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Abstract

Given a set of points P ⊂ Rd and value ε > 0, an ε-
core-set S ⊂ P has the property that the smallest ball
containing S is within ε of the smallest ball contain-
ing P . This paper shows that any point set has an
ε-core-set of size d1/εe, and this bound is tight in the
worst case. A faster algorithm given here finds an ε-
core-set of size at most 2/ε. These results imply the
existence of small core-sets for solving approximate k-
center clustering and related problems. The sizes of
these core-sets are considerably smaller than the previ-
ously known bounds, and imply faster algorithms; one
such algorithm needs O(dn/ε+(1/ε)5) time to compute
an ε-approximate minimum enclosing ball (1-center) of
n points in d dimensions. A simple gradient-descent
algorithm is also given, for computing the minimum en-
closing ball in O(dn/ε2) time. This algorithm also im-
plies slightly faster algorithms for computing approxi-
mately the smallest radius k-flat fitting a set of points.

1 Introduction

Given a set of points P ⊂ Rd and value ε > 0, an ε-
core-set S ⊂ P has the property that the smallest ball
containing S is within ε of the smallest ball containing
P . That is, if the smallest ball containing S is expanded
by 1+ ε, then the expanded ball contains P . It is a sur-
prising fact that for any given ε there is a core-set whose
size is independent of d, depending only on ε. This is
was shown by Bădoiu et al.[BHI], where applications
to clustering were found, and the results have been ex-
tended to k-flat clustering.[HV].

While the previous result was that a core-set has size
O(1/ε2), where the constant hidden in the O-notation
was at least 64, here we show that there are core-sets
of size at most d1/εe. This matches a lower bound of
d1/εe, as we show simply by considering a regular sim-
plex. Such a bound is of particular interest for k-center
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clustering, where the core-set size appears as an expo-
nent in the running time. A key lemma in the proof of
the upper bound is the fact that the bound for Löwner-
John ellipsoid pairs is tight for simplices.

While the existence proof for these optimal core-sets
is a relatively slow algorithm, we give a fast construc-
tion for a somewhat larger core-set, of size at most 2/ε.
We also give a simple algorithm for computing smallest
balls, that looks something like gradient descent; this al-
gorithm serves to prove a core-set bound, and can also
be used to prove a somewhat better core-set bound for
k-flats. Also, by combining this algorithm with the con-
struction of the core-sets, we can approximate a 1-center
in time O(dn/ε + (1/ε)5).

In the next section, we prove the 2/ε core-set bound
for 1-centers, and then describe the gradient-descent al-
gorithm. Next we prove a lower bound, and then the
matching upper bound. In the conclusion, we state the
resulting bound for the general k-center problem.

2 Core-sets for 1-centers

Given a ball B, let cB and rB denote its center and
radius, respectively. Let B(P ) denote the 1-center of
P , the smallest ball containing it.

We restate the following lemma, proved in [GIV]:

Lemma 2.1 If B(P ) is the minimum enclosing ball of
P ⊂ Rd, then any closed half-space that contains the
center cB(P ) also contains a point of P that is at dis-
tance rB(P ) from cB(P ). It follows that for any point q
at distance K from cB(P ), there is a point q′ of P at

distance at least
√

r2
B(P ) + K2 from q.

The last statement follows from the first by considering
the halfspace bounded by a hyperplane perpendicular
to pcB(P ), and not containing p.

Theorem 2.2 There exists a set S ⊆ P of size 2/ε
such that the distance between cB(S) and any point p of
P is at most (1 + ε)rB(P ).

Proof: We proceed in the same manner as in [BHI]: we
start with an arbitrary point p ∈ P and set S0 = {p}.
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Let ri ≡ rB(Si) and ci ≡ cB(Si). Take the point q ∈ P
which is furthest away from ci and add it to the set:
Si+1 ← Si

⋃
{q}. Repeat this step 2/ε times.

Let c ≡ cB(P ), R ≡ rB(P ), R̂ ≡ (1 + ε)R, λi ≡ ri/R̂,
di ≡ ||c− ci|| and Ki ≡ ||ci+1 − ci||.

If all the points are at distance at most R̂ from ci, then
we are done. Otherwise, there is at least one point q ∈ P
such that ||q−ci|| > R̂. If Ki = 0 then we are done, since
the maximum distance from ci to any point is at most R.
If Ki > 0, then, as mentioned for the lemma above, let
H be the hyperplane that contains ci and is orthogonal
to cici+1. Let H+ be the closed half-space bounded by
H that does not contain ci+1. By Lemma 2.1, there
must be a point p ∈ Si

⋂
H+ such that ||ci − p|| = ri =

λiR̂, and so ||ci+1 − p|| ≥
√

λ2
i R̂

2 + K2
i . Also, by the

triangle inequality the distance from the new center to
q is at least R̂−Ki, so λi+1R̂ ≥ R̂−Ki. By combining
the two inequalities we get

λi+1R̂ ≥ max(R̂−Ki,

√
λ2

i R̂
2 + K2

i ) (1)

We want a lower bound on λi+1 that depends only on
λi. Observe that the bound on λi+1 is smallest with
respect to Ki when

R̂−Ki =
√

λ2
i R̂

2 + K2
i

R̂2 − 2KiR̂ + K2
i = λ2

i R̂
2 + K2

i

Ki =
(1− λ2

i )R̂
2

Using (1) we get that

λi+1 ≥
R̂− (1−λ2

i )R̂
2

R̂
=

1 + λ2
i

2
(2)

Substituting γi = 1
1−λi

in the recurrence (2), we get
γi+1 = γi

1−1/(2γi)
= γi(1 + 1

2γi
+ 1

4γ2
i

. . .) ≥ γi + 1/2.
Since λ0 = 0, we have γ0 = 1, so γi ≥ 1 + i/2 and
λi ≥ 1 − 1

1+i/2 . That is, to get λi ≥ 1
1+ε , it’s enough

that i ≥ 2/ε.

3 Simple algorithm for 1-center

The algorithm is the following: start with an arbitrary
point c1 ∈ P . Repeat the following step 1/ε2 times: at
step i find the point p ∈ P farthest away from ci, and
move toward p as follows: ci+1 ← ci + (p− ci) 1

i+1 .

Claim 3.1 If B(P ) is the 1-center of P with center
cB(P ) and radius rB(P ), then ||cB(P ) − ci|| ≤ rB(P )/

√
i

for all i.

Proof: Proof by induction: Let c ≡ cB(P ). Since we
pick c1 from P , we have that ||c − c1|| ≤ R ≡ rB(P ).
Assume that ||c − ci|| ≤ R/

√
i. If c = ci then in step i

we move away from c by at most R/(i+1) ≤ R/
√

i + 1,
so in that case ||c − ci+1|| ≤ R/

√
i + 1. Otherwise, let

H be the hyperplane orthogonal to cci which contains
c. Let H+ be the closed half-space bounded by H that
does not contain ci and let H− ≡ R \ H+. Note that
the furthest point from ci in B(P )

⋂
H− is at distance

less than
√
||ci − c||2 + R2 and we can conclude that for

every point q ∈ P
⋂

H−, ||ci − q|| <
√
||ci − c||2 + R2.

By Lemma 2.1 there exists a point q ∈ P
⋂

H+ such
that ||ci − q|| ≥

√
||ci − c||2 + R2. This implies that

p ∈ P
⋂

H+. We have two cases to consider:

• If ci+1 ∈ H+, then the distance between ci+1 and
c is maximized when ci = c. Then, as before, we
have ||ci+1 − c|| ≤ R/(i + 1) ≤ R/

√
i + 1. Thus,

||ci+1 − c|| ≤ R/
√

i + 1

• if ci+1 ∈ H−, by moving ci as far away from c and
p on the sphere as close as possible to H−, we only
increase ||ci+1−c||. But in this case, cci+1 is orthog-
onal to cip and we have ||ci+1 − c|| = R2/

√
i

R
√

1+1/i
=

R/
√

i + 1.

4 A Lower Bound for Core-Sets

Theorem 4.1 Given ε > 0, there is a pointset P such
that any ε-core-set of P has size at least d1/εe.

Proof: We can take P to be a regular simplex with
d + 1 vertices, where d ≡ b1/εc. A convenient repre-
sentation for such a simplex has vertices that are the
natural basis vectors e1, e2, . . . , ed+1 of Rd+1, where ei

has the i’th coordinate equal to 1, and the remaining
coordinates zero. Let core-set S contain all the points
of P except one point, say e1. The circumcenter of the
simplex is (1/(d + 1), 1/(d + 1), . . . , 1/(d + 1)), and its
circumradius is

R ≡
√

(1− 1/(d + 1))2 + d/(d + 1)2 =
√

d/(d + 1).

The circumcenter of the remaining points is
(0, 1/d, 1/d, . . . , 1/d), and the distance R′ of that
circumcenter to e1 is

R′ =
√

1 + d/d2 =
√

1 + 1/d.

Thus

R′/R = 1 + 1/d = 1 + 1/ b1/εc ≥ 1 + ε,

with equality only if 1/ε is an integer. The theorem
follows.
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5 Optimal Core-Sets

In this section, we show that there are ε-core-sets of
size at most d1/εe. The basic idea is to show that the
pointset for the lower bound, the set of vertices of a reg-
ular simplex, is the worst case for core-set construction.

We can assume, without loss of generality, that the
input set is the set of vertices of a simplex; this follows
from the condition that the 1-center of P is determined
by a subset P ′ ⊂ P of size at most d + 1: that is,
the minimum enclosing ball of P is bounded by the cir-
cumscribed sphere of P ′. Moreover, the circumcenter
of P ′ is contained in the convex hull of P . That is,
the problem of core-set construction for P is reduced
to the problem of core-set construction for a simplex
T = conv P ′, where the minimum enclosing ball B(T )
is its circumscribed sphere.

Lemma 5.1 Let B′ be the largest ball contained in a
simplex T , such that B′ has the same center as the min-
imum enclosing ball B(T ). Then

rB′ ≤ rB(T )/d.

Proof: We want an upper bound on the ratio
rB′/rB(T ); consider a similar problem related to ellip-
soids: let e(T ) be the maximum volume ellipsoid inside
T , and E(T ) be the minimum volume ellipsoid contain-
ing T . Then plainly

rd
B′

rd
B(T )

≤ Vol(e(T ))
Vol(E(T ))

,

since the volume of a ball B is proportional to rd
B , and

Vol(e(T )) ≥ Vol(B′), while Vol(E(T )) ≤ Vol(B(T )).
Since affine mappings preserve volume ratios, we can
assume that T is a regular simplex when bounding
Vol(e(T ))/ Vol(E(T )). When T is a regular simplex,
the maximum enclosed ellipsoid and minimum enclos-
ing ellipsoid are both balls, and the ratio of the radii
of those balls is 1/d. [H] (In other words, any simplex
shows that the well-known bound for Löwner-John el-
lipsoid pairs is tight.[J]) Thus,

rd
B′

rd
B(T )

≤ Vol(e(T ))
Vol(E(T ))

≤ 1
dd

,

and so
rB′

rB(T )
≤ 1

d
,

as stated.

Lemma 5.2 Any simplex T has a facet F such that
r2
B(F ) ≥ (1− 1/d2)r2

B(T ).

Proof: Consider the ball B′ of the previous lemma.
Let F be a facet of T such that B′ touches F . Then
that point of contact p is the center of B(F ), since p is
the intersection of F with the line through cB(T ) that
is perpendicular to F . Therefore

r2
B(T ) = r2

B′ + r2
B(F ),

and the result follows using the previous lemma.
Next we describe a procedure for constructing a core-

set of size d1/εe.
As noted, we can assume that P is the set of vertices

of a simplex T , such that the circumcenter cB(T ) is in
T . We pick an arbitrary subset P ′ of P of size d1/εe.
(We might also run the algorithm of S2 until a set of
size d1/εe has been picked, but such a step would only
provide a heuristic speedup.) Let R ≡ rB(P ). Repeat
the following until done:

• find the point a of P farthest from cB(P ′);

• if a is no farther than R(1 + ε) from cB(P ′), then
return P ′ as a core-set;

• Let P ′′ be P ∪ {a};

• find the facet F of conv P ′′ with the largest circum-
scribed ball;

• Let P ′ be the vertex set of F .

The first step (adding the farthest point a) will give
an increased radius to B(P ′′), while the second step
(deleting the point P ′′ \ vert F ) makes the set P ′ more
“efficient”.

Theorem 5.3 Any point set P ⊂ Rd has an ε-core-set
of size at most d1/εe.

Proof: Let r be the radius of B(P ′) at the beginning
of an iteration, and let r′ be the radius of B(P ′) if the
iteration completes. We will show that r′ > r.

Note that if r ≥ R(1 − ε2), the iteration will exit
successfully: applying Lemma 2.1 to cB(P ′) and cB(P )

(with the latter in the role of “q”), we obtain that there
is a point q′ ∈ P ′ such that

R2 ≥ ||cB(P ) − q′||2 ≥ r2 + ||cB(P ′) − cB(P )||2,

so that

ε2R2 ≥ R2 − r2 ≥ ||cB(P ′) − cB(P )||2,

implying that cB(P ′) is no farther than εR to cB(P ), and
so cB(P ′) is no farther than R(1 + ε) from any point of

3



P , by the triangle inquality. We have, if the iteration
completes, that

r2 < R(1− ε2) ≤ R̂2 1− ε2

(1 + ε)2

= R̂2 1− ε

1 + ε
, (3)

where R̂ ≡ R(1 + ε).
By reasoning as for the proof of Theorem 2.2,

rB(P ′′) ≥
R̂ + r2/R̂

2
, (4)

and we can use the lower bound of the previous lemma
on the size of B(F ) to obtain

r′ ≥ R̂ + r2/R̂

2

√
1− 1
d1/εe2

,

and so
r′

r
≥ R̂/r + r/R̂

2

√
1− ε2.

The right-hand side is decreasing in r/R̂, and so, since
from (3), r < R̂

√
(1− ε)/(1 + ε), we have

r′

r
>

√
1−ε
1+ε +

√
1+ε
1−ε

2

√
1− ε2 = 1.

Therefore r′ > r when an iteration completes. Since
there are only finitely many possible values for r, we
conclude that the algorithm successfully terminates
with an ε-core-set of size d1/εe.

6 Conclusions
We have proven the existence of small core-sets for
k-center clustering. The new bounds are not only
asymptotically smaller but also the constant is much
smaller that the previous results. These results com-
bined with the techniques from [BHI] and [HV] al-
low us to get faster algorithms for the k-center problem
and j-approximate k-flat respectively. We can solve the
k-center problem in 2O((k log k)/ε)dn while the previous
bound was 2O((k log k)/ε2)dn. Also, the running time for
computing j-approximate k-flat (with or without out-
liers) is dnO(kj/ε5), while the previous known bound was
dnO(kj/ε5 log 1

ε ). By combining the two algorithms above
we get an O(dn/ε + (1/ε)5) time algorithm for comput-
ing 1-center which is faster than the previously fastest
algorithm, with running time O(dn/ε2 +(1/ε)10 log 1

ε ).
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