"
Highly-Functional Highly-Scalable

Search on Encrypted Data

Hugo Krawczyk, IBM

Joint work with IBM-UCT teams:
David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit
Jutla, Quan Nguyen, Marcel Rosu, Michael Steiner

DIMACS Big Data Workshop - 12/15/2015

'_
The Data-in-the-Cloud Conundrum

m Your data in the cloud: email, backups, financial/medical info, etc.

m Datais visible to the cloud and to anyone with access (legitimate or not)

(1 At best, data is encrypted "at rest” with the server's keys and decrypted upon use

m Q: Why not encrypt it with your (data owner) own keys?
m A: Utility, e.g. allow the cloud to search the data (e.g. gmail)

m Can we keep the data encrypted and search it too?

Can I eat the cake
and have it t00?

© Webweaver.nu

" JE
SSE: Searchable Symmetric Encryption

m Owner outsources data to the cloud: Pre-processes data, stores the
processed and encrypted data at the cloud server

Keeps a small state (e.g. a cryptographic key)

Later, sends encrypted queries to be searched by the server

m e.g. return all emails with Alice as Recipient, not sent by Bob, and containing
at least two of the words {searchable, symmeftric, encryption}

m Goal: Server returns the encrypted matching documents w/o learning
the plaintext query or plaintext data

Some forms of statistical leakage allowed: data access patterns (e.g. repeated
retrieval, size info), query patterns (e.g., repeated queries), etc.

m Plaintext data/queries never directly exposed, but statistical inference possible

m Protects against break-ins, cloud insiders, even "surveillance attacks”

" N
With SSE...

The cloud cannot disclose your data... not even at gun point!

TINNG ¢ R TS ! WV 1u
= 1100100101 ﬁu 1) \(
WLLTREEDT Y WIVIUW

| ‘
010010010100 00100 W)
o
| 01010
Fqu

Seen » N AR -
v W\
A1 I\ "
) 01011100101
) 000
|

10100010101110010 0001001001010010¢

11001010001001001 100100001110010¢

001001010010 00100 tﬂwn ()
010100010101110010100 (k

SAVIU 00001 1100 1001010001010 11001010001001001010

'_
SSE before 2013

m Generic tools: FHE, ORAM, PIR

[very expensive,

[great™ security

= *assumes a// raw data is ORAM-encrypted, o/w leakage via access patterns

m Deterministic + order preserving encryption: e.g. CryptDB [PRZB'11]

[Practical but significant leakage (see Seny Kamara's talk)

Deterministic and order preserving

Elaine

Jim

John

John

John

Samuels

Stein

Stein

Sommers

Williams

Garcia

Gould

24

37

81

17

43

52

Geb$#u

2Tr #7

Q*6sh#

2@#3Br

2@H3Br

gM@9*h

gM@9*h

gM@9*h

gyV6 7ot
X%30L7

wnM7#1

8vy8$Z

223

340

736

34

160

308

475

'_
SSE before 2013

m Generic tools: FHE, ORAM, PIR

[very expensive,

[great™ security

= *assumes a// raw data is ORAM-encrypted, o/w leakage via access patterns

m Deterministic + order preserving encryption: e.g. CryptDB [PRZB'11]

[Practical but significant leakage (see Seny Kamara's talk)

m Name of the game: Security-Functionality-Performance

Tradeoffs

"
SSE before 2013 (cont.)

m Dedicated SSE solutions:
1 Single-Keyword Search (SKS) [SWP'00, Goh'03, C6GKO'06, ChaKam'10, ...]

= "privacy optimal” (if we don't count encrypted query results as leakage)

01 Conjunctions: Very little work

= naive (n single-keyword searches),

s GSW'04: structured-data, LINEAR in DB, communication-pairings tradeoff
m Practicality limitations
[single-keyword only support, limited support for dynamic data
[non-scalable design (esp. adaptive solutions), no I/O support for large DBs

0 little experimentation/prototyping

= _
This work: Extends SSE in 4 dimensions

1. Functionality (well beyond single-keyword search):

O Conjunctions 0 General Boolean expressions (on keywords)
0 Range queries o Substring/wildcard queries, phrase queries

Search on structured data (relational DBs) as well as free text

2. Scalability:

[terabyte-scale DB, millions documents/records,
billions indexed document-keyword pairs

0 Dynamic data

[Validated implementation, tested by a third party (TIARPA, Lincoln Labs)

3. Provability: "imperfect security” but with provable leakage profiles
(establishing upper bounds on leakage), well-defined adversarial models

10

"

4.

This work: extends SSE in 4 dimensions

New application settings and trust models

Multiple clients: Data owner D outsources Encrypted DB to cloud;

clients run queries at the cloud but only for gueries authorized by D

[Leakage to cloud as in basic SSE, client only learns documents matching
authorized queries (policy-based authorization enforced by data owner)

Blind authorization: As above but authorizer enforces policy without

learning the queried values (we call it " Outsourced Symmetric PIR")

1 Assumes hon-collusion between cloud and data owner

Note: multi-reader, single-writer system (no public key encryption)

11

"
Example Applications

m Example: Hospital outsources DB, provides access to clients
(doctors, administrators, insurance companies, etc.)

[Policy-based authorization on a client/query-basis

1 Hospital doesn't need to learn the query, only (blindly) enforce policy

m Good for security, privacy, regulations

. . Obama's 3" Party
m Warrant scenario (extended 4-party setting) solution (phone data)

1 Judge provides warrant for a client C (e.g. FBI) to query a DB
1 DB owner enables access but only to queries allowed by judge
1 DB owner does not learn warrant content or queries

01 Client C (e.g., FBI) gets the matching documents for the allowed queries
and nothing else

12

"

Large-Scale & Functional Implementation

m Support for arbitrary Boolean queries on all 3 (extended) SSE models

m Validated on synthetic census data: 10Terabytes, 100 million records,
> 100,000,000,000=10" indexed record-keyword pairs |

1 Equivalent to a DB with one record for each American household and 1000

keywords in each record and any boolean query (including textual fields)
01 Smaller DB's: Enron email repository, ClueWeb (>> English Wikipedia)
01 Support for range queries, substring/wildcards, phrase queries (5x perf. cost)

01 Dynamic data: Supports additions, deletions and modifications of records

13

"
Scalability

m Preprocessing scales linearly w/ DB size (minutes-days for above DBs)

m Careful data structure, crypto and I/0 optimizations

m Can benefit on any improvement on single-keyword search

m Search proportional to # documents matching the least frequent
term: w; ABw,,..., w,)

[Single round to retrieve matching document indexes (tokens from client
to server, matching indices back; retrieve encrypted documents)

1 Query response time: Competitive w/ plaintext queries on indexed DB

4 seconds: fname='CHARLIE' AND sex='Female' AND
NOT (state='NY' OR state="MA' OR state='"PA"' OR state="NJ)
on 100M records/22Billion index entries US-Census DB

14

"
Crypto Design-Engineering Synergy

m Major effort to build I/O-friendly data structures

0 Critical decision: Do not design for RAM-resident data structures
(it severely /imits scalability)

1 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk)

» Need randomized data structures to reduce leakage and need
structured ones to improve I/0 performance (locality of access)

m Cryptographic index based on elliptic curve cryptography
(optimized for very fast exponentiation, esp. with same-base)

Typically: I/0O and network latency dominate cost 500000/sec, 8 cores, same-

base opt , 100-1000 per IO
1 On a midsize storage system: ~300 IOPS (I/0 Operations Per Second)

1 ~1000 expon's per random I/O access (133 w/o same-base optimization)

m Data encryption uses regular symmetric crypto (e.g., AES)
15

"
Security: The challenge of being imperfect

m (Good news: Semantic security for data; no deterministic or order
preserving data encryption

m But: Security-Performance trade-offs - Leakage to server

[Leakage in the form of access patterns to retrieved data and queries

= Data is encrypted but server can see intersections b/w query results (e.g.
identify popular document, intersection b/w results of fwo ranges, etc.)

m Server learns query function (not values/attrib's); identifies repeated query

1 Additional specific leakage (more complex functions of DB and query history):

m E.g. we leak |Doc(w;)| and in query w; A w, A..Aw, we leak |Doc(w; A w))

m E.g. the server learns if two queries have the same w; (other terms are hidden)

m |eads to statistical inference based on side information on data

(effect depends on application), masking techniques may help
16

" J
Security: The challenge of being imperfect

m Security proofs: Formal model and precise provable leakage profile
Leakage profile: provides upper bounds on what's learned by the attacker
Security modeling and definitions follow simulation paradigm [CGKO, CK]

m Syntactic leakage vs "semantic leakage”

Need to assess on an application basis and relative to a-priori knowledge

For example, formal leakage proven even if attacker can choose data and
queries - but in practice, in this case, semantic leakage will be substantial

Yet, we expect in many cases to provide meaningful (if imperfect) security
(in particular, relative to property-preserving solutions)

m Detour: Is CryptDB sufficient in practice? Who is the attacker?
Enough to not being the weakest link? What do requlations say?

17

"
Security Formalism (adversarial server)

m Based on the simulation-based definitions given for SKS [CGKO,CK].

m There is an attacker E (acting as the server), a simulator Sim and a
leakage function (DB, queries):

(1 Real: Attacker E chooses DB and gets the pre-processed encrypted DB,
then interacts with client on adaptively chosen queries

01 TIdeal: Attacker E chooses DB and queries (adaptively),
E gets Sim(L(DB)) and Sim(L(DB queries))

A SSE scheme is semantically secure with leakage L if for all
attackers E, there is a simulator Sim such that the views of E in
both experiments are indistinguishable

= Server learns nothing beyond the specified leakage L even if it knows
(and even if it chooses adaptively) the plaintext DB and queries

18

"

Basic ideas

m Focus on conjunctions wy,...w, (will be extended to Boolean queries)

1.

Choose the /east freguent conjunctive term, say w; ("s-term"),
find encrypted indexes of documents containing w; (w/o revealing w,)

1 Pre-computed encrypted index stored at Eddie (part of EDB):
VY w, Enc(w) > Enc(ind,), Enc(ind,), ..., Enc(ind,)

For each w; and ind;, check if w; appears in ind..

1 Uses an "oracle” that given Enc(ind) and Enc(w) says if keyword w
appears in document ind (without revealing ind or w)

1 Oracle implemented as a function H(ind,w) and a set Hset stored at the
server of all values H(ind,w) such that w appears in record ind

01 Server computes H(ind,w) jointly (and "non-interactively”) with client;
server does not learn w or ind (it is encrypted), client learns nothing

= computation based on DH-based Oblivious PRF
19

"
Columbia/Bell Labs Solution (Blind Seer)

m Parallel work: Same TARPA project - papers at [Oakland'14, 15]

m Elegant solution based on Bloom filter trees with Garbled Yao for
privacy and authorization

01 Conceptually simpler than ours
1 Uses MPC techniques (Yao) instead of homomorphic operations

[Less scalable: Bloom filters are /nherently random access
~>DB sizes limited by the size of RAM

01 Single client

[Incomparable leakage (e.g., Bloom filter path vs. w;-related leakage)

20

"
Research Questions

m Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp'n

m Fundamental limits (leakage-computation tradeoffs), e.q.:
[leakage from returned ciphertexts (ORAM helps but at significant cost)

1 Frequency of w; (least frequent term) (reduction from 3SUM)

m "Semantic leakage": Proving formal leakage is nice but how bad is it
for a given particular application, what forms of masking can help?

[1 Can we have a theory to help us reason about it (cf. differential privacy)?
1 A theory of leakage composition? Guidance for masking techniques

1 Attacks welcomel (Also easier to get accepted to conferences ©)
m Characterizing privacy-friendly plaintext search algorithms/data str.

m A more complete SQL query set (esp. joins)
21

"
Summary

m Great progress relative to work on single-keyword single-client SSE

[Rich queries: General Boolean queries (structured data, free text),
Plus: range, substring, wildcards, phrase, proximity

1 Huge DBs: 10 TB, 100M records, 10! indexed keyword-document pairs

m EDB creation linear in DB size, queries competitive with MySQL

01 Single- and Multi-Client models, policy-based delegation of queries
1 Authorization w/o learning query ("Outsourced Symmetric PIR")

O Privacy, insider security, surveillance protection, warrant enforcement

m Imperfect security: Leakage from access- and query-patterns, but
well defined leakage profiles, and simulation-based adaptive security

m Many challenging theoretical and engineering questions

1 Going for practice? Don't forget simplicity, engineering and... proofs!
22

" A
Join the (multi) Party...

m Anexciting & large space to explore with many many research
opportunities!

m ... and many practical applications

Very timely given cloud migration, explosion of private info, and strong
attackers (including surveillance, espionage, mafia, and just hackers...)

m An opportunity for sophisticated crypto in the real world?

23

Thanks!

Crypto'2013: Boolean search, single client eprint.iacr.org/2013/169

CCS'2013: Multi-client, Blind authorization eprint.iacr.org/2013/720

NDSS'2014: Dynamic data, implementation eprint.iacr.org/2014/853

ESORICS 2015: Range, Substrings, Wildcards, Phrases

2015/927

24

