
 

 

Highly-Functional Highly-Scalable      

Search on Encrypted Data 

 

Hugo Krawczyk, IBM 

 

Joint work with IBM-UCI teams:                                                

David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit 

Jutla, Quan Nguyen, Marcel Rosu, Michael Steiner 

 

DIMACS Big Data Workshop – 12/15/2015 

 

 

1 



Your data is in the cloud. 
 

Do you know where your data is? Do You? 
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The Data-in-the-Cloud Conundrum 

 Your data in the cloud: email, backups, financial/medical info, etc. 

 Data is visible to the cloud and to anyone with access (legitimate or not) 

 At best, data is encrypted “at rest” with the server’s keys and decrypted upon use 

 

 Q: Why not encrypt it with your (data owner) own keys? 

 A: Utility, e.g. allow the cloud to search the data (e.g. gmail) 

 Can we keep the data encrypted and search it too? 
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Can I eat the cake 
and have it too? 

© Webweaver.nu  



SSE: Searchable Symmetric Encryption 

 Owner outsources data to the cloud: Pre-processes data,  stores the 

processed and encrypted data at the cloud server  

 Keeps a small state (e.g. a cryptographic key) 

 Later, sends encrypted queries to be searched by the server  

 e.g. return all emails with Alice as Recipient, not sent by Bob,  and containing    
at least two of the words {searchable, symmetric, encryption} 

 Goal: Server returns the encrypted matching documents w/o learning 

the plaintext query or plaintext data 

 Some forms of statistical leakage allowed:  data access patterns (e.g. repeated 

retrieval, size info), query patterns (e.g., repeated queries),  etc. 

 Plaintext data/queries never directly exposed, but statistical inference possible 

 Protects against break-ins, cloud insiders, even “surveillance attacks” 
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ENCowner(DB) 
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The cloud cannot disclose your data...    not even at gun point! 

With SSE… 



SSE before 2013 

 Generic tools: FHE, ORAM, PIR  

 very expensive,  

 great* security  

 *assumes all  raw data is ORAM-encrypted, o/w leakage via access patterns 

 

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB’11] 

 Practical but significant leakage (see Seny Kamara’s talk) 
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Deterministic and order preserving 
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Name Lastname Age 

Elaine Samuels 24 
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John Sommers 3 
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John Garcia 43 

John Gould 52 
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SSE before 2013 

 Generic tools: FHE, ORAM, PIR  

 very expensive,  

 great* security  

 *assumes all  raw data is ORAM-encrypted, o/w leakage via access patterns 

 

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB’11] 

 Practical but significant leakage (see Seny Kamara’s talk) 

 

 Name of the game: Security-Functionality-Performance 
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Tradeoffs 



SSE before 2013 (cont.) 

 Dedicated SSE solutions:  

 Single-Keyword Search (SKS)  [SWP’00, Goh’03, CGKO’06, ChaKam’10, …] 

 “privacy optimal“ (if we don’t count encrypted query results as leakage) 

 Conjunctions: Very little work 

 naive (n single-keyword searches),  

 GSW’04: structured-data, LINEAR in DB, communication-pairings tradeoff 

 Practicality limitations 

 single-keyword only support, limited support for dynamic data 

 non-scalable design (esp. adaptive solutions), no I/O support for large DBs 

 little experimentation/prototyping 
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This work: Extends SSE in 4 dimensions 

1. Functionality (well beyond single-keyword search): 

□ Conjunctions       □ General Boolean expressions (on keywords)                   

□ Range queries      □ Substring/wildcard queries, phrase queries 

Search on structured data (relational DBs) as well as free text 

2. Scalability: 

 terabyte-scale DB,  millions documents/records,                                          

billions indexed document-keyword pairs   

 Dynamic data 

 Validated implementation, tested by a third party (IARPA, Lincoln Labs) 

3. Provability:  “imperfect security” but with provable leakage profiles 

(establishing upper bounds on leakage), well-defined adversarial models 
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This work: extends SSE in 4 dimensions 

4.    New application settings and trust models 

 Multiple clients: Data owner D outsources Encrypted DB to cloud;     

clients run queries at the cloud but only for queries authorized by D 

 Leakage to cloud as in basic SSE, client only learns documents matching 

authorized queries (policy-based authorization enforced by data owner) 

 Blind authorization: As above but authorizer enforces policy without 

learning the queried values (we call it “Outsourced Symmetric PIR”) 

 Assumes non-collusion between cloud and data owner 

 

 Note: multi-reader, single-writer system (no public key encryption) 
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Example Applications 

 Example: Hospital outsources DB, provides access to clients   

(doctors, administrators, insurance companies, etc.) 

 Policy-based authorization on a client/query-basis 

 Hospital doesn’t need to learn the query, only (blindly) enforce policy 

 Good for security, privacy, regulations 

 Warrant scenario (extended 4-party setting) 

 Judge provides warrant for a client C (e.g. FBI) to query a DB  

 DB owner enables access but only to queries allowed by judge 

 DB owner does not learn warrant content or queries 

 Client C (e.g., FBI) gets the matching documents for the allowed queries 

and  nothing else 
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Obama’s 3rd Party 
Solution (phone data) 



Large-Scale & Functional Implementation 

 Support for arbitrary Boolean queries on all 3 (extended) SSE models 

 Validated on synthetic census data: 10Terabytes, 100 million records,                  

> 100,000,000,000=1011 indexed record-keyword pairs ! 

 Equivalent to a DB with one record for each American household and 1000 

keywords  in each record and any boolean query (including textual fields) 

 Smaller DB’s: Enron email repository, ClueWeb (>> English Wikipedia) 

 Support for range queries, substring/wildcards, phrase queries (5x perf. cost) 

 Dynamic data: Supports additions, deletions and modifications of records 
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Scalability 

 Preprocessing scales linearly w/ DB size (minutes-days for above DBs) 

 Careful data structure, crypto and I/O optimizations 

 Can benefit on any improvement on single-keyword search 

 Search proportional to # documents matching the least frequent 

term: w1 Λ B(w2,…, wn) 

 Single round to retrieve matching document indexes  (tokens from client 

to server, matching indices back; retrieve encrypted documents) 

 Query response time: Competitive w/ plaintext queries on indexed DB 
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4 seconds:  fname='CHARLIE' AND sex='Female' AND                                                

          NOT (state='NY' OR state='MA' OR state='PA' OR state='NJ)              

on 100M records/22Billion index entries US-Census DB 



Crypto Design-Engineering Synergy 

 Major effort to build I/O-friendly data structures  

 Critical decision: Do not design for RAM-resident data structures          

(it severely limits scalability) 

 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk) 

 Need randomized data structures to reduce leakage and need 
structured ones to improve I/O performance (locality of access) 

 Cryptographic index based on elliptic curve cryptography      

(optimized for very fast exponentiation, esp. with same-base)                        

Typically: I/O and network latency dominate cost   

 On a midsize storage system: ~300 IOPS (I/O Operations Per Second) 

 ~1000 expon’s per random I/O access (133 w/o same-base optimization) 

 Data encryption uses regular symmetric crypto (e.g., AES) 
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500,000/sec, 8 cores, same-
base opt , 100-1000 per IO  



Security: The challenge of being imperfect 

 
 Good news: Semantic security for data; no deterministic or order 

preserving data encryption 

 But: Security-Performance trade-offs    Leakage to server  

 Leakage in the form of access patterns to retrieved data and queries 

 Data is encrypted but server can see intersections b/w query results (e.g. 
identify popular document, intersection b/w results of two ranges, etc.) 

 Server learns query function (not values/attrib’s); identifies repeated query  

 Additional specific leakage (more complex functions of DB and query history): 

 E.g. we leak |Doc(w1)| and in query w1 Λ w2 Λ…Λ wn  we leak |Doc(w1 Λ wi)| 

 E.g. the server learns if two queries have the same w1 (other terms are hidden) 

 Leads to statistical inference based on side information on data 

(effect  depends on application), masking techniques may help 
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Security: The challenge of being imperfect 

 
 Security proofs: Formal model and precise provable leakage profile 

 Leakage profile: provides upper bounds on what’s learned by the  attacker   

 Security modeling and definitions follow simulation paradigm [CGKO, CK] 

 Syntactic leakage vs “semantic leakage”  

 Need to assess on an application basis and relative to a-priori knowledge  

 For example, formal leakage proven even if attacker can choose data and 
queries – but in practice, in this case, semantic leakage will be substantial 

 Yet, we expect in many cases to provide meaningful (if imperfect) security    
(in particular, relative to property-preserving solutions) 

 

 Detour: Is CryptDB sufficient in practice? Who is the attacker?    
Enough to not being the weakest link?  What do regulations say? 
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Security Formalism (adversarial server) 

 Based on the simulation-based definitions given for SKS [CGKO,CK].  

 There is an attacker E (acting as the server), a simulator Sim and a 

leakage function L(DB, queries): 

 Real: Attacker E chooses DB and gets the pre-processed encrypted DB, 

then interacts with client on adaptively chosen queries  

 Ideal: Attacker E chooses DB and queries (adaptively),                               

E gets Sim(L(DB)) and Sim(L(DB,queries)) 

A SSE scheme is semantically secure with leakage L if for all 

attackers E,  there is a simulator Sim such that the views of E in 

both experiments are indistinguishable 

 Server learns nothing beyond the specified leakage L even if it knows 

(and even if it chooses adaptively) the plaintext DB and queries 
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Basic ideas 

 Focus on conjunctions w1,…,wn  (will be extended to Boolean queries)  

1. Choose the least frequent conjunctive term, say w1 (“s-term”),     

find encrypted indexes of documents containing w1  (w/o revealing w1) 

 Pre-computed encrypted index stored at Eddie (part of EDB):                      

∀ w, Enc(w)  Enc(ind1), Enc(ind2), … , Enc(indk) 

2. For each wj and indi, check if wj appears in indi.                 

 Uses an “oracle” that given Enc(ind)  and  Enc(w) says if keyword w 

appears in document ind (without revealing ind or w) 

 Oracle implemented as a function H(ind,w) and a set Hset stored at the 

server of all values H(ind,w) such that w appears in record ind 

 Server computes H(ind,w) jointly (and “non-interactively”) with client; 

server does not learn w or ind (it is encrypted), client learns nothing  

 computation based on DH-based Oblivious PRF  
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Columbia/Bell Labs Solution (Blind Seer) 

 Parallel work: Same IARPA project – papers at [Oakland’14, 15] 

 Elegant solution based on Bloom filter trees with Garbled Yao for 

privacy and authorization 

 Conceptually simpler than ours  

 Uses MPC techniques (Yao) instead of homomorphic operations 

 Less scalable: Bloom filters are inherently random access                   

DB sizes limited by the size of RAM 

 Single client 

 Incomparable leakage (e.g., Bloom filter path vs. w1-related leakage) 
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Research Questions 

 Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp’n 

 Fundamental limits (leakage-computation tradeoffs), e.g.: 

 leakage from returned ciphertexts (ORAM helps but at significant cost) 

 Frequency of w1 (least frequent term)   (reduction from 3SUM) 

 “Semantic leakage”: Proving formal leakage is nice but how bad is it 

for a given particular application, what forms of masking can help? 

 Can we have a theory to help us reason about it (cf. differential privacy)? 

 A theory of leakage composition? Guidance for masking techniques 

 Attacks welcome!  (Also easier to get accepted to conferences  ) 

 Characterizing privacy-friendly  plaintext search algorithms/data str.  

 A more complete SQL query set (esp. joins) 
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Summary 
 Great progress relative to work on single-keyword single-client SSE 

 Rich queries: General Boolean queries (structured data, free text),      

Plus: range, substring, wildcards, phrase, proximity 

 Huge DBs: 10 TB, 100M records, 1011 indexed keyword-document pairs 

 EDB creation linear in DB size, queries competitive with MySQL 

 Single- and Multi-Client models, policy-based delegation of queries 

 Authorization w/o learning query (“Outsourced Symmetric PIR”) 

 Privacy, insider security, surveillance protection, warrant enforcement 

 Imperfect security: Leakage from access- and query-patterns, but 

well defined leakage profiles, and simulation-based adaptive security 

 Many challenging theoretical and engineering questions 

 Going for practice? Don’t forget simplicity, engineering and… proofs! 
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Join the (multi) Party… 

 An exciting & large space to explore with many many research 
opportunities!  

 … and many practical applications  

 Very timely given cloud migration, explosion of private info, and strong 

attackers (including surveillance, espionage, mafia, and just hackers…) 

 An opportunity for sophisticated crypto in the real world? 
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 Crypto’2013: Boolean search, single client    eprint.iacr.org/2013/169 

 CCS’2013: Multi-client, Blind authorization   eprint.iacr.org/2013/720 

 NDSS’2014: Dynamic data, implementation   eprint.iacr.org/2014/853 

 ESORICS 2015: Range, Substrings, Wildcards, Phrases     2015/927 
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Thanks! 


