Internet Attacks and Defenses

Angelos Keromytis
Columbia University
angelos@cs.columbia.edu

Internet

* Decentralized approach -> no control/responsibility

* Open architecture -> anonymous endpoints/spoofing
* End-to-end principle -> security built at the edges

* Automation, scripting, action-at-a-distance

Partial Answer: Firewalls

* Devices examining traffic -> access control decisions

» Divide the world between trusted and not
> Only authorized traffic is allowed to pass

Firewall

Protected Network

Internet

Firewalls

* "Crunchy shell, soft chewy center"

* Originally devised to contain bad network software
problems

e Can operate at various levels in the stack

> Link, network, application

> Packet filtering vs. circuit switching
> Transparent vs. proxies

> Stateful vs. stateless

Operation At Different Layers

Application/proxy level firewalls

L») Lm] L] [= |

ICMP]
Network/packet filtering
firewalls IP

Problems With Firewalls

* All attachments to the public network must be protected

> High degree of connectivity

> Consistency, administration becomes a problem

> Unidentified network attachments can bypass security
> Topologies not as clear-cut as in the past

« Telecommuting, extranets

* Complicated protocols
* End-to-end encryption

* Performance bottleneck
* \Very coarse-grain protection

> Majority of attacks are from insiders

Distributed Firewalls

* Firewalls are convenient for specification and enforcement
of policy

* Keep specification centralized, distribute enforcement

» Each node on the network becomes its own firewall
> Encryption becomes an asset

> Protocol/application information available
> Distributed performance
>~ Anyone can be treated as an outsider

* Firewall policy can be pushed or pulled
* Commercial products available

» Even at the network card level

Current Problems

* Network denial of service (DoS)
* Remote software exploits
* Worms

Denial of Service

e Limited resources
> Bandwidth, memory, CPU cycles

> More abstract: service (e.g., web server)
e Saturate with requests for resource

> Deny service to other users
> Degrade performance, exhaust resources

* Real-life examples

> Yell near someone, pull the plug on a machine, etc.

* Resource accounting problem

Denial of Service (cont.)

* Easier to launch than other (e.g., crypto) attacks

> Often, this is sufficient

* DOS In operating systems
~CPU: "while (1) ;"
> Memory: "while (1) malloc(65537);"
> OS tables: "while (1) fork();"

* Resource allocation per-user/process

> getrusage()
> Sometimes it works

Network DoS

* Over a network
>No need to be a legitimate user

* Action at a distance
> Minimize risk
* Larger volume
> Distributed DoS (DDoS)
* Authentication/encryption do not help by itself

> Firewall becomes easy DoS target

Types of DoS

* Link congestion (forward or reverse)

»Send many large packets or ask for many larger web pages
> Saturate target’s access link

* Router processing capacity

»Send many small packets
> High processing overhead on router
> Also acts as link congestion

* End-host (server) processing capacity

> Ask for "expensive" operations (show complete database)

Currently...

ISp

Source

Source

Simple Protection

* Reserving bandwidth (RSVP/Diffserv)
* Authentication + process/task scheduling by the OS
* Load balancing (multiple links/servers)

* Do not help with congestion attacks
* High-speed Internet core

> Routers cannot spend cycles verifying packets
> Routers close to target can, but links are smaller

Distributed DoS (DDoS)

* Coordinate attack on target from various sources
* Higher aggregate attack bandwidth

e Subvert hosts, use them as "zombies"
» Hard-coded attack, time-based, or control channel
* Worms, email viruses make it easy to launch DDoS

> Fundamentally, it's bad security
* |P address spoofing may be used

> Ingress filtering would help
> Cannot be and is not universally deployed

Defenses Against DDoS

* Data replication (Akamai, CDNS)

> Only works with static content

* Black-holing by ISPs
* Attack prevention

* Trace the source of attacks
* Secure Overlay Services

Attack Prevention

* Better security

* Ingress filtering

> Only helps against spoofing

> A worm that takes over 1M hosts need not spoof
* Apply IDS technigues

> At the edge routers or the core
* Build models of good traffic

> Treat preferentially

e Build models of bad traffic
» Filter or limit such traffic

* Susceptible to probing attacks (guess characteristics of
good traffic and spoof)

Pushback

e Detect attack

* Determine characteristics
> Predicates on packet fields that can be used to filter

* Contact upstream routers and pass them the predicates

> Continue as far as possible
> Potentially all the way to the sources’ edge routers

e Automated mechanism

Pushback (cont.)

» Potentially subject to "gaming"

* Can be used to deny service to innocent hosts, If filters are
not pushed all the way to edge routers

> Spoof from real DoS target

> Network will filter/rate-limit traffic from that host
* Who Is allowed to push filters to an ISP’s routers ?

> Business weapon...

Attack detection

* Determine who the real sources of an attack are
* Contact administrator or use pushback

> Generally, of limited use
» Attack clouds of 10,000 hosts or more

Algebraic approaches to detection

* In-band notification of target

* First approach: probabilistically add router identity in packs
»Use "opaque" fields, e.qg., IP ID field
* Second approach: encode a digital watermark in packet
> Again, use "opaque" fields on packet
* When target receives enough attack packets, router path
can be determined

ICMP Traceback

* Out-of-band notification of target

* Routers probabilistically send ICMP message to
destination of sampled packet

* Include the packet header of sampled packet

*|n a DDoS, target will eventually receive ICMPs from all
routers in the path of the DDoS

Polling-based Traceback

* Source Path Isolation Engine (SPIE)

> Routers "remember" whether packet was recently seen

> Targets query upstream routers to determine who has seen attack
packet

> Apply recursively

* Use Bloom filters to probabilistically remember if packet
was seen

* Considerable hardware support required

Secure Overlay Services (SOS)

* Proactive mechanism using overlay services and
distributed firewalls

> Build filtering perimeter around target
> Permit traffic only from authorized nodes (Secret Serviets)

 Packet filtering faster than crypto
* Identity of SS variable over time

> Authorized users authenticate to any node
> Traffic then relayed to Secret Servlet node

* Assumptions

» Attackers cannot saturate Internet core
> Attackers cannot eavesdrop in arbitrary links

Current Problems

* Network denial of service (DoS)
* Remote software exploits
* Worms

Remote Software Exploits

* Protocols and algorithms may be perfect
> Implementations is another story!
* Majority of vulnerabilities are result of bad code

> Buffer overflows
> Race conditions
> Insufficient/wrong argument validation

e Backdoors, malicious code, viruses

Applicability

* Applications
> Usually privileged ones
* Extensible (operating) systems

* Mobile agents

Buffer Overflows

* Overwrite return pointer in caller’s stack frame

> Arguments on the stack
> Missing bounds checking

* BSS and heap overflows

> Virtual functions, object methods

Race Conditions

* Time Of Check To Time Of Use (TOCTTOU) bugs
* Example of updating /etc/passwd

> Pick "random" filename
> Check that it does not exist in /tmp

« If it does, loop
> If not, open file

> Copy contents of /etc/passwd
> Add new entry
> Copy temp file to /etc/passwd

* Other example: changing symbolic link pointer between
check and use

Bad Argument Validation

* Example: sendmail debug flag

> Given as number in command line
> Used as index in table to set appropriate debug flag

> But: no bounds checking
> And: sendmail running "setuid"

* Result: able to add code (and execute It)
* Example: sprintf format string

e Solutions ?

Better APIs

* Engineering solution

> strcpy/strcat -> strncpy/strncat
> sprintf -> snprintf
>tmpnam -> mkstemp

« Not always possible (thanks to standards)

> Sometimes, new API confusing

* stricpy/stricat

Safe Languages

* Use a language where "bad thoughts" are impossible

* Examples: Java, ML/Caml, Erlang, etc.

> Type safety
> Memory management

* VM may still be unsafe (Java bytecode, JIT, ...)

Proof-Carrying Code

* Input: piece of code, safety policy
* Qutput: safety proof
* Proof generation is computationally expensive

> Verification simpler and less expensive
* Compiler need not be trusted

> Only the verifier

Proof-Carrying Code (2)

* Burden is on the code producer
> Prove once, use everywhere (with same policy)

* Reliance only on the verifier (which is small)

* Tamperproof programs: modifying a program will
> Invalidate the proof

> Make the proof non-applicable to the program
> Proof and program still valid -> good

* Simple programs (packet filters) / policies

> Promising

Software Fault Isolation (SFI)

* Software encapsulation of code
* Partition code into data and code segments

> Prevent self-modifying code

* Code is Inserted before each load, store, and jump
Instruction

> Verify that the target address Is safe

* Done at compiler, link, or run time
> Increases program size, slow down

* "Tricky" for CISC architectures

Code Signing

* Code producer (or trusted compiler) digitally signs code

* User checks signature, verifies code comes from "trusted"
identity

* Generally insufficient

> Implies "binary" trust model
> Malevolent/subverted "trusted" party can cause damage
> Lack of a PKI -> non-scalable approach

e Reasonable as first line of defense

Unix chroot()

* In Unix, (almost) everything is part of the filesystem

* Limit what code/process can do by restricting their view of
the filesystem

* Typically, daemon processes run in their own
mini-filesystem

* Possible to escape, or cause damage even from inside a
chroot’ed environment

* FreeBSD jalil()

» Different virtual machine based on IP address

Capabillities

* Use fine-grained access control for all resources

* Allow users to specify exactly what resources processes
have access to

> Increased administrative complexity
> Must modify existing applications

System Call Monitoring

e Sandbox untrusted applications by monitoring system calls
> Enforce particular policy

* Policy may be uploaded to kernel

* Similar to virus checker

* Have to hand-tune policy for individual applications
> Fine for widely-used daemons, tricky for downloaded code (e.g.,

plug-ins)
e Java security manager approach fundamentally similar

OpenBSD systrace

e System call interposition
* User-level daemon listening to socket to the kernel

> Receives information about monitored process
> Evaluates request based on policy
> Responds to kernel

* Allows manual intervention through GUI
* Policy discovery
* Performance, complexity

Emulators

* Create virtual machine, run individual programs (or
Instances of the operating system) in it

> Increased reliability

* Can take advantage of hardware capabillities for improved
performance

* No explicit policy to be determined
> Similar to chroot/jail
* Good for daemons/services, less so for really practical use

~ Applications tend to become "little OSes" themselves
> Integrated application suites

Compiler Tricks

e StackGuard: inject runtime checks for buffer overflows

e A |ot of other related work
» StackGhost, ProPolice, FormatGuard, etc.

* Not fool-proof
> Heap-based overflows, SQL-injection
* Performance penalty (sometimes significant)

Code Randomization Technigues

* Apply Kerckhoff’s principle on programs

> Key-driven randomization of certain aspects of binary
> Reveal key to OS
> Attacker must mount exhaustive-search attack

e Randomize location/size of stack/activation records
e Randomize location of linked libraries
e Randomize instruction set!

Current Problems

* Network denial of service (DoS)
* Remote software exploits
* Worms

worms

 Self-propagating malicious code
* Infection vector and payload

> So far limited use of malicious payload

e Common vectors
> Remotely-exploitable software faults

* Buffer overflows
> Too-smart e-mail agents/web browsers

> Unsuspecting/naive humans

«"Click to see photo of Pamela Anderson..."

* Propagation speeds exceed human reaction

»"Slammer" (SQL) worm infected all targets in 8 minutes
> Faster worms possible

« "Warhol" worms, hit-list scanning, ...

Protection Mechanisms

* Sandboxing
> Only limits damage to remainder of system
* Connection throttling

* Content filtering
> Slow, error-prone, breaks in presence of encryption

* Anti-worms
> Dangerous, not dependable

* Artificial diversity

» See code randomization
* Automated software patching

* Open problem

sources

* Proceedings of security conferences

>~ |EEE Security & Privacy
* http://www.ieee-security.org/TC/SP-Index.html
>~ USENIX Security

* http://www.usenix.org

»1ISOC NDSS

* http://www.isoc.org/isoc/conferences/ndss

»ACM CCS

* http://www.acm.org/sigs/sigsac/ccs.html

