

Highly-Functional Highly-Scalable

Search on Encrypted Data

Hugo Krawczyk, IBM

Joint work with IBM-UCI teams:

David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit

Jutla, Quan Nguyen, Marcel Rosu, Michael Steiner

DIMACS Big Data Workshop – 12/15/2015

1

Your data is in the cloud.

Do you know where your data is? Do You?

2

The Data-in-the-Cloud Conundrum

 Your data in the cloud: email, backups, financial/medical info, etc.

 Data is visible to the cloud and to anyone with access (legitimate or not)

 At best, data is encrypted “at rest” with the server’s keys and decrypted upon use

 Q: Why not encrypt it with your (data owner) own keys?

 A: Utility, e.g. allow the cloud to search the data (e.g. gmail)

 Can we keep the data encrypted and search it too?

3

Can I eat the cake
and have it too?

© Webweaver.nu

SSE: Searchable Symmetric Encryption

 Owner outsources data to the cloud: Pre-processes data, stores the

processed and encrypted data at the cloud server

 Keeps a small state (e.g. a cryptographic key)

 Later, sends encrypted queries to be searched by the server

 e.g. return all emails with Alice as Recipient, not sent by Bob, and containing
at least two of the words {searchable, symmetric, encryption}

 Goal: Server returns the encrypted matching documents w/o learning

the plaintext query or plaintext data

 Some forms of statistical leakage allowed: data access patterns (e.g. repeated

retrieval, size info), query patterns (e.g., repeated queries), etc.

 Plaintext data/queries never directly exposed, but statistical inference possible

 Protects against break-ins, cloud insiders, even “surveillance attacks”

4

ENCowner(DB)

5

The cloud cannot disclose your data... not even at gun point!

With SSE…

SSE before 2013

 Generic tools: FHE, ORAM, PIR

 very expensive,

 great* security

 *assumes all raw data is ORAM-encrypted, o/w leakage via access patterns

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB’11]

 Practical but significant leakage (see Seny Kamara’s talk)

6

Deterministic and order preserving

7

Name Lastname Age

Elaine Samuels 24

Mary Stein 37

Jim Stein 81

John Sommers 3

Mary Williams 17

John Garcia 43

John Gould 52

Name Lastname Age

Ge5$#u Q*6sh# 223

E89(%y 2@#3Br 340

2Tr^#7 2@#3Br

736

qM@9*h gYv6%t 34

E89(%y X%3oL7 160

qM@9*h wnM7#1 308

qM@9*h 8vy8$Z 475

SSE before 2013

 Generic tools: FHE, ORAM, PIR

 very expensive,

 great* security

 *assumes all raw data is ORAM-encrypted, o/w leakage via access patterns

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB’11]

 Practical but significant leakage (see Seny Kamara’s talk)

 Name of the game: Security-Functionality-Performance

8

Tradeoffs

SSE before 2013 (cont.)

 Dedicated SSE solutions:

 Single-Keyword Search (SKS) [SWP’00, Goh’03, CGKO’06, ChaKam’10, …]

 “privacy optimal“ (if we don’t count encrypted query results as leakage)

 Conjunctions: Very little work

 naive (n single-keyword searches),

 GSW’04: structured-data, LINEAR in DB, communication-pairings tradeoff

 Practicality limitations

 single-keyword only support, limited support for dynamic data

 non-scalable design (esp. adaptive solutions), no I/O support for large DBs

 little experimentation/prototyping

9

This work: Extends SSE in 4 dimensions

1. Functionality (well beyond single-keyword search):

□ Conjunctions □ General Boolean expressions (on keywords)

□ Range queries □ Substring/wildcard queries, phrase queries

Search on structured data (relational DBs) as well as free text

2. Scalability:

 terabyte-scale DB, millions documents/records,

billions indexed document-keyword pairs

 Dynamic data

 Validated implementation, tested by a third party (IARPA, Lincoln Labs)

3. Provability: “imperfect security” but with provable leakage profiles

(establishing upper bounds on leakage), well-defined adversarial models

10

This work: extends SSE in 4 dimensions

4. New application settings and trust models

 Multiple clients: Data owner D outsources Encrypted DB to cloud;

clients run queries at the cloud but only for queries authorized by D

 Leakage to cloud as in basic SSE, client only learns documents matching

authorized queries (policy-based authorization enforced by data owner)

 Blind authorization: As above but authorizer enforces policy without

learning the queried values (we call it “Outsourced Symmetric PIR”)

 Assumes non-collusion between cloud and data owner

 Note: multi-reader, single-writer system (no public key encryption)

11

Example Applications

 Example: Hospital outsources DB, provides access to clients

(doctors, administrators, insurance companies, etc.)

 Policy-based authorization on a client/query-basis

 Hospital doesn’t need to learn the query, only (blindly) enforce policy

 Good for security, privacy, regulations

 Warrant scenario (extended 4-party setting)

 Judge provides warrant for a client C (e.g. FBI) to query a DB

 DB owner enables access but only to queries allowed by judge

 DB owner does not learn warrant content or queries

 Client C (e.g., FBI) gets the matching documents for the allowed queries

and nothing else

12

Obama’s 3rd Party
Solution (phone data)

Large-Scale & Functional Implementation

 Support for arbitrary Boolean queries on all 3 (extended) SSE models

 Validated on synthetic census data: 10Terabytes, 100 million records,

> 100,000,000,000=1011 indexed record-keyword pairs !

 Equivalent to a DB with one record for each American household and 1000

keywords in each record and any boolean query (including textual fields)

 Smaller DB’s: Enron email repository, ClueWeb (>> English Wikipedia)

 Support for range queries, substring/wildcards, phrase queries (5x perf. cost)

 Dynamic data: Supports additions, deletions and modifications of records

13

Scalability

 Preprocessing scales linearly w/ DB size (minutes-days for above DBs)

 Careful data structure, crypto and I/O optimizations

 Can benefit on any improvement on single-keyword search

 Search proportional to # documents matching the least frequent

term: w1 Λ B(w2,…, wn)

 Single round to retrieve matching document indexes (tokens from client

to server, matching indices back; retrieve encrypted documents)

 Query response time: Competitive w/ plaintext queries on indexed DB

14

4 seconds: fname='CHARLIE' AND sex='Female' AND

 NOT (state='NY' OR state='MA' OR state='PA' OR state='NJ)

on 100M records/22Billion index entries US-Census DB

Crypto Design-Engineering Synergy

 Major effort to build I/O-friendly data structures

 Critical decision: Do not design for RAM-resident data structures

(it severely limits scalability)

 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk)

 Need randomized data structures to reduce leakage and need
structured ones to improve I/O performance (locality of access)

 Cryptographic index based on elliptic curve cryptography

(optimized for very fast exponentiation, esp. with same-base)

Typically: I/O and network latency dominate cost

 On a midsize storage system: ~300 IOPS (I/O Operations Per Second)

 ~1000 expon’s per random I/O access (133 w/o same-base optimization)

 Data encryption uses regular symmetric crypto (e.g., AES)
15

500,000/sec, 8 cores, same-
base opt , 100-1000 per IO

Security: The challenge of being imperfect

 Good news: Semantic security for data; no deterministic or order

preserving data encryption

 But: Security-Performance trade-offs  Leakage to server

 Leakage in the form of access patterns to retrieved data and queries

 Data is encrypted but server can see intersections b/w query results (e.g.
identify popular document, intersection b/w results of two ranges, etc.)

 Server learns query function (not values/attrib’s); identifies repeated query

 Additional specific leakage (more complex functions of DB and query history):

 E.g. we leak |Doc(w1)| and in query w1 Λ w2 Λ…Λ wn we leak |Doc(w1 Λ wi)|

 E.g. the server learns if two queries have the same w1 (other terms are hidden)

 Leads to statistical inference based on side information on data

(effect depends on application), masking techniques may help

16

Security: The challenge of being imperfect

 Security proofs: Formal model and precise provable leakage profile

 Leakage profile: provides upper bounds on what’s learned by the attacker

 Security modeling and definitions follow simulation paradigm [CGKO, CK]

 Syntactic leakage vs “semantic leakage”

 Need to assess on an application basis and relative to a-priori knowledge

 For example, formal leakage proven even if attacker can choose data and
queries – but in practice, in this case, semantic leakage will be substantial

 Yet, we expect in many cases to provide meaningful (if imperfect) security
(in particular, relative to property-preserving solutions)

 Detour: Is CryptDB sufficient in practice? Who is the attacker?
Enough to not being the weakest link? What do regulations say?

 17

Security Formalism (adversarial server)

 Based on the simulation-based definitions given for SKS [CGKO,CK].

 There is an attacker E (acting as the server), a simulator Sim and a

leakage function L(DB, queries):

 Real: Attacker E chooses DB and gets the pre-processed encrypted DB,

then interacts with client on adaptively chosen queries

 Ideal: Attacker E chooses DB and queries (adaptively),

E gets Sim(L(DB)) and Sim(L(DB,queries))

A SSE scheme is semantically secure with leakage L if for all

attackers E, there is a simulator Sim such that the views of E in

both experiments are indistinguishable

 Server learns nothing beyond the specified leakage L even if it knows

(and even if it chooses adaptively) the plaintext DB and queries

18

Basic ideas

 Focus on conjunctions w1,…,wn (will be extended to Boolean queries)

1. Choose the least frequent conjunctive term, say w1 (“s-term”),

find encrypted indexes of documents containing w1 (w/o revealing w1)

 Pre-computed encrypted index stored at Eddie (part of EDB):

∀ w, Enc(w)  Enc(ind1), Enc(ind2), … , Enc(indk)

2. For each wj and indi, check if wj appears in indi.

 Uses an “oracle” that given Enc(ind) and Enc(w) says if keyword w

appears in document ind (without revealing ind or w)

 Oracle implemented as a function H(ind,w) and a set Hset stored at the

server of all values H(ind,w) such that w appears in record ind

 Server computes H(ind,w) jointly (and “non-interactively”) with client;

server does not learn w or ind (it is encrypted), client learns nothing

 computation based on DH-based Oblivious PRF

19

Columbia/Bell Labs Solution (Blind Seer)

 Parallel work: Same IARPA project – papers at [Oakland’14, 15]

 Elegant solution based on Bloom filter trees with Garbled Yao for

privacy and authorization

 Conceptually simpler than ours

 Uses MPC techniques (Yao) instead of homomorphic operations

 Less scalable: Bloom filters are inherently random access

DB sizes limited by the size of RAM

 Single client

 Incomparable leakage (e.g., Bloom filter path vs. w1-related leakage)

20

Research Questions

 Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp’n

 Fundamental limits (leakage-computation tradeoffs), e.g.:

 leakage from returned ciphertexts (ORAM helps but at significant cost)

 Frequency of w1 (least frequent term) (reduction from 3SUM)

 “Semantic leakage”: Proving formal leakage is nice but how bad is it

for a given particular application, what forms of masking can help?

 Can we have a theory to help us reason about it (cf. differential privacy)?

 A theory of leakage composition? Guidance for masking techniques

 Attacks welcome! (Also easier to get accepted to conferences )

 Characterizing privacy-friendly plaintext search algorithms/data str.

 A more complete SQL query set (esp. joins)
21

Summary
 Great progress relative to work on single-keyword single-client SSE

 Rich queries: General Boolean queries (structured data, free text),

Plus: range, substring, wildcards, phrase, proximity

 Huge DBs: 10 TB, 100M records, 1011 indexed keyword-document pairs

 EDB creation linear in DB size, queries competitive with MySQL

 Single- and Multi-Client models, policy-based delegation of queries

 Authorization w/o learning query (“Outsourced Symmetric PIR”)

 Privacy, insider security, surveillance protection, warrant enforcement

 Imperfect security: Leakage from access- and query-patterns, but

well defined leakage profiles, and simulation-based adaptive security

 Many challenging theoretical and engineering questions

 Going for practice? Don’t forget simplicity, engineering and… proofs!

22

Join the (multi) Party…

 An exciting & large space to explore with many many research
opportunities!

 … and many practical applications

 Very timely given cloud migration, explosion of private info, and strong

attackers (including surveillance, espionage, mafia, and just hackers…)

 An opportunity for sophisticated crypto in the real world?

23

 Crypto’2013: Boolean search, single client eprint.iacr.org/2013/169

 CCS’2013: Multi-client, Blind authorization eprint.iacr.org/2013/720

 NDSS’2014: Dynamic data, implementation eprint.iacr.org/2014/853

 ESORICS 2015: Range, Substrings, Wildcards, Phrases 2015/927

24

Thanks!

