
Black-box and Non-black-box Lower
Bounds on Assumptions behind IO

Sanjam Garg (Berkeley)
Mohammad Mahmoody (Univ. of Virginia)

Ameer Mohammed (Univ. of Virginia)

Indistinguishability Obfuscation (IO)
[BGIRSVY01, GGHRSW13]

𝐶𝐶1 𝐶𝐶2

IO

IO(𝐶𝐶1)

≡

IO

IO(𝐶𝐶2)?

What primitive do
you want ?

What assumptions give us IO?

5

Picture by [Horváth, L Buttyán 16]

https://scholar.google.com/citations?user=5z-hurIAAAAJ&hl=en&oi=sra

IO
Multilinear Maps
Graded Encoding

Can we use “standard assumptions” ?

Funcional Enc

[CHL+15,HJ15,CGH+15,CLLT15,MSZ16]

[BV15, AJ15]

Thm: Assuming OWFs and that Poly-Hierarchy does not collapse,
none of primitives below imply IO in a `non-black-box’ way:

• Witness encryption
• Predicate encryption [GMM Crypto 17]
• Fully hom encryption

• `Short output’ functional encryption [GMM 17]

Main Results - Informal

Previous Results: [MMNPS16]
Full black-box separation from OWF, CRH, IBE

• Question: Why is the result conditional?
• Answer: If P = NP statistically secure IO for P/poly
 Black-box IO possible by ignoring primitive 𝒫𝒫

Plan

1. Black-box model and its “non-bb extension”

2. Recipe for lower bounds for IO.

3. Separating IO from “short output” FE

Plan

1. Black-box model and its “non-bb extension”

2. Recipe for lower bounds for IO.

3. Separating IO from “short output” FE

Black-Box Framework [IR’89, RTV’04]

𝑃𝑃

𝐼𝐼𝐼𝐼

Natural when 𝑃𝑃 : OWF or TDP

How about self-feeding 𝑃𝑃 ?

𝑃𝑃1

𝐼𝐼𝐼𝐼

Not black-box according to [IR,RTV]
But we do this sometimes..

𝑃𝑃2
Circuit with 𝑃𝑃1 gates

Special subroutine taking circuits as input

𝑃𝑃1

𝐶𝐶

Examples of where this trick is used

•FHE bootstrapping [Gentry’09]

•FE  IO [AJ’16,BV’16]

Eval
Dec

KGen
Enc

Let’s give it a name: extended black-box

• Inspired by [BKSY11, AS15, AS16] who allowed OWF gates
• Extended black-box : all subroutines of primitive are allowed

𝑃𝑃1

𝐼𝐼𝐼𝐼

𝑃𝑃2
Circuit with 𝑎𝑎𝑎𝑎𝑎𝑎 possible gates

Special subroutine taking circuits as input

𝑃𝑃1

𝑃𝑃2𝐶𝐶

Relation to fully BB

• Extended black-box construction from P

• Fully black-box use of extended version of P

𝑃𝑃1

𝐼𝐼𝐼𝐼

𝑃𝑃2
Circuit with 𝑎𝑎𝑎𝑎𝑎𝑎 possible gates

Special subroutine taking circuits as input

𝑃𝑃1

𝑃𝑃2𝐶𝐶

Thm: Assuming OWFs and that Poly-Hierarchy does not collapse,
none of primitives below imply IO in extended black-box way:

• Witness encryption
• Predicate encryption [GMM Crypto 17]
• Fully hom encryption

• `Short output’ functional encryption [GMM 17]

Main Results – Half Formal

Plan

1. Black-box model and its “extensions”

2. Recipe for lower bounds for IO.

3. Separating IO from “short output” FE

General technique: oracle separation

𝑃𝑃 IO𝑂𝑂

𝑂𝑂

Separating Oracle

Break
PO is secure

??

Recipe of attacking IO𝒫𝒫 in idealized model 𝒫𝒫

1. [CKP’15] Compile out 𝒫𝒫 from IO𝒫𝒫 get approx IO

2. [BBF’16] there is always an unbounded attack to approx IO

3. Combine two steps above  poly-query attack to IO𝒫𝒫

Only correct on
99% of inputs

Closer look at compiling out an oracle 𝒫𝒫

IO𝒫𝒫

We are here:

IO in 𝒫𝒫 Model

Our Goal is:

IO′

“approximate IO” in plain model

How to obfuscate?
How to evaluate?

First try: emulate 𝒫𝒫 on demand

• It is “secure” but and might be inconsistent.
• If we reveal to 𝐵𝐵𝐵 for correctness  breaks security.

Evaluation:

IO𝒫𝒫

C

𝐵𝐵(𝑥𝑥)

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝐵𝐵𝐵

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝐵𝐵

x

B’ x correct ?

Obfuscation:

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝐼𝐼𝐼𝐼𝐼

[CKP’15]: revealing useful `simulatable’ queries
IO′(C)

IO𝒫𝒫

1

C

𝐵𝐵

Emulation 2 Learning

𝐵𝐵𝐵𝐵
𝑥𝑥

𝒫𝒫 𝑥𝑥

𝑥𝑥1

𝐵𝐵𝑥𝑥𝑡𝑡

.

.

. 𝐵𝐵𝐵

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

How to obfuscate?

𝑥𝑥
𝒫𝒫 𝑥𝑥

• Security: can be simulated in ideal world of 𝐼𝐼𝑂𝑂𝒫𝒫
so revealing it does not hurt the security of IO

• Challenge: to prove approximate correctness of B’ in plain model

IO′(C)

IO𝒫𝒫

1

C

𝐵𝐵

Emulation 2 Learning

𝐵𝐵𝐵𝐵𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥1

𝐵𝐵𝑥𝑥𝑡𝑡

.

.

.
𝐵𝐵𝐵

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

What is the
challenge ?

Example:
𝒫𝒫 : ROM

• If we compile out random oracle 𝒫𝒫 get separation from OWF, CRH, etc.

• covers queries of 𝐼𝐼𝑂𝑂𝑃𝑃 likely to be asked by 𝐵𝐵′(𝑥𝑥) (with error < 0.01)

• Any other query could be answered at random!

IO′(C)

IO𝒫𝒫

1

C

𝐵𝐵

Emulation 2 Learning

𝐵𝐵𝐵𝐵𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥1

𝐵𝐵𝑥𝑥𝑡𝑡

.

.

.
𝐵𝐵𝐵

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

Plan

1. Black-box model and its “extensions”

2. Recipe for lower bounds for IO. Case of OWFs

3. Separating IO from “short output” FE

Functional Encryption

• Setup 1𝜅𝜅 → (PK, SK)

• Enc PK,𝑚𝑚 → ct

• KeyGen SK,𝑓𝑓 → Key𝑓𝑓

• Dec ct, Key𝑓𝑓 = 𝑓𝑓(𝑥𝑥)

• Security: 𝑓𝑓 𝑚𝑚0 = 𝑓𝑓 𝑚𝑚1  (PK, Key𝑓𝑓 , ct0) ≈ind (PK, Key𝑓𝑓 , ct0)

𝒇𝒇 is arbitrary circuit

Thm: Assuming OWFs and that Poly-Hierarchy does not collapse,
none of primitives below imply IO in `extended black-box’ way:

• `Short output’ functional encryption [GMM 17]

• Short output: 𝑓𝑓 𝑥𝑥 < ct −𝜔𝜔 𝑚𝑚
• LWE-based FE of [GKPVZ13] satisfies this condition
• Positive results of [BV,AJ’15] use long outputs 𝑓𝑓 𝑥𝑥 ≈ 2 ⋅ ct

Extended Functional Encryption

FE = (Setup, KeyGen, Enc, Dec)

• Extended Black-Box use of Functional Encryption:
Construction can use 𝑓𝑓FE with all possible FE gates

• Equivalent to fully black-box use of Extended FE where we
allow issuing keys for 𝑓𝑓FE with all possible FE gates

Recall the goal: compiling out an ideal ext-FE
oracle from any IO construction

IO𝐹𝐹𝐹𝐹

We are here:

IO : idealize 𝐹𝐹𝐹𝐹 Model
for extended Func Enc

Our Goal is:

IO′

“approximate IO” in plain model

Enough to just compile out Dec(⋅) queries:

• Setup 1𝜅𝜅 → (PK, SK)

• Enc PK,𝑚𝑚 → ct

• KeyGen SK,𝑓𝑓 → Key𝑓𝑓

• Dec ct, Key𝑓𝑓 = 𝑓𝑓(𝑥𝑥)

Just a random oracle!

• Challenge:

• Any Dec ct, 𝑓𝑓 query has its own internal queries during 𝑓𝑓FE(𝑚𝑚)

• queries are not simulatable  not OK to be passed to B’

IO′(C)

IO𝒫𝒫

1

C

𝐵𝐵

Emulation 2 Learning

𝐵𝐵𝐵𝐵𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥1

𝐵𝐵𝑥𝑥𝑡𝑡

.

.

.
𝐵𝐵𝐵

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝒫𝒫: ideal ex-FE
Goal: compiling
out Dec queries

• Idea 1: if we know 𝑚𝑚 inside ct = Enc(m) Dec ct, 𝑓𝑓 turns into Dec ct, 𝑓𝑓
because we can run 𝑓𝑓FE(𝑚𝑚) instead

• Idea 2: we can assume every ct is decrypted at most once

• Final goal: show that Dec ct, 𝑓𝑓 does not happen during final exec B’

IO′(C)

IO𝒫𝒫

1

C

𝐵𝐵

Emulation 2 Learning

𝐵𝐵𝐵𝐵𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥1

𝐵𝐵𝑥𝑥𝑡𝑡

.

.

.
𝐵𝐵𝐵

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝒫𝒫: ideal ex-FE
Goal: compiling
out Dec queries

• Final Idea (using short output of FE) :
learner sees a fixed polynomial number of Dec ct, 𝑓𝑓 queries

• By choosing 𝑡𝑡 large enough  no “unknown” ciphertext during final exec

IO′(C)

IO𝒫𝒫

1

C

𝐵𝐵

Emulation 2 Learning

𝐵𝐵𝐵𝐵𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥1

𝐵𝐵𝑥𝑥𝑡𝑡

.

.

.
𝐵𝐵𝐵

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝑥𝑥
𝒫𝒫 𝑥𝑥

𝒫𝒫: ideal ex-FE
Goal: compiling
out Dec queries

Short output  only poly new unknown ciphertexts

• Suppose 𝑓𝑓 𝑥𝑥 ≪ ct − 𝑚𝑚
where ct = Enc 𝑚𝑚 and 𝑓𝑓 𝑥𝑥 = Dec(ct)

• Claim: If we use random 𝑒𝑒𝑒𝑒𝑒𝑒 ∶ 0,1 |𝑚𝑚| → 0,1 |ct|, then any algorithm 𝐴𝐴
with 𝑠𝑠 bits of `advice’ can hit only at most 𝑠𝑠 “unknown” ciphertexts

• Proof:
1. a string ct is a valid ciphertext with probability 2 m − ct

2.  “hitting” a valid ciphertext needs ≈ ct − 𝑚𝑚 bits of `advice’
3. The answer 𝑓𝑓(𝑥𝑥) can only give back 𝑓𝑓 𝑥𝑥 bits of advice
4. If 𝑓𝑓 𝑥𝑥 < ct − 𝑚𝑚  after 𝑡𝑡 steps we run out of advice bits!

Thm: Assuming OWFs and that Poly-Hierarchy does not collapse,
none of primitives below imply IO in `extended black-box’ way:

• Witness encryption
• Predicate encryption [GMM Crypto 17]
• Fully hom encryption

• Short output functional encryption [GMM 17]

Recap

Future Directions?

• Tighter upper and lower bounds for
output length of FE for IO?

• Long output FE from LWE?

• Revisiting classical separation results like OWF ! PKE [IR’89]
even more important in light of recent IBE from DDH [DG’17]

Thanks!

	Black-box and Non-black-box Lower Bounds on Assumptions behind IO
	Indistinguishability Obfuscation (IO) [BGIRSVY01, GGHRSW13]
	Slide Number 3
	What assumptions give us IO?
	Slide Number 5
	Slide Number 6
	Main Results - Informal
	Slide Number 8
	Plan
	Plan
	Black-Box Framework [IR’89, RTV’04]
	How about self-feeding 𝑃 ?
	Examples of where this trick is used
	Let’s give it a name: extended black-box
	Relation to fully BB
	Main Results – Half Formal
	Plan
	General technique: oracle separation
	Recipe of attacking IO 𝒫 in idealized model 𝒫
	Closer look at compiling out an oracle 𝒫
	First try: emulate 𝒫 on demand
	 [CKP’15]: revealing useful `simulatable’ queries
	Slide Number 23
	Example:�𝒫 : ROM
	Plan
	Functional Encryption
	Slide Number 27
	Extended Functional Encryption
	Recall the goal: compiling out an ideal ext-FE oracle from any IO construction
	Enough to just compile out Dec(⋅) queries:
	Slide Number 31
	𝒫: ideal ex-FE�Goal: compiling out Dec queries�
	𝒫: ideal ex-FE�Goal: compiling out Dec queries�
	Short output  only poly new unknown ciphertexts
	Recap
	Future Directions?
	Thanks!

