of the edge. The faces 
around the to-be deleted vertex are stretched to the retained 
vertex of the edge by forming new faces. If the vertex to be 
deleted is classified on a model vertex, edge collapse should 
be avoided. If the to-be deleted vertex classification and tag 
is not equal to the edge classification, the operation should  
be avoided as well.  For instance, if the vertex is classified on 
a model edge (M0

1 in Figure 5a)  and the edge to be collapsed 
is classified on another model edge or on a model face or 
region, the collapse would have changed the topology of the 
geometric model as depicted in Figure 5a.  It should be noted 
here that if there is a face other than the faces of the edge 
whose area becomes flat, then the operation should be 
avoided so as not to create invalid faces as shown in Figure 
5a for the mesh face M2

3 for the collapse of M0
2. The only 

valid collapse moves as depicted by I and II in Figure 5a, 
results in the configurations as shown in Figure 5b. In case II, 
the edge classified on the model edge G1

3 is collapsed along 
the model edge. Note that the deleted vertex M0

1 is classified 
on the same model edge. Geometrical validity check of the 
edge collapse operation is illustrated in Figure 6. The new 
faces after the collapse operation should have all positive and 
non-zero face areas with respect to the orientations. On 
surface meshes, this condition can be loosely stated by 
satisfying an angle threshold (usually a low value ten 
degrees)  between the face normals of the initial and after 
collapse configurations. In fact, this check is sufficient for 
planar meshes since the case of inside out face creation 
(reverse orientation in face’s vertex orders) results in an 
angle difference of 180 degrees. If the angle differences 
between N1’s or N2’s are greater than the angle threshold 
then the collapse is avoided as shown in Figure 6. 
Intersection checks are advised after the completion of 
collapse algorithm to account for the fact that angle threshold 
check may not be sufficient for detecting self-intersections 
especially for rough surfaces. Another possibility is to lower 
the angle threshold which might result in less decimation. 

At the beginning of the decimation algorithm, a spacing value 
for each mesh vertex is assigned by computing the average 
edge lengths of the surrounding (adjacent) edges. Therefore, 
the input mesh (assumed to be the set of faces composed of 
integer vertex ids whose coordinates are also given) is read 
such that mesh edges are created and vertex to edge 
adjacencies are also made known.  This is the required data 
structure to be able to assign average edge lengths to the 
vertices.  AOMD satisfies T(0,1) implicitly in face creations 
from vertices while reading the input data.  

 

Figure 5. Definition and validity of edge collapses; 
(a) double arrows show valid moves and single 
arrows show invalid collapses. (b) After collapse 
configurations for cases I and II.   

If there is no classification information available the 
classification field of edges may not be accurate as explained 
in the preceding Section 2.1. This may be solved by walking 
the faces through edges. Edges along model edges (implicitly 
defined by the mesh) may be assigned if  the angle difference 
between the adjacent mesh faces of the edge exceeds an angle 
threshold (e.g., 20 degrees). However, this step is not 
absolutely necessary since our edge collapse mechanism is 
backed up by the geometrical validity checks which avoid 
collapses if the angle difference between the initial and after 
collapse configurations is greater than an angle threshold as 
well. Aside from the advantages of creating classification 
information explained in Section 2.1, having classifications 
may also be favorable in computational perspective since the 
number of geometrical checks may be less in checking 
collapses locally for every candidate edge. 



 

Figure 6. Geometrical check of edge collapse: 
collapse is avoided if the angle difference between 
N1s or N2s is greater than an angle threshold.  

The level of decimation is defined as a factor that lowers the 
spacing field of the vertices. Therefore, vertex spacings 
(average edge lengths) are updated by dividing the values by 
a user prescribed factor (2,3,4, etc..).  

For the successful implementation of the decimation 
algorithm, faces around vertices and faces adjacent to edges 
are needed. Therefore, T(0,2) and T(1,2) are requested from 
AOMD. In practice, faces can be created either from vertices 
or from edges. However, if the faces are created from edges, 
T(0,1) is not  required although AOMD can still find if an 
edge exists from the two vertices by use of hash lists as 
explained in Section 2.1.1. It is recommended to use T(2,1) 
to overcome the additional data handling in manipulating 
hash-lists or additional memory requirement for T(0,1). 

The rest of the decimation algorithm is relatively simple since 
we have already set the algorithmic design details by 
choosing the  best  data structure for its successful 
implementation. The edge collapse operation is tried for all 
the mesh edges successively.  There might be situations for 
which the collapse operation could not be performed due to 
geometrical reasons ( large angle differences, invalid face 
creations) at the end of  one edge collapse cycle for all the 
mesh edges.  Edge collapses degrade mesh quality and may 
create configurations for further collapses to become 
impossible. The overall quality of the mesh needs to be 
improved to perform  more collapses and better triangulation. 
One possible way of improving mesh quality globally is to 
apply edge swaps  to maximize minimum face angles (the 
converse is also true) to the edges around each vertex locally. 
The details of this algorithm can be found in [9] and [10].  

The difference in face normals between initial and after swap 
configuration is checked for the geometrical validity of  the 
edge swap operation similar to the check done for the edge 
collapse case. The vertex locations are smoothed such that 
the location of surrounding edges will be averaged to find the 
new vertex locations. The new location should not affect the 
difference between the face normals more than the angle 
threshold so that the initial geometrical features are 
preserved. Having increased the quality of the triangulation, 
the edge collapses are tried once again. This cycle is repeated 
until no more edge collapses are possible. In practice, for 
efficiency purposes, the mesh quality improvement loop is 
visited if the number of edge collapse sweeps is less than a 
couple of iterations. The C/C++ program fragment for the 
decimation algorithm is depicted below for reader’s 
convenience. It iterates through all the mesh edges and tries 
to collapse each edge if the vertex spacing of any one of the 
edge vertices (v[0] or v[1]) is greater than the  edge length 
elength. After all the edge collapses are tried, the mesh 
quality is improved by swapping the edges around each 
vertex where we need to request T(0,1) from AOMD.  The 
examples of the decimation algorithm are given in Section 4. 

 

 do{   
   done=0;tmp=0; 
    while(edge = M_nextEdge_(mesh,&tmp)){ 
       v[0]=E_vertex_(edge,0);v[1]=E_vertex_(edge,1); 
       elength =E_length_(edge); 
       s[0]=L_dataD_(v[0]->list,"spacing");  
       s[1]=L_dataD_(v[1]->list,"spacing"); 
       for(i=0;i<2;++i) 
           if(s[i]>elength) 
             if(E_2Dcolapse_(mesh,edge,v[i])){ 
                   done = 1; 
                    break; 
              }  
    } 
    tmp=0; 
     while(vertex=M_nextVertex_(mesh,&tmp)){ 
         V_swapOpEdges_(mesh,vertex);     
         V_smooth_(mesh,vertex);  
      } 

 }while(done); 

 Figure 7. Decimation Algorithm. 

 

4. RESULTS AND DISCUSSION 

The results of the above decimation algorithm can be seen on 
the example cases in Figure 8 through Figure 16. The surface 
mesh of the Stanford bunny model, which is originally 
created by a range-scanning device, is shown in Figure 8. The 
bunny is decimated by lowering the edge length scale 4 and 8 
times in Figure 9 and 10 respectively. Figure 11 represents 
the coarsest possible configuration with the angle threshold 
of 10 degrees. It should be noted here that the decimated 



meshes of Figure 9, 10 and 11 preserve the main features of  
the bunny with quality meshes by reducing the number of 
mesh entities considerably. The effect of angle threshold on 
the decimation algorithm can be seen in Figure 12. The angle 
threshold value for edge collapses is taken as 60 degrees in 
Figure 12. It may be difficult to identify the mesh of Figure 
12 as the bunny of the initial original mesh of Figure 8. The 
geometrical features of the bunny are deteriorating at this 
angle value and if the value is further reduced, we may not be 
able to identify the bunny at all. The same set of comparisons 
is done on the dragon model as  depicted in Figures 13-17. 
The amount of decimation for bunny and dragon models 
corresponding to the Figures 8-11 and Figures 13-16 are 
given in Table 1 and 2, respectively. Maximum compression 
ratio of the models is between 1/10 and 1/20 in terms of the 
number of mesh faces as depicted in Table 1 and Table 2.   

Table 1.  The amount of decimation for the bunny.  

Figure No Vertices Edges Faces 

8 35947 0 69451 

9 4567 10294 6837 

10 2961 5496 3645 

11 2667 4626 3069 

 

Table 2.  The amount of decimation for the dragon. 

Figure No Vertices Edges Faces 

13 100250 0 202520 

14 22166 66555 44464 

15 11364 34099 22811 

16 9115 27345 18306 

 

It is worthwhile to discuss the differences of adjacency 
requests between consecutive algorithms. In fact, as usual, we 
have to make a decision between memory  and CPU time 
since we can delete the adjacencies, namely T(0,2) for the 
completed edge collapse loop and create T(0,1) for vertex 
smoothing and edge swap loop.  In practice, additional 
memory requirement for surface meshes even for large 
(~100K mesh faces) cases is  not drastic (<16Mbyte), and 
sacrificed in favor of the gain in the computational time.  The 
decimation algorithm runs within  a couple of seconds for the 
bunny and less than 10 seconds for the dragon model on a 
700MHz. PC. 

In general, AOMD is designed to provide a flexible basis for 
mesh-model inter-entity adjacencies. All the adjacency 
creations and deletions are buried inside AOMD by keeping 
the usage as simple as possible while performing the most 
complicated adjacency relations correctly and efficiently. The 
power of an efficient database can be measured by the ease of 
use and the amount of work that can be achieved internally. 
We believe that AOMD is the right database design for the 
success of CAD and simulation engineering algorithms 

simply because it lets the algorithms to customize itself.  It is 
hoped that AOMD design concepts will have positive impact 
on meshing and related communities. 

 

 

 

 

Figure 8. Original surface mesh of  the Stanford 
bunny. 
(http:\\www.stanford.edu\data\3Dscanrep\bunny.tar.
gz). The mesh consists of ~36K mesh vertices and  
~70K mesh faces. 

  

 

Figure 9. Stanford bunny is decimated such that its 
original edge length scale is reduced by 4 times. 
The mesh consists of ~4.5K vertices, 10K edges 
and ~6.8K faces. 



 

Figure 10. Stanford bunny is decimated such that 
its original edge length scale is reduced by 8 times. 
The mesh consists of ~3K vertices, 5.4K edges and 
~3.6K faces. 

 

Figure 11. Stanford bunny is decimated as coarse 
as possible with an angle threshold value of 10 
degrees for edge collapses. The mesh consists of 
~2.6K vertices, ~4.6K edges and ~3K faces. 

 

 

 

 

 

 

 

 

Figure 12. Stanford bunny is decimated as coarse 
as possible with an angle threshold value of 60 
degrees for edge collapses. The bunny’s features 
are hardly identifiable. 

 

Figure 13. Original surface mesh of  the dragon 
model.(http:\\www.stanford.edu\data\3Dscanrep\dra
gon). Mesh consists of ~100K mesh vertices and  
~200K mesh faces. 

 

 

 



 

 

 

Figure 14. Dragon is decimated such that its 
original edge length scale is reduced by 4 times. 
The mesh consists of ~22K vertices, 66K edges and 
~44K faces. 

 

Figure 15. Dragon is decimated such that its 
original edge length scale is reduced by 8 times. 
The mesh consists of ~11K vertices, 34K edges and 
~22K faces. 

 

 

 

 

 

 

 

Figure 16. Dragon is decimated as coarse as 
possible with an angle threshold value of 10 
degrees for edge collapses. The mesh consists of 
~9.1K vertices, ~27K edges and ~18K faces. 

 

Figure 17. Dragon is decimated as coarse as 
possible with an angle threshold value of 60 
degrees for edge collapses. (~2.6K vertices, 4.3K 
edges, 2.9K faces) Dragon’s features degrade. 
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