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The Data-in-the-Cloud Conundrum

m Your data in the cloud: email, backups, financial/medical info, etc.

m Datais visible to the cloud and to anyone with access (legitimate or not)

(1 At best, data is encrypted "at rest” with the server's keys and decrypted upon use

m Q: Why not encrypt it with your (data owner) own keys?
m A: Utility, e.g. allow the cloud to search the data (e.g. gmail)

m Can we keep the data encrypted and search it too?

Can I eat the cake
and have it t00?

© Webweaver.nu
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SSE: Searchable Symmetric Encryption

m Owner outsources data to the cloud: Pre-processes data, stores the
processed and encrypted data at the cloud server

Keeps a small state (e.g. a cryptographic key)

Later, sends encrypted queries to be searched by the server

m e.g. return all emails with Alice as Recipient, not sent by Bob, and containing
at least two of the words {searchable, symmeftric, encryption}

m Goal: Server returns the encrypted matching documents w/o learning
the plaintext query or plaintext data

Some forms of statistical leakage allowed: data access patterns (e.g. repeated
retrieval, size info), query patterns (e.g., repeated queries), etc.

m Plaintext data/queries never directly exposed, but statistical inference possible

m Protects against break-ins, cloud insiders, even "surveillance attacks”
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With SSE...

The cloud cannot disclose your data... not even at gun point!
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SSE before 2013

m Generic tools: FHE, ORAM, PIR

[ very expensive,

[ great™ security

= *assumes a// raw data is ORAM-encrypted, o/w leakage via access patterns

m Deterministic + order preserving encryption: e.g. CryptDB [PRZB'11]

[ Practical but significant leakage (see Seny Kamara's talk)



Deterministic and order preserving
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'_
SSE before 2013

m Generic tools: FHE, ORAM, PIR

[ very expensive,

[ great™ security

= *assumes a// raw data is ORAM-encrypted, o/w leakage via access patterns

m Deterministic + order preserving encryption: e.g. CryptDB [PRZB'11]

[ Practical but significant leakage (see Seny Kamara's talk)

m Name of the game: Security-Functionality-Performance

Tradeoffs
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SSE before 2013 (cont.)

m Dedicated SSE solutions:
1 Single-Keyword Search (SKS) [SWP'00, Goh'03, C6GKO'06, ChaKam'10, ...]

= "privacy optimal” (if we don't count encrypted query results as leakage)

01 Conjunctions: Very little work

= naive (n single-keyword searches),

s GSW'04: structured-data, LINEAR in DB, communication-pairings tradeoff
m Practicality limitations
[ single-keyword only support, limited support for dynamic data
[ non-scalable design (esp. adaptive solutions), no I/O support for large DBs

0 little experimentation/prototyping
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This work: Extends SSE in 4 dimensions

1. Functionality (well beyond single-keyword search):

O Conjunctions 0 General Boolean expressions (on keywords)
0 Range queries o Substring/wildcard queries, phrase queries

Search on structured data (relational DBs) as well as free text

2. Scalability:

[ terabyte-scale DB, millions documents/records,
billions indexed document-keyword pairs

0 Dynamic data

[ Validated implementation, tested by a third party (TIARPA, Lincoln Labs)

3. Provability: "imperfect security” but with provable leakage profiles
(establishing upper bounds on leakage), well-defined adversarial models
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4.

This work: extends SSE in 4 dimensions

New application settings and trust models

Multiple clients: Data owner D outsources Encrypted DB to cloud;

clients run queries at the cloud but only for gueries authorized by D

[ Leakage to cloud as in basic SSE, client only learns documents matching
authorized queries (policy-based authorization enforced by data owner)

Blind authorization: As above but authorizer enforces policy without

learning the queried values (we call it " Outsourced Symmetric PIR")

1 Assumes hon-collusion between cloud and data owner

Note: multi-reader, single-writer system (no public key encryption)
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Example Applications

m Example: Hospital outsources DB, provides access to clients
(doctors, administrators, insurance companies, etc.)

[ Policy-based authorization on a client/query-basis

1 Hospital doesn't need to learn the query, only (blindly) enforce policy

m Good for security, privacy, regulations

. . Obama's 3" Party
m Warrant scenario (extended 4-party setting)  solution (phone data)

1 Judge provides warrant for a client C (e.g. FBI) to query a DB
1 DB owner enables access but only to queries allowed by judge
1 DB owner does not learn warrant content or queries

01 Client C (e.g., FBI) gets the matching documents for the allowed queries
and nothing else

12



"

Large-Scale & Functional Implementation

m Support for arbitrary Boolean queries on all 3 (extended) SSE models

m Validated on synthetic census data: 10Terabytes, 100 million records,
> 100,000,000,000=10" indexed record-keyword pairs |

1 Equivalent to a DB with one record for each American household and 1000

keywords in each record and any boolean query (including textual fields)
01 Smaller DB's: Enron email repository, ClueWeb (>> English Wikipedia)
01 Support for range queries, substring/wildcards, phrase queries (5x perf. cost)

01 Dynamic data: Supports additions, deletions and modifications of records
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Scalability

m Preprocessing scales linearly w/ DB size (minutes-days for above DBs)

m Careful data structure, crypto and I/0 optimizations

m Can benefit on any improvement on single-keyword search

m Search proportional to # documents matching the least frequent
term: w; ABw,,..., w,)

[ Single round to retrieve matching document indexes (tokens from client
to server, matching indices back; retrieve encrypted documents)

1 Query response time: Competitive w/ plaintext queries on indexed DB

4 seconds: fname='CHARLIE' AND sex='Female' AND
NOT (state='NY' OR state="MA' OR state='"PA"' OR state="NJ)
on 100M records/22Billion index entries US-Census DB

14



"
Crypto Design-Engineering Synergy

m Major effort to build I/O-friendly data structures

0 Critical decision: Do not design for RAM-resident data structures
(it severely /imits scalability)

1 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk)

» Need randomized data structures to reduce leakage and need
structured ones to improve I/0 performance (locality of access)

m Cryptographic index based on elliptic curve cryptography
(optimized for very fast exponentiation, esp. with same-base)

Typically: I/0O and network latency dominate cost 500000/sec, 8 cores, same-

base opt , 100-1000 per IO
1 On a midsize storage system: ~300 IOPS (I/0 Operations Per Second)

1 ~1000 expon's per random I/O access (133 w/o same-base optimization)

m Data encryption uses regular symmetric crypto (e.g., AES)
15
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Security: The challenge of being imperfect

m (Good news: Semantic security for data; no deterministic or order
preserving data encryption

m But: Security-Performance trade-offs - Leakage to server

[ Leakage in the form of access patterns to retrieved data and queries

= Data is encrypted but server can see intersections b/w query results (e.g.
identify popular document, intersection b/w results of fwo ranges, etc.)

m Server learns query function (not values/attrib's); identifies repeated query

1 Additional specific leakage (more complex functions of DB and query history):

m E.g. we leak |Doc(w;)| and in query w; A w, A..Aw, we leak |Doc(w; A w))

m E.g. the server learns if two queries have the same w; (other terms are hidden)

m |eads to statistical inference based on side information on data

(effect depends on application), masking techniques may help
16
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Security: The challenge of being imperfect

m  Security proofs: Formal model and precise provable leakage profile
Leakage profile: provides upper bounds on what's learned by the attacker
Security modeling and definitions follow simulation paradigm [CGKO, CK]

m Syntactic leakage vs "semantic leakage”

Need to assess on an application basis and relative to a-priori knowledge

For example, formal leakage proven even if attacker can choose data and
queries - but in practice, in this case, semantic leakage will be substantial

Yet, we expect in many cases to provide meaningful (if imperfect) security
(in particular, relative to property-preserving solutions)

m Detour: Is CryptDB sufficient in practice? Who is the attacker?
Enough to not being the weakest link? What do requlations say?
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Security Formalism (adversarial server)

m Based on the simulation-based definitions given for SKS [CGKO,CK].

m There is an attacker E (acting as the server), a simulator Sim and a
leakage function (DB, queries):

(1 Real: Attacker E chooses DB and gets the pre-processed encrypted DB,
then interacts with client on adaptively chosen queries

01 TIdeal: Attacker E chooses DB and queries (adaptively),
E gets Sim(L(DB)) and Sim(L(DB queries))

A SSE scheme is semantically secure with leakage L if for all
attackers E, there is a simulator Sim such that the views of E in
both experiments are indistinguishable

= Server learns nothing beyond the specified leakage L even if it knows
(and even if it chooses adaptively) the plaintext DB and queries

18



"

Basic ideas

m Focus on conjunctions wy,...w, (will be extended to Boolean queries)

1.

Choose the /east freguent conjunctive term, say w; ("s-term"),
find encrypted indexes of documents containing w; (w/o revealing w,)

1 Pre-computed encrypted index stored at Eddie (part of EDB):
VY w, Enc(w) > Enc(ind,), Enc(ind,), ..., Enc(ind,)

For each w; and ind;, check if w; appears in ind..

1 Uses an "oracle” that given Enc(ind) and Enc(w) says if keyword w
appears in document ind (without revealing ind or w)

1 Oracle implemented as a function H(ind,w) and a set Hset stored at the
server of all values H(ind,w) such that w appears in record ind

01 Server computes H(ind,w) jointly (and "non-interactively”) with client;
server does not learn w or ind (it is encrypted), client learns nothing

= computation based on DH-based Oblivious PRF
19
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Columbia/Bell Labs Solution (Blind Seer)

m Parallel work: Same TARPA project - papers at [Oakland'14, 15]

m Elegant solution based on Bloom filter trees with Garbled Yao for
privacy and authorization

01 Conceptually simpler than ours
1 Uses MPC techniques (Yao) instead of homomorphic operations

[ Less scalable: Bloom filters are /nherently random access
~>DB sizes limited by the size of RAM

01 Single client

[ Incomparable leakage (e.g., Bloom filter path vs. w;-related leakage)
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Research Questions

m Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp'n

m Fundamental limits (leakage-computation tradeoffs), e.q.:
[ leakage from returned ciphertexts (ORAM helps but at significant cost)

1 Frequency of w; (least frequent term) (reduction from 3SUM)

m "Semantic leakage": Proving formal leakage is nice but how bad is it
for a given particular application, what forms of masking can help?

[1 Can we have a theory to help us reason about it (cf. differential privacy)?
1 A theory of leakage composition? Guidance for masking techniques

1 Attacks welcomel (Also easier to get accepted to conferences © )
m Characterizing privacy-friendly plaintext search algorithms/data str.

m A more complete SQL query set (esp. joins)
21
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Summary

m Great progress relative to work on single-keyword single-client SSE

[ Rich queries: General Boolean queries (structured data, free text),
Plus: range, substring, wildcards, phrase, proximity

1 Huge DBs: 10 TB, 100M records, 10! indexed keyword-document pairs

m EDB creation linear in DB size, queries competitive with MySQL

01 Single- and Multi-Client models, policy-based delegation of queries
1 Authorization w/o learning query ("Outsourced Symmetric PIR")

O Privacy, insider security, surveillance protection, warrant enforcement

m Imperfect security: Leakage from access- and query-patterns, but
well defined leakage profiles, and simulation-based adaptive security

m Many challenging theoretical and engineering questions

1 Going for practice? Don't forget simplicity, engineering and... proofs!
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Join the (multi) Party...

m Anexciting & large space to explore with many many research
opportunities!

m ... and many practical applications

Very timely given cloud migration, explosion of private info, and strong
attackers (including surveillance, espionage, mafia, and just hackers...)

m  An opportunity for sophisticated crypto in the real world?
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Crypto'2013: Boolean search, single client eprint.iacr.org/2013/169

CCS'2013: Multi-client, Blind authorization eprint.iacr.org/2013/720

NDSS'2014: Dynamic data, implementation eprint.iacr.org/2014/853

ESORICS 2015: Range, Substrings, Wildcards, Phrases

2015/927
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