

 Internet Attacks and Defenses

 Angelos Keromytis
 Columbia University

 angelos@cs.columbia.edu

 Copyright 2003, Angelos D. Keromytis

 Internet

 Decentralized approach -> no control/responsibility

 Open architecture -> anonymous endpoints/spoofing

 End-to-end principle -> security built at the edges

 Automation, scripting, action-at-a-distance

 Partial Answer: Firewalls

 Devices examining traffic -> access control decisions
 Divide the world between trusted and not
 Only authorized traffic is allowed to pass

Internet

Firewall

Protected Network

 Firewalls

 "Crunchy shell, soft chewy center"

 Originally devised to contain bad network software
problems

 Can operate at various levels in the stack
 Link, network, application

 Packet filtering vs. circuit switching

 Transparent vs. proxies

 Stateful vs. stateless

 Operation At Different Layers

Application/proxy level firewalls

FTP HTTP TELNET NFS

UDPTCP

ICMP

IP

Ethernet FDDI PPP

Network/packet filtering
firewalls

Link−layer
firewalls

 Problems With Firewalls

 All attachments to the public network must be protected
 High degree of connectivity

 Consistency, administration becomes a problem

 Unidentified network attachments can bypass security

 Topologies not as clear-cut as in the past
 Telecommuting, extranets

 Complicated protocols

 End-to-end encryption

 Performance bottleneck
 Very coarse-grain protection
 Majority of attacks are from insiders

 Distributed Firewalls

 Firewalls are convenient for specification and enforcement
of policy

 Keep specification centralized, distribute enforcement
 Each node on the network becomes its own firewall
 Encryption becomes an asset

 Protocol/application information available

 Distributed performance

 Anyone can be treated as an outsider

 Firewall policy can be pushed or pulled

 Commercial products available
 Even at the network card level

 Current Problems

 Network denial of service (DoS)

 Remote software exploits	

 Worms

 Denial of Service

 Limited resources
 Bandwidth, memory, CPU cycles

 More abstract: service (e.g., web server)

 Saturate with requests for resource
 Deny service to other users

 Degrade performance, exhaust resources

 Real-life examples
 Yell near someone, pull the plug on a machine, etc.

 Resource accounting problem

 Denial of Service (cont.)

 Easier to launch than other (e.g., crypto) attacks
 Often, this is sufficient

 DoS in operating systems
 CPU: "while (1) ;"

 Memory: "while (1) malloc(65537);"

 OS tables: "while (1) fork();"

 Resource allocation per-user/process
 getrusage()

 Sometimes it works

 Network DoS

 Over a network
 No need to be a legitimate user

 Action at a distance
 Minimize risk
 Larger volume
 Distributed DoS (DDoS)

 Authentication/encryption do not help by itself
 Firewall becomes easy DoS target

 Types of DoS

 Link congestion (forward or reverse)
 Send many large packets or ask for many larger web pages

 Saturate target’s access link

 Router processing capacity
 Send many small packets

 High processing overhead on router

 Also acts as link congestion

 End-host (server) processing capacity
 Ask for "expensive" operations (show complete database)

 Currently...

Congestion

ISP

Core

Target

ISP
ISP

ISP

Source

Source

ISP

Attacker

points

 Simple Protection

 Reserving bandwidth (RSVP/Diffserv)

 Authentication + process/task scheduling by the OS

 Load balancing (multiple links/servers)

 Do not help with congestion attacks

 High-speed Internet core
 Routers cannot spend cycles verifying packets

 Routers close to target can, but links are smaller

 Distributed DoS (DDoS)

 Coordinate attack on target from various sources

 Higher aggregate attack bandwidth

 Subvert hosts, use them as "zombies"
 Hard-coded attack, time-based, or control channel

 Worms, email viruses make it easy to launch DDoS
 Fundamentally, it’s bad security

 IP address spoofing may be used
 Ingress filtering would help

 Cannot be and is not universally deployed

 Defenses Against DDoS

 Data replication (Akamai, CDNs)
 Only works with static content

 Black-holing by ISPs

 Attack prevention

 Trace the source of attacks
 Secure Overlay Services

 Attack Prevention

 Better security

 Ingress filtering
 Only helps against spoofing

 A worm that takes over 1M hosts need not spoof

 Apply IDS techniques
 At the edge routers or the core

 Build models of good traffic
 Treat preferentially

 Build models of bad traffic
 Filter or limit such traffic
 Susceptible to probing attacks (guess characteristics of

good traffic and spoof)

 Pushback

 Detect attack
 Determine characteristics
 Predicates on packet fields that can be used to filter

 Contact upstream routers and pass them the predicates
 Continue as far as possible

 Potentially all the way to the sources’ edge routers

 Automated mechanism

 Pushback (cont.)

 Potentially subject to "gaming"

 Can be used to deny service to innocent hosts, if filters are
not pushed all the way to edge routers

 Spoof from real DoS target

 Network will filter/rate-limit traffic from that host
 Who is allowed to push filters to an ISP’s routers ?
 Business weapon...

 Attack detection

 Determine who the real sources of an attack are
 Contact administrator or use pushback
 Generally, of limited use

 Attack clouds of 10,000 hosts or more

 Algebraic approaches to detection

 In-band notification of target

 First approach: probabilistically add router identity in packet
 Use "opaque" fields, e.g., IP ID field

 Second approach: encode a digital watermark in packet
 Again, use "opaque" fields on packet

 When target receives enough attack packets, router path
can be determined

 ICMP Traceback

 Out-of-band notification of target

 Routers probabilistically send ICMP message to
destination of sampled packet

 Include the packet header of sampled packet

 In a DDoS, target will eventually receive ICMPs from all
routers in the path of the DDoS

 Polling-based Traceback

 Source Path Isolation Engine (SPIE)
 Routers "remember" whether packet was recently seen

 Targets query upstream routers to determine who has seen attack
packet

 Apply recursively

 Use Bloom filters to probabilistically remember if packet
was seen

 Considerable hardware support required

 Secure Overlay Services (SOS)

 Proactive mechanism using overlay services and
distributed firewalls

 Build filtering perimeter around target

 Permit traffic only from authorized nodes (Secret Servlets)
 Packet filtering faster than crypto

 Identity of SS variable over time

 Authorized users authenticate to any node

 Traffic then relayed to Secret Servlet node

 Assumptions
 Attackers cannot saturate Internet core
 Attackers cannot eavesdrop in arbitrary links

 SOS

perimeter

ISP

Core

Target

ISP
ISP

ISP

Source

Source

ISP

Filtering router

Overlay node

Attacker

Defense

 Current Problems

 Network denial of service (DoS)

 Remote software exploits	

 Worms

 Remote Software Exploits

 Protocols and algorithms may be perfect
 Implementations is another story!

 Majority of vulnerabilities are result of bad code
 Buffer overflows
 Race conditions
 Insufficient/wrong argument validation

 Backdoors, malicious code, viruses

 Applicability

 Applications
 Usually privileged ones

 Extensible (operating) systems

 Mobile agents

 Buffer Overflows

 Overwrite return pointer in caller’s stack frame
 Arguments on the stack

 Missing bounds checking

 BSS and heap overflows
 Virtual functions, object methods

 Race Conditions

 Time Of Check To Time Of Use (TOCTTOU) bugs

 Example of updating /etc/passwd
 Pick "random" filename
 Check that it does not exist in /tmp
 If it does, loop

 If not, open file

 Copy contents of /etc/passwd

 Add new entry

 Copy temp file to /etc/passwd

 Other example: changing symbolic link pointer between
check and use

 Bad Argument Validation

 Example: sendmail debug flag
 Given as number in command line
 Used as index in table to set appropriate debug flag

 But: no bounds checking

 And: sendmail running "setuid"

 Result: able to add code (and execute it)

 Example: sprintf format string

 Solutions ?

 Better APIs

 Engineering solution
 strcpy/strcat -> strncpy/strncat

 sprintf -> snprintf

 tmpnam -> mkstemp
 ...
 Not always possible (thanks to standards)
 Sometimes, new API confusing
 strlcpy/strlcat

 Safe Languages

 Use a language where "bad thoughts" are impossible

 Examples: Java, ML/Caml, Erlang, etc.
 Type safety

 Memory management

 VM may still be unsafe (Java bytecode, JIT, ...)

 Proof-Carrying Code

 Input: piece of code, safety policy

 Output: safety proof

 Proof generation is computationally expensive
 Verification simpler and less expensive

 Compiler need not be trusted
 Only the verifier

 Proof-Carrying Code (2)

 Burden is on the code producer
 Prove once, use everywhere (with same policy)

 Reliance only on the verifier (which is small)

 Tamperproof programs: modifying a program will
 Invalidate the proof

 Make the proof non-applicable to the program

 Proof and program still valid -> good

 Simple programs (packet filters) / policies
 Promising

 Software Fault Isolation (SFI)

 Software encapsulation of code

 Partition code into data and code segments
 Prevent self-modifying code

 Code is inserted before each load, store, and jump
instruction

 Verify that the target address is safe

 Done at compiler, link, or run time
 Increases program size, slow down

 "Tricky" for CISC architectures

 Code Signing

 Code producer (or trusted compiler) digitally signs code

 User checks signature, verifies code comes from "trusted"
identity

 Generally insufficient
 Implies "binary" trust model

 Malevolent/subverted "trusted" party can cause damage

 Lack of a PKI -> non-scalable approach

 Reasonable as first line of defense

 Unix chroot()

 In Unix, (almost) everything is part of the filesystem

 Limit what code/process can do by restricting their view of
the filesystem

 Typically, daemon processes run in their own
mini-filesystem

 Possible to escape, or cause damage even from inside a
chroot’ed environment

 FreeBSD jail()
 Different virtual machine based on IP address

 Capabilities

 Use fine-grained access control for all resources

 Allow users to specify exactly what resources processes
have access to

 Increased administrative complexity

 Must modify existing applications

 System Call Monitoring

 Sandbox untrusted applications by monitoring system calls
 Enforce particular policy

 Policy may be uploaded to kernel

 Similar to virus checker
 Have to hand-tune policy for individual applications
 Fine for widely-used daemons, tricky for downloaded code (e.g.,

plug-ins)

 Java security manager approach fundamentally similar

 OpenBSD systrace

 System call interposition

 User-level daemon listening to socket to the kernel
 Receives information about monitored process

 Evaluates request based on policy

 Responds to kernel

 Allows manual intervention through GUI

 Policy discovery

 Performance, complexity

 Emulators

 Create virtual machine, run individual programs (or
instances of the operating system) in it

 Increased reliability

 Can take advantage of hardware capabilities for improved
performance

 No explicit policy to be determined
 Similar to chroot/jail

 Good for daemons/services, less so for really practical use
 Applications tend to become "little OSes" themselves

 Integrated application suites

 Compiler Tricks

 StackGuard: inject runtime checks for buffer overflows

 A lot of other related work
 StackGhost, ProPolice, FormatGuard, etc.

 Not fool-proof
 Heap-based overflows, SQL-injection

 Performance penalty (sometimes significant)

 Code Randomization Techniques

 Apply Kerckhoff’s principle on programs
 Key-driven randomization of certain aspects of binary

 Reveal key to OS

 Attacker must mount exhaustive-search attack

 Randomize location/size of stack/activation records
 Randomize location of linked libraries
 Randomize instruction set!

 Current Problems

 Network denial of service (DoS)

 Remote software exploits	

 Worms

 Worms

 Self-propagating malicious code

 Infection vector and payload
 So far limited use of malicious payload

 Common vectors
 Remotely-exploitable software faults
 Buffer overflows

 Too-smart e-mail agents/web browsers

 Unsuspecting/naive humans
 "Click to see photo of Pamela Anderson..."

 Propagation speeds exceed human reaction
 "Slammer" (SQL) worm infected all targets in 8 minutes

 Faster worms possible
 "Warhol" worms, hit-list scanning, ...

 Protection Mechanisms

 Sandboxing
 Only limits damage to remainder of system

 Connection throttling

 Content filtering
 Slow, error-prone, breaks in presence of encryption

 Anti-worms
 Dangerous, not dependable

 Artificial diversity
 See code randomization
 Automated software patching

 Open problem

 Sources

 Proceedings of security conferences
 IEEE Security & Privacy
 http://www.ieee-security.org/TC/SP-Index.html

 USENIX Security
 http://www.usenix.org

 ISOC NDSS
 http://www.isoc.org/isoc/conferences/ndss

 ACM CCS
 http://www.acm.org/sigs/sigsac/ccs.html

