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Plaintext	  keyword	  search	  

The	  aBached	  contract	  is	  ready	  for	  
signature.	  	  Please	  print	  2	  documents	  
and	  have	  Atmos	  …	   Email	  	  

storage	  
provider	  

Upload	  documents	  

Keyword	   Documents	  

contract	   1,	  7	  

signatur	   8,	  9,	  1,	  15,	  200	  

Search:	  	  	  “contract”	  

,!

Email	  client	  
Keyword	  stemming	  



Appended-‐PRF	  Searchable	  Encryp'on	  

The	  aBached	  contract	  is	  ready	  for	  
signature.	  	  Please	  print	  2	  documents	  
and	  have	  Atmos	  …	   Email	  	  

storage	  
provider	  

Upload	  encrypted	  documents	  

Keyword	   Documents	  

HK(contract)	   1,	  7	  

HK(signatur)	   8,	  9,	  1,	  15,	  200	  

Encrypt	  plaintext	  
&	  keyed	  hash	  of	  	  
keywords	  

89123fdbf32a665befg8819890^acda
4320182321a1343187fabaedf3140^a	  

Email	  client	  

HK(aBach)	  	  	  HK(contract)	  	  	  HK(ready)	  …	  



Appended-‐PRF	  Searchable	  Encryp'on	  

Email	  	  
storage	  
provider	  

Upload	  encrypted	  documents	  

Keyword	   Documents	  

7813fed	   1,	  7	  

456abc3	   8,	  9,	  1,	  15,	  200	  

Search:	  	  	  “7813fed”	  

,!

Encrypt	  plaintext	  
&	  keyed	  hash	  of	  	  
keywords	  

Legacy	  compa'ble:	  
Works	  with	  exis?ng	  plaintext	  storage	  interfaces	  

HK(aBach)	  	  	  HK(contract)	  	  	  HK(ready)	  …	  

Email	  client	  

ab34df	  	  7813fed	  	  873f63	  …	  

89123fdbf32a665befg8819890^acda
4320182321a1343187fabaedf3140^a	  

7813fed	  =	  HK(contract)	  



Two	  more	  schemes	  to	  consider	  

HK(contract)	  	  	  HK(ready)	  	  	  HK(aBach)	  …	  

(2)	  	  Unordered	  appended-‐PRFs	  

The	  aBached	  contract	  is	  ready	  for	  
signature.	  	  Please	  print	  2	  documents	  
and	  have	  Atmos	  …	  

Randomize	  
order	  of	  PRF	  
values	  

(3)	  	  Encrypted	  index	  

Keyword	   Documents	  

HK(contract)	   1,	  7	  

HK(signatur)	   8,	  9,	  1,	  15,	  200	  

Encrypt	  each	  document	  list	  
under	  keyword-‐specific	  key	  



Mimesis	  Aegis	  	  [Lau	  et	  al.	  2014]	  
ShadowCrypt	  	  	  [He	  et	  al.	  2014]	  

[Cash	  et	  al.	  2014]	  

Qualita've	  comparison	  of	  schemes	  

Appended-‐PRF	  scheme	  
used	  in	  industry	  

Unordered	  appended-‐PRF	  
used	  in	  research	  literature	  

Encrypted	  index	  in	  
literature	  &	  star?ng	  to	  
appear	  in	  industry	  



Qualita've	  comparison	  of	  schemes	  

Appended-‐PRF	  scheme	  
used	  in	  industry	  

Unordered	  appended-‐PRF	  
used	  in	  research	  literature	  

Encrypted	  index	  in	  
literature	  &	  star?ng	  to	  
appear	  in	  industry	  

Ease	  of	  	  
deployment	  

Provable	  	  
security	  
claims	  



Leakage-‐abuse	  aLacks	  
All	  searchable	  encryp?on	  leaks	  informa?on	  about	  	  
plaintexts	  and	  queries.	  Appended-‐PRF	  case:	  

Adversarial	  	  
storage	  
provider	  

Keyword	   Documents	  

HK(contract)	   1,	  7	  

HK(signatur)	   8,	  9,	  1,	  15,	  200	  
Upload	  encrypted	  documents	  

Search:	  	  	  “HK(contract)”	  

HK(aBach)	  	  	  HK(contract)	  	  	  HK(ready)	  …	  

[Islam,	  Kuzu,	  Kantarcioglu	  –	  2013]	  
[Cash,	  Grubbs,	  Perry,	  	  R.	  –	  2015]	  



Leakage-‐abuse	  aLacks	  
All	  searchable	  encryp?on	  leaks	  informa?on	  about	  	  
plaintexts	  and	  queries.	  Appended-‐PRF	  case:	  

Adversarial	  	  
storage	  
provider	  

Keyword	   Documents	  

7813fed	   1,	  7	  

456abc3	   8,	  9,	  1,	  15,	  200	  

“Document	  1	  and	  7	  both	  contain	  	  
7813fed”	  	  (Co-‐occurrence	  rela?onships)	  

Upload	  encrypted	  documents	  

Search:	  	  	  “7813fed”	  

ab34df	  	  7813fed	  	  873f63	  …	  

“Keyword	  7813fed	  searched	  o=en”	  
(Search	  frequency)	  

“Keyword	  7813fed	  came	  second	  in	  Document	  1”	  
(Keyword	  loca?on)	  

[Islam,	  Kuzu,	  Kantarcioglu	  –	  2013]	  
[Cash,	  Grubbs,	  Perry,	  	  R.	  –	  2015]	  

Unordered	  appended-‐PRF:	  	  	  order	  of	  keywords	  not	  leaked	  	  

	   	  	  	  	  	  Encrypted	  index:	  	  	  	  order	  of	  keywords	  not	  leaked	  &	  
	   	  	  	  	   	  	   	   	   	   	  	  	  	  	  	  leakage	  only	  aier	  queries	  made	  



•  Does	  leakage	  damage	  confiden?ality?	  

•  How	  much	  more	  security	  does	  one	  achieve	  via	  
more	  complex	  schemes?	  

•  What	  adversarial	  capabili?es	  are	  likely	  to	  arise	  
in	  prac?ce?	  

We	  don’t	  know	  answers	  to	  basic	  
security	  ques'ons:	  



Leakage-‐abuse	  aLack	  taxonomy	  
ALacker	  goal	   Query	  recovery	  

Plaintext	  recovery	  
ALacker	  
capabili'es	  

Passive	   Observe	  queries	  and	  stored	  
ciphertexts	  

Ac?ve	   Force	  inser?on	  of	  documents	  
and/or	  queries	  

Document	  
knowledge	  

Full	   Know	  all	  plaintexts	  exactly	  

Par?al	   Know	  some	  plaintexts	  
Distribu?onal	   Know	  similar	  plaintexts	  

IKK	  2013	  against	  encrypted	  index:	   Query	  recovery	   	  Passive	   	  Full	  

Simula?ons	  with	  Enron	  email	  corpus:	  	  	  	  80%	  of	  queries	  recoverable	  
We’ll	  come	  back	  to	  this	  



Par'al	  plaintext	  recovery	  	  
against	  appended-‐PRF	  

[Cash,	  Grubbs,	  	  
Perry,	  	  R.	  –	  2015]	  

Plaintext	  recovery	  
	  Passive	   	  Par?al	  

7813fed	  	  	  	  18fda83	  	  	  	  64a3b4	  …	  Known	  email	  

ab34df	  	  	   	  	  7813fed	  	  	  	  873f63	  …	  Unknown	  email	  

contract	   file	   today	  

contract	  

Adversarial	  	  
storage	  
provider	  

Keyword	   Documents	  

7813fed	   1,	  7	  

456abc3	   8,	  9,	  1,	  15,	  200	  



Par'al	  plaintext	  recovery	  	  
against	  appended-‐PRF	  

These data support the conclusion that attack on L1 leak-
age require a significant amount of server knowledge of the
document set, but are nonetheless possible with less-than-
perfect knowledge.

6. PLAINTEXT RECOVERY ATTACKS
In plaintext recovery attacks, the server’s goal is to learn

the mapping of keywords to the ciphertexts stored by the
SE scheme, for as many keywords as possible. This in turn
allows reconstruction of stored documents, either as a “bag
of words” in appended-keywords schemes, or ordered plain-
text if the document is deterministically encrypted using the
word hashes.

These attacks exploit leakage profiles L2 and L3. For ex-
ample, they apply to searchable encryption schemes that
store encrypted words on a per-document basis using a PRF
or hash function, as in the “in-place” schemes as described
in Section 3.1.1. We show realistic and highly damaging
known-document (passive) and chosen-document (active) at-
tacks in this scenario. The server is required only to know
a small number of stored documents, as described in each
experiment.

6.1 Passive Attacks
This section presents and gives analyses of attacks for

query recovery and keyword-based plaintext recovery by a
passive server that correctly executes the SE scheme algo-
rithms. Attacks are classified by the SE scheme type (sub-
stitution or indexing-based), and how much prior knowledge
of the plaintext document set D the server possesses.

6.1.1 Order of Hashes Known (L3)
To start with a simple case, we consider a scheme in which

the order of appended hashed keywords is not changed from
the order in which the keywords appear in the document.
This is leakage profile L3. In this case, all the indexed key-
words in any known document are immediately revealed to
the server. We present the results of statistical experiments
quantifying the advantage gained by an attacking server in
this scenario.

Random Documents. To determine the fraction of plain-
text keywords learned by an adversarial server that knows
a small number of the stored documents, we computed the
fraction of documents at a given recovery rate, for varying
number of known document and 20 known random docu-
ments, averaged over 10 random trials in each case. Results
for the two datasets, for 2 and 20 known documents, are
summarized in cumulative style in Figure 7. The curves
which fall further to the right are indicative of a larger per-
centage of documents having high keyword recovery rates.
As mentioned, the datasets have over 30,000 and 50,000 doc-
uments, respectively, so even when a very small fraction of
the documents is known to the server, the server can see a
substantial percentage of the words of the stored documents.

These results show that even a small number of known
documents allows the server to recover a significant percent-
age of the documents, enough that a human inspecting the
output in the form of redacted documents may obtain a very
strong sense of its content.

Note that the curve is steeper for the Apache dataset re-
sults. Our hypothesis is that the Apache dataset has a “crit-
ical mass” of vocabulary that is common to most of the doc-
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Figure 7: Plaintext reconstruction rates for the En-
ron dataset from known documents for an in-place
SE scheme with ordered keyword hashes.

The attached contract is ready for signature.

Please print 2 documents and have Atmos execute

both and return same to my attention. I will re-

turn an original for their records after ENA has

signed. Or if you prefer, please provide me with

the name / phone # / address of your customer and

I will Fed X the Agreement.

attach contract signatur pleas print 2 document

have execut both same will origin ena sign prefer

provid name agreement

Figure 8: (Top) An example plaintext email from
the Enron corpus. (Bottom) The stem words recov-
ered by our attack when given 20 randomly selected
known emails.

uments, as the topic of discussion in a software mailing list
is likely to be more uniform than all the emails sent by a
large company’s employees.
To get a sense for the ability of a human attacker to gain

information from this type of reconstruction, we took the
stemmed keywords from a 20-document Enron trial, made a
random selection of several other Enron emails, and printed
out the first occurrence of each matching stem in docu-
ment order, omitting stopwords. A sample is shown in Fig-
ure 8. Note that potentially sensitive information has been
revealed, including the name of a company involved in a
contract.

Known Public Documents. Though choosing documents
at random is important for statistically understanding the
power of attacks, the true source of a known-document at-
tack would likely not be an email chosen uniformly at ran-
dom. A more probable source might be a message that has
a wide distribution, such as a company-wide announcement.
The more recipients an email has, the more likely it is that
its plaintext will become available to an attacker.
To test this, we ran the same experiment with a single

email from the Enron dataset that was sent to 500 recipi-
ents. It was an announcement sent an entire division, four
paragraphs long, with 832 unique keywords, containing an
announcement of an upcoming survey of the organization by

Unknown	  	  
email	  
plaintext	  

Recovered	  
informa?on	  

Simula?ons	  with	  Enron	  email	  corpus	  	  
-‐  30,109	  emails	  from	  employee	  sent_mail	  folders	  	  
-‐  Adversary	  knows	  20	  random	  emails	  	  (0.06%)	  
-‐  Simply	  match	  keywords	  in	  known	  emails	  to	  unknown	  

[Cash,	  Grubbs,	  	  
Perry,	  	  R.	  –	  2015]	  

Plaintext	  recovery	  
	  Passive	   	  Par?al	  



Randomizing	  hash	  order	   Plaintext	  recovery	  
	  Passive	   	  Par?al	  

Leaving	  hashes	  in	  document	  order	  makes	  aBack	  easy	  

7813fed	  	  	  	  18fda83	  	  	  	  64a3b4	  …	  Known	  email	  

ab34df	  	  	   	  	  7813fed	  	  	  	  873f63	  …	  Unknown	  email	  

contract	   file	   today	  

contract	  

Simple	  change:	  randomize	  order	  of	  hashes	  to	  leak	  less	  informa?on	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (sort	  by	  hash	  value)	  



Randomizing	  hash	  order	   Plaintext	  recovery	  
	  Passive	   	  Par?al	  

Leaving	  hashes	  in	  document	  order	  makes	  aBack	  easy	  

18fda83	  	  	  	  64a3b4	  	  	  	  	  7813fed	  	  …	  Known	  email	  

ab34df	  	  	   	  	  7813fed	  	  	  	  873f63	  …	  Unknown	  email	  

contract	   file	   today	  

Simple	  change:	  randomize	  order	  of	  hashes	  to	  leak	  less	  informa?on	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (sort	  by	  hash	  value)	  

???	   ???	   ???	  

Order	  issue	  leS	  implicit	  in	  prior	  work	  
Mimesis	  Aegis:	  	  	  	  randomizes	  order	  due	  to	  Bloom	  filter	  
ShadowCrypt:	  	  	  	  	  	  implementa?on	  randomizes	  order,	  	  

	   	   	   	  	  	  	  	  	  paper	  does	  not	  discuss	  



Chosen-‐email	  aLacks	  

Adversarial	  
storage	  
provider	  

Keyword	   Documents	  

HK(contract)	   1,	  7	  

HK(signatur)	   8,	  9,	  1,	  15,	  200	  

Email	  client	  

Plaintext	  recovery	  
	  Ac?ve	   	  Distribu?onal	  

Send	  vic?m	  an	  email	   To:	  vic?m@vic?m.com 	  	  
From:	  sally@sally.net	  
	  
Contract	  signature	  

Contract	  signature	  

HK(signatur)	  	  	  	  HK(contract)	  

Insert	  new	  email	  

89123fdbf32a665befg8819890^acda
4320182321a1343187fabaedf3140^a	  



Chosen-‐email	  aLacks	  

Adversarial	  
storage	  
provider	  

Keyword	   Documents	  

7813fed	   1,	  7	  

456abc3	   8,	  9,	  1,	  15,	  200	  

Email	  client	  

Plaintext	  recovery	  
	  Ac?ve	   	  Distribu?onal	  

Send	  vic?m	  an	  email	   To:	  vic?m@vic?m.com 	  	  
From:	  sally@sally.net	  
	  
Contract	  signature	  

Contract	  12347891	  

HK(signatur)	  	  	  	  HK(contract)	  

Insert	  new	  email	  

89123fdbf32a665befg8819890^acda
4320182321a1343187fabaedf3140^a	  

456abc3 	  	  7813fed	  

Disambiguate	  2	  keywords	  	  
by	  their	  expected	  frequency	  



Disambigua'on	  performance	  

Related:	  split	  Enron	  into	  training	  and	  tes?ng	  sets,	  train	  frequency	  on	  training	  
Unrelated:	  train	  on	  dis?nct	  email	  corpus	  (Apache	  corpus)	  



1.  Simple	  aBack	  against	  
appended-‐PRF	  

2.  Chosen-‐email	  aBack	  against	  
unordered	  appended-‐PRF	  

3.  Query	  recovery	  against	  
encrypted	  index	  schemes	  

Case	  studies	  of	  three	  aLacks	  

Plaintext	  recovery	  
	  Passive	   	  Par?al	  

Plaintext	  recovery	  
	  Ac?ve	   	  Distribu?onal	  

Query	  recovery	  
Passive	   	  Full	  



IKK	  query	  recovery	  aLack	  
Adversary	  knows	  full	  plaintext	  corpus	  
Goal	  is	  to	  uncover	  search	  query	  keywords	  used	  by	  client	  

Adversarial	  	  
storage	  
provider	  

Keyword	   Documents	  

HK(contract)	   1,	  7	  

HK(signatur)	   8,	  9,	  1,	  15,	  200	  
Search:	  	  	  “HK(contract)”	  

Search:	  	  	  “HK(signatur)”	  

,!

,! ,!,! ,!

Email	  client	  

Uniformly	  selects	  	  
keywords	  to	  search	  

IKK	  detail	  expensive	  aBack	  using	  simulated	  annealing	  to	  solve	  	  
NP-‐complete	  problem	  sufficient	  to	  reveal	  queries	  

Query	  recovery	  
	  Passive	   	  Full	  



We	  give	  way	  simpler	  aLack	   Query	  recovery	  
	  Passive	   	  Full	  

Adversary	  knows	  full	  plaintext	  corpus	  
Goal	  is	  to	  uncover	  search	  query	  keywords	  used	  by	  client	  

Adversarial	  	  
storage	  
provider	  

Keyword	   Documents	  

HK(contract)	   1,	  7	  

HK(signatur)	   8,	  9,	  1,	  15,	  200	  
Search:	  	  	  “HK(contract)”	  

Search:	  	  	  “HK(signatur)”	  

,!

,! ,!,! ,!

Email	  client	  

Uniformly	  selects	  	  
keywords	  to	  search	  

ABacker	  sees	  number	  of	  documents	  returned	  
Many	  keywords	  appear	  in	  a	  unique	  number	  of	  documents	  
Disambiguate	  with	  co-‐occurrence	  rela?onships	  



IKK	  vs	  “count”	  aLack	   Query	  recovery	  
	  Passive	   	  Full	  

Subset	  of	  Enron	  emails	  (known	  to	  aBacker)	  
Most	  popular	  	  x	  	  keywords	  considered	  
10%	  of	  keywords	  uniformly	  sampled	  and	  queried	  



Provable	  security	  must	  be	  (at	  least)	  paired	  with	  
empirical	  security	  analyses	  

Lots	  of	  open	  ques?ons:	  
–  Leakage	  of	  richer	  queries	  
–  Role	  of	  updates	  
–  Effect	  of	  re-‐encryp?on	  	  
–  Viability	  of	  ac?ve	  aBacks	  in	  prac?ce	  

	  
And	  challenges:	  
–  BeBer	  data	  sets	  for	  simula?ons	  
–  Query	  traces	  
–  Countermeasures	  

Summary	  of	  leakage-‐abuse	  aLacks	  



Part	  2:	  	  
Machine	  learning	  model	  inversion	  



Machine	  learning	  (ML)	  systems	  
DB	  of	  
data	  

ML	  model	  f	  

Training	  

(1)	  Gather	  some	  labeled	  data	  

f	  (	  x1	  ,	  …	  ,	  xn	  )	  	  =	  	  y	  

(3)	  Use	  f	  	  in	  some	  applica?on	  or	  	  
	  	  	  	  	  	  publish	  it	  for	  others	  to	  use	  

x1	  ,	  …	  ,	  xn	   y	  

(2)	  Train	  ML	  model	  	  f	  	  from	  data	  

Applica?on	  



Increasing	  use	  of	  ML	  

Cloud	  compu'ng	  

Medical	  applica'ons	  

Facial	  recogni'on	  



Privacy	  concerns	  in	  machine	  learning?	  
DB	  of	  
data	  

ML	  model	  f	  

Training	  

x1	  ,	  …	  ,	  xn	   y	  

Applica?on	  

Release	  of	  sensi?ve	  data?	  
Even	  de-‐iden?fied	  data	  dangerous	  

	   	  [Sweeney	  ‘00]	  	  
	   	  [Naranayan	  &	  Shma?kov	  ‘08]	  …	  	  

k-‐anonymity	  	  [Sweeney	  ‘02]	  
Differen?al	  privacy	  	  	  	  

	   	  [Dwork,	  McSherry,	  Nissim,	  Smith	  ‘06]	  
	   	  …	  

Overarching	  lesson:	  	  
Don’t	  release	  sensi?ve	  data	  sets	  
without	  due	  care	  



Privacy	  concerns	  in	  machine	  learning?	  
DB	  of	  
data	  

ML	  model	  f	  

Training	  

x1	  ,	  …	  ,	  xn	   y	  

Applica?on	  

Release	  of	  sensi?ve	  data?	  
Even	  de-‐iden?fied	  data	  dangerous	  

	   	  [Sweeney	  ‘00]	  	  
	   	  [Naranayan	  &	  Shma?kov	  ‘08]	  …	  	  

k-‐anonymity	  	  [Sweeney	  ‘02]	  
Differen?al	  privacy	  	  	  	  

	   	  [Dwork,	  McSherry,	  Nissim,	  Smith	  ‘06]	  
	   	  …	  

What	  about	  risks	  related	  to	  	  
adversarial	  access	  to	  (just)	  model	  f?	  

[Ateniese	  et	  al.	  2013]:	  	  Determine	  one	  bit	  of	  info	  	  
about	  DB	  given	  ability	  to	  download	  f	  



New	  privacy	  concerns	  in	  ML	  

(2)	  Decision	  trees	  trained	  from	  lifestyle	  surveys	  
	   	  Predict	  marital	  infidelity	  of	  training	  set	  members	  

(3)	  Neural	  networks	  for	  facial	  recogni?on	  
	   	  Recover	  recognizable	  images	  of	  training	  set	  members	  	  

Preliminary	  inves?ga?on	  of	  countermeasures	  
	   	  DifferenIal	  privacy	  
	   	  SensiIve-‐feature-‐aware	  CART	  decision	  trees	  
	   	  Rounded	  confidence	  values	  

(1)	  Linear	  regression	  for	  personalized	  medicine	  
	   	  Predict	  genotypes	  of	  paIents	  

Model	  inversion	  aBacks:	  
[Fredrikson,	  Lantz,	  Lin,	  Jha,	  	  
	  	  	  	  	  	  	  	  	  	  	  	  Page,	  R.	  –	  Security	  `14]	  
[Fredrikson,	  Jha,	  R.	  –	  CCS	  `15]	  



Privacy	  in	  pharmacogene'cs	  

Case	  study	  in	  context	  of	  personalized	  medicine	  

IWPC	  study:	  
•  Linear	  regression	  based	  classifier	  	  
•  Trained	  on	  demographics,	  health	  history,	  

and	  gene?c	  markers	  	  
•  Predicts	  ini?al	  dose	  of	  	  warfarin	  
•  [IWPC]	  researchers	  showed	  evidence	  that	  

this	  outperformed	  clinical	  prac?ce	  

[Fredrikson,	  Lantz,	  Lin,	  Jha,	  Page,	  R.	  –	  Security	  `14]	  

Data	  set	  is	  publicly	  available	  (in	  de-‐iden?fied	  form),	  but	  similar	  data	  sets	  must	  be	  private	  





Warfarin	  model	  inversion	  aLack	   Linear	  
regression	  
model	  f	  

f	  (	  x1	  ,	  …	  ,	  xn	  )	  	  =	  	  y	  

Demographic	  informa?on	  
Health	  history	  
Genotype	  

Suggested	  ini?al	  dose	  
of	  warfarin	  

Target	  person’s	  
genotype	  

Info	  on	  x1	  ,	  …	  ,	  xn-‐1	  
Stable	  dose	  y’	  	  (y’	  ≠	  y)	  
Model	  f	  

Model	  inversion	  
algorithm	  

[Fredrikson,	  Lantz,	  Lin,	  Jha,	  Page,	  R.	  –	  Security	  `14]	  



Warfarin	  model	  inversion	  aLack	  

xn	  takes	  on	  values	  in	  set	  	  {v1,…,vs}	  
(1)	  Compute	  feasible	  set	  of	  input	  vectors:	  
	  	   	   	  z1	  =	  (x1,…,xn-‐1,v1)	  

	   	  z2	  =	  (x1,…,xn-‐1,v2)	  
	   	  …	  
	   	  zs	  =	  (x1,…,xn-‐1,vs)	  

(2)	  Compute	  yj	  	  =	  f(zj)	  for	  each	  j	  	  
(3)	  Output	  vj	  that	  maximizes 	  	  

sX

j=1

 
⇡(y, yj) ·

nY

i=1

p(zj [i])

!

Weight	  by	  error	  	   Independent	  priors	  

[Fredrikson,	  Lantz,	  Lin,	  Jha,	  Page,	  R.	  –	  Security	  `14]	  

Linear	  
regression	  
model	  f	  

Realizes	  MAP	  es?mator	  	  
(op?mal	  subject	  to	  info	  available)	  



y). Again, using the maximum entropy prior from before
gives the MAP estimate in the more general setting,

Pr [xt |xK ,ya , f ] =

q
x02X̂:x0t=xt

Pr [x0,y, f (x0)]
q

x02X̂ Pr [x0,y, f (x0)]
(6)

=

q
x02X̂:x0t=xt

Pr [y|x0, f (x0)] p(x0)
q

x02X̂ Pr [x0,y, f (x0)]
(7)

µ
q

x02X̂:x0t=xt
py, f (x0) (

r
i p(x0i)) (8)

The second step follows from the independence of the
maximum entropy prior in our setting, and the fact that x
determines f (x) so Pr [ f (x0),x0] = Pr [x0].

Application to linear regression. Recall that a linear
regression model assumes that the response is a linear
function of the attributes, i.e., there exists a coefficient
vector w 2 Rd and random residual error d such that
y = wT x+ b+ d for some bias term b. A linear regres-
sion model fL is then an estimate (ŵ, b̂) of w and the
bias term, which operates as: fL(x) = b̂+ ŵT x. It is typ-
ical to assume that d has a fixed Gaussian distribution
N (0,s2

) for some variance s . Most regression software
estimates s2 empirically from training data, so it is of-
ten published alongside a linear regression model. Using
this the adversary can derive an estimate of p ,

p̂(y,y0) = PrN (0,s2
)

[y� y0]

Steps 2 and 4 of Ap may be expensive to compute if
|X̂| is large. In this case, one can approximate using
Monte Carlo techniques to sample members of X̂. For-
tunately, in our setting, the nominal-valued variables all
come from sets with small cardinality. The continuous
variables have natural discretizations, as they correspond
to attributes such as age and weight. Thus, step 4 can be
computed directly by taking a discrete convolution over
the unknown attributes without resorting to approxima-
tion.

Discussion. We have argued that Ap is optimal in one
particular sense, i.e., it minimizes the expected misclas-
sification rate on the maximum-entropy prior given the
available information (the model and marginals). How-
ever, it is not hard to specify joint priors p for which
the marginals p1,...,d,y convey little useful information,
so the expected misclassification rate minimized here di-
verges substantially from the true rate. In these cases, Ap
may perform poorly, and more background information
is needed to accurately predict model inputs.

There is also the possibility that the model itself does
not contain enough useful information about the correla-
tion between certain input attributes and the output. For
illustrative purposes, consider a model taking one input
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Figure 3: Model inversion performance, as improvement
over baseline guessing from marginals, given a linear
model derived from the training data. Available back-
ground information specified by all and basic as dis-
cussed in Section 3.1.

attribute, that discards all information about that attribute
except a single bit, e.g., it performs a comparison with a
fixed constant. If the attribute is distributed uniformly
across a large domain, then Ap will only perform negli-
gibly better than guessing from the marginal. Thus, de-
termining how well a model allows one to predict sen-
sitive inputs generally requires further analysis, which is
the purpose of the evaluation that we discuss next (see
also Section 4).

Results on non-private regression. To evaluate Ap ,
we split the IWPC dataset into a training and validation
set (see Section 2), DT and DV respectively, use DT to de-
rive a least-squares linear model f , and then run Ap on
every a in DT with either of the two background infor-
mation types (all or basic, see Section 3.1) to predict both
genotypes. In order to determine how how well one can
predict these genotypes in an ideal setting, we built and
evaluated a multinomial logistic regression model (us-
ing R’s nnet package) for each genotype from the IWPC
data. This allows us to compare the performance of Ap
against “best-possible” results achieved using standard
machine learning techniques with linear models.

We measure performance both in terms of accuracy,
which is the percentage of samples for which the algo-
rithm correctly predicted genotype, and AUCROC, which
is the multi-class area under the ROC curve defined by
Hand and Till [17]. While accuracy is generally easier to
interpret, it can give a misleading characterization of pre-
dictive ability for skewed distributions—if the predicted
attribute takes a particular value in 75% of the samples,
then a trivial algorithm can easily obtain 75% accuracy
by always guessing this value. AUCROC does not suffer
this limitation, and so gives a more balanced character-
ization of how well an algorithm predicts both common
and rare values.
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Discussion. We have argued that Ap is optimal in one
particular sense, i.e., it minimizes the expected misclas-
sification rate on the maximum-entropy prior given the
available information (the model and marginals). How-
ever, it is not hard to specify joint priors p for which
the marginals p1,...,d,y convey little useful information,
so the expected misclassification rate minimized here di-
verges substantially from the true rate. In these cases, Ap
may perform poorly, and more background information
is needed to accurately predict model inputs.

There is also the possibility that the model itself does
not contain enough useful information about the correla-
tion between certain input attributes and the output. For
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over baseline guessing from marginals, given a linear
model derived from the training data. Available back-
ground information specified by all and basic as dis-
cussed in Section 3.1.

attribute, that discards all information about that attribute
except a single bit, e.g., it performs a comparison with a
fixed constant. If the attribute is distributed uniformly
across a large domain, then Ap will only perform negli-
gibly better than guessing from the marginal. Thus, de-
termining how well a model allows one to predict sen-
sitive inputs generally requires further analysis, which is
the purpose of the evaluation that we discuss next (see
also Section 4).

Results on non-private regression. To evaluate Ap ,
we split the IWPC dataset into a training and validation
set (see Section 2), DT and DV respectively, use DT to de-
rive a least-squares linear model f , and then run Ap on
every a in DT with either of the two background infor-
mation types (all or basic, see Section 3.1) to predict both
genotypes. In order to determine how how well one can
predict these genotypes in an ideal setting, we built and
evaluated a multinomial logistic regression model (us-
ing R’s nnet package) for each genotype from the IWPC
data. This allows us to compare the performance of Ap
against “best-possible” results achieved using standard
machine learning techniques with linear models.

We measure performance both in terms of accuracy,
which is the percentage of samples for which the algo-
rithm correctly predicted genotype, and AUCROC, which
is the multi-class area under the ROC curve defined by
Hand and Till [17]. While accuracy is generally easier to
interpret, it can give a misleading characterization of pre-
dictive ability for skewed distributions—if the predicted
attribute takes a particular value in 75% of the samples,
then a trivial algorithm can easily obtain 75% accuracy
by always guessing this value. AUCROC does not suffer
this limitation, and so gives a more balanced character-
ization of how well an algorithm predicts both common
and rare values.
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Model	  inversion	  results	  for	  IWPC	  model	  
Linear	  regression	  model	  
directly	  trained	  from	  dataset	  

Baseline	  is	  
guessing	  without	  
access	  to	  model	  
(36%	  accuracy)	  

Model	  aids	  aBacker	  in	  predic?on	  almost	  
as	  much	  as	  training	  directly	  on	  data	  set	  

VKORC1	  	  

Everything	  
but	  genotype	  Only	  5%	  lower	  

Basic	  	  
demographics	  
about	  person	  



New	  privacy	  concerns	  in	  ML	  

(2)	  Decision	  trees	  trained	  from	  lifestyle	  surveys	  
	   	  Predict	  marital	  infidelity	  of	  training	  set	  members	  

(3)	  Neural	  networks	  for	  facial	  recogni?on	  
	   	  Recover	  recognizable	  images	  of	  training	  set	  members	  	  

Preliminary	  inves?ga?on	  of	  countermeasures	  
	   	  DifferenIal	  privacy	  
	   	  SensiIve-‐feature-‐aware	  CART	  
	   	  Rounded	  confidence	  values	  

(1)	  Linear	  regression	  for	  personalized	  medicine	  
	   	  Predict	  genotypes	  of	  paIents	  

Model	  inversion	  aBacks:	  



ML-‐as-‐a-‐service	  APIs	  

Black-‐box	  (only	  make	  predic?ons)	  
or	  white-‐box	  (download	  model)	  

Free	  or	  pay-‐per-‐predic?on	  



Sensi've	  decision	  tree	  models	  

538	  steak	  survey	  
GSS	  marital	  happiness	  study	  	  (see	  paper)	  

f	  (	  x1	  ,	  …	  ,	  xn	  )	  	  =	  	  y	  

Household	  income	  
Whether	  person	  gambles	  
Whether	  cheated	  on	  significant	  other	  
…	  

Predic?on	  of	  how	  person	  
likes	  steak	  prepared:	  
-‐  rare	  
-‐  medium-‐rare	  
-‐  medium	  
-‐  medium-‐well	  
-‐  well-‐done	  

Survey	  of	  332	  people	  to	  determine	  if	  	  
“risky”	  lifestyle	  choices	  correlates	  with	  	  
steak	  preferences	  

De-‐iden?fied	  training	  dataset	  available,	  we	  use	  to	  simulate	  aBacks	  



Black-‐box	  warfarin-‐like	  aLack	  for	  538	  survey	  

Simple	  black-‐box	  MAP	  es'mator	  (like	  the	  warfarin	  one):	  

Given:	  	  
x1	  ,	  …	  ,	  xn-‐1	  
Actual	  steak	  preference	  y’	  
Marginal	  priors,	  queries	  to	  f	  
Confusion	  matrix	  C	  for	  f	  

Predict:	  
	  
Infidelity	  status	  xn	  

Cy’,y	  =	  #	  training	  instances	  w/	  steak	  type	  y’	  predicted	  as	  y	  

argmax

xn

C
y

0
,f(x1,...,xn)P
l2Y

C
y

0
,l

· Pr [x
n

]

Model	  inversion	  
algorithm	  



Black-‐box	  warfarin-‐like	  aLack	  for	  538	  survey	  
Given:	  	  
x1	  ,	  …	  ,	  xn-‐1	  
Actual	  steak	  preference	  y’	  
Marginal	  priors,	  queries	  to	  f	  
Confusion	  matrix	  C	  for	  f	  

Predict:	  
	  
Infidelity	  status	  xn	  

Cy’,y	  =	  #	  training	  instances	  w/	  steak	  type	  y’	  predicted	  as	  y	  

Accuracy	   Precision	   Recall	  

Baseline	  guessing	   82.9%	   0.0%	   0.0%	  

MI	  aBack	   85.8%	   85.7%	   21.1%	  
Performance:	  

Model	  inversion	  
algorithm	  



BigML	  reveals	  confidence	  values	  

For	  each	  path:	  
	  
	  
Confidence	  =	  	   #	  correct	  matching	  

#	  total	  matching	  

#	  rare	  instances	  matching	  ,	  	  
#	  medium-‐rare	  matching,	  
...	  	  



New	  MI	  aLack	  using	  granular	  confidence	  data	  
Given:	  	  
x1	  ,	  …	  ,	  xn-‐1	  
Actual	  steak	  preference	  y’	  
Marginal	  priors,	  queries	  to	  f	  
Confusion	  matrix	  C	  for	  f	  
Path	  counts	  

Predict:	  
	  
Infidelity	  status	  xn	  

Cy’,y	  =	  #	  training	  instances	  w/	  steak	  type	  y’	  predicted	  as	  y	  

New	  model	  	  
inversion	  algorithm	  

Accuracy	   Precision	   Recall	  

Baseline	  guessing	   82.9%	   0.0%	   0.0%	  

MI	  aBack	   85.8%	   85.7%	   21.1%	  

MI	  aBack	  w/	  
confidences	  

86.4%	   100%	   21.1%	  



New	  privacy	  concerns	  in	  ML	  

(2)	  Decision	  trees	  trained	  from	  lifestyle	  surveys	  
	   	  Predict	  marital	  infidelity	  of	  training	  set	  members	  

(3)	  Neural	  networks	  for	  facial	  recogni?on	  
	   	  Recover	  recognizable	  images	  of	  training	  set	  members	  	  

Preliminary	  inves?ga?on	  of	  countermeasures	  
	   	  DifferenIal	  privacy	  
	   	  SensiIve-‐feature-‐aware	  CART	  
	   	  Rounded	  confidence	  values	  

(1)	  Linear	  regression	  for	  personalized	  medicine	  
	   	  Predict	  genotypes	  of	  paIents	  

Model	  inversion	  aBacks:	  



Model	  inversion	  for	  facial	  recogni'on	  

Ian	  

DB	  of	  
data	  

ML	  model	  f	  

Training	  

x1	  ,	  …	  ,	  xn	   y	  Harry	  Bob	  

Alice	  Tim	  Jake	  



Model	  inversion	  for	  facial	  recogni'on	  

DB	  of	  
data	  

ML	  model	  f	  

Training	  

x1	  ,	  …	  ,	  xn	   y	  

Can	  aBacker	  use	  f	  to	  recover	  images	  of	  	  
training	  member’s	  faces?	  

Soimax	  
Mul?-‐layer	  perceptron	  (MLP)	  
Stacked	  de-‐noising	  auto-‐encoder	  (DAE)	  

Pixel	  data	   Predic?on	  



Taking	  advantage	  of	  confidence	  values	  

f	  (	  x1	  ,	  …	  ,	  xn	  )	  	  =	  	  [yBob	  ,	  …	  ,	  yJake]	  

Unknown	  pixel	  data	  
Vector	  of	  class	  confidences	  each	  in	  [0,1]	  
Output	  label	  of	  highest	  confidence	  class	  

AT&T	  faces	  dataset:	  	  	  
	  n	  	  =	  92	  *	  112	  	  =	  10,304	  	  	  	  	  
	  |xi|	  =	  8	  bits	  (grayscale	  intensity	  value)	  

810,304	  	  possible	  images	  	  

Naïve	  brute-‐force	  search	  won’t	  work	  



Taking	  advantage	  of	  confidence	  values	  

f	  (	  x1	  ,	  …	  ,	  xn	  )	  	  =	  	  [yBob	  ,	  …	  ,	  yJake]	  

Unknown	  pixel	  data	  
Vector	  of	  class	  confidences	  each	  in	  [0,1]	  
Output	  label	  of	  highest	  confidence	  class	  

Insight:	  	  	  	  
confidences	  allows	  efficient	  gradient	  descent-‐based	  search	  

Find	  x1,…,xn	  	  with	  highest	  confidence	  for	  ‘Bob’	  
Gradient	  descent:	  
•  White-‐box	  we	  

calculate	  symbolically	  
•  Black-‐box	  need	  to	  do	  

numerical	  es?ma?on	  

Model	  
(trained	  on	  AT&T	  faces)	  

Local	  white-‐box	  
'me	  (seconds)	  

Soimax	   1	  

Mul?-‐layer	  perceptron	   1,298	  

Denoising	  autoencoder	   692	  



The image on the left is a face that was altered by computer processing. It may or may not correspond to one of the faces displayed to the

right of it.

If you believe that it does correspond to one of the other faces, please select the corresponding image. If you do not believe that it corresponds

to one of the other faces, select “Not Present”.

Altered Image

Fig. 10. Task shown to Mechanical Turk workers for reconstruction attack evaluation. The actual tasks shown to workers rendered the “altered” image above
the other images, while here we show them configured horizontally to save space.
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Fig. 11. Reconstruction attack results.

In 80% of the experiments, one of the five images contained
the individual corresponding to the label used in the attack.
As a control, 10% of the instances used a plain image from
the data set rather than one produced by MI-FACE. This
allowed us to gauge the baseline ability of the workers at
matching faces from the training set. In all cases, the images
not corresponding to the attack label were selected at random
from the training set. Workers were paid $0.08 for each task
that they completed, and given a $0.05 bonus if they answered
the question correctly, and workers were generally able to
provide a response in less than 40 seconds. They were allowed
to complete at most three tasks for a given experiment. As
a safeguard against random or careless responses, we only
allowed workers who have completed at least 1,000 jobs on
Mechanical Turk and achieved at least a 95% approval rating,
to complete the task.

algorithm time (s) epochs

Softmax 1.4 5.6
MLP 1298.7 3096.3
DAE 692.5 4728.5

Fig. 12. Attack performance.

1) Performance: We
ran the attack for each
model on an 8-core
Xeon machine with 16G
memory. The results are
shown in Figure 12.
Reconstructing faces out of the softmax model is very
efficient, taking only 1.4 seconds on average and requiring
5.6 epochs of gradient descent. MLP takes substantially
longer, requiring about 21 minutes to complete and on the
order of 3000 epochs of gradient descent. DAE requires less
time (about 11 minutes) but a greater number of epochs. This

Target Softmax MLP DAE

Fig. 13. Reconstruction of the individual on the left by Softmax, MLP, and
DAE.

is due to the fact that the search takes place in the latent
feature space of the first autoencoder layer. Because this has
fewer units than the visible layer of our MLP architecture,
each epoch takes less time to complete.

2) Accuracy results: The main accuracy results are shown
in Figure 11. In this figure, overall refers to all correct
responses, i.e., the worker selected the image corresponding
to the individual targeted in the attack when present, and
otherwise selected “Not Present”. Identified refers to instances
where the targeted individual was displayed among the test
images, and the worker identified the correct image. Excluded
referes to instances where the targeted individual was not
displayed, and the worker correctly responded “Not Present”.

Figure 11a gives results averaged over all responses,
whereas 11b only counts an instance as correct when a
majority (at least two out of three) users responded correctly.
In both cases, Softmax produced the best reconstructions,
yielding 75% overall accuracy and up to an 87% identifi-
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Example	  outputs	  of	  MI	  aLack	  for	  different	  models	  

Inversion	  for	  three	  neural-‐network	  classifiers	  :	  	  
	  Soimax,	  	  Mul?-‐layer	  perceptron,	  De-‐noising	  auto-‐encoder	  

Trained	  on	  AT&T	  faces	  dataset	  	  (40	  individuals,	  400	  images)	  



The image on the left is a face that was altered by computer processing. It may or may not correspond to one of the faces displayed to the

right of it.

If you believe that it does correspond to one of the other faces, please select the corresponding image. If you do not believe that it corresponds

to one of the other faces, select “Not Present”.
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Fig. 10. Task shown to Mechanical Turk workers for reconstruction attack evaluation. The actual tasks shown to workers rendered the “altered” image above
the other images, while here we show them configured horizontally to save space.
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Fig. 11. Reconstruction attack results.

In 80% of the experiments, one of the five images contained
the individual corresponding to the label used in the attack.
As a control, 10% of the instances used a plain image from
the data set rather than one produced by MI-FACE. This
allowed us to gauge the baseline ability of the workers at
matching faces from the training set. In all cases, the images
not corresponding to the attack label were selected at random
from the training set. Workers were paid $0.08 for each task
that they completed, and given a $0.05 bonus if they answered
the question correctly, and workers were generally able to
provide a response in less than 40 seconds. They were allowed
to complete at most three tasks for a given experiment. As
a safeguard against random or careless responses, we only
allowed workers who have completed at least 1,000 jobs on
Mechanical Turk and achieved at least a 95% approval rating,
to complete the task.
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1) Performance: We
ran the attack for each
model on an 8-core
Xeon machine with 16G
memory. The results are
shown in Figure 12.
Reconstructing faces out of the softmax model is very
efficient, taking only 1.4 seconds on average and requiring
5.6 epochs of gradient descent. MLP takes substantially
longer, requiring about 21 minutes to complete and on the
order of 3000 epochs of gradient descent. DAE requires less
time (about 11 minutes) but a greater number of epochs. This
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DAE.

is due to the fact that the search takes place in the latent
feature space of the first autoencoder layer. Because this has
fewer units than the visible layer of our MLP architecture,
each epoch takes less time to complete.

2) Accuracy results: The main accuracy results are shown
in Figure 11. In this figure, overall refers to all correct
responses, i.e., the worker selected the image corresponding
to the individual targeted in the attack when present, and
otherwise selected “Not Present”. Identified refers to instances
where the targeted individual was displayed among the test
images, and the worker identified the correct image. Excluded
referes to instances where the targeted individual was not
displayed, and the worker correctly responded “Not Present”.

Figure 11a gives results averaged over all responses,
whereas 11b only counts an instance as correct when a
majority (at least two out of three) users responded correctly.
In both cases, Softmax produced the best reconstructions,
yielding 75% overall accuracy and up to an 87% identifi-
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Recognizability?	  	  
Amazon	  Mechanical	  Turk	  to	  evaluate	  image	  reconstruc?on	  recognizability	  

Re-‐iden?fica?on	  accuracy	  up	  to	  95%	  for	  skilled	  workers	  



New	  privacy	  concerns	  in	  ML	  

(2)	  Decision	  trees	  trained	  from	  lifestyle	  surveys	  
	   	  Predict	  marital	  infidelity	  of	  training	  set	  members	  

(3)	  Neural	  networks	  for	  facial	  recogni?on	  
	   	  Recover	  recognizable	  images	  of	  training	  set	  members	  	  

Preliminary	  inves?ga?on	  of	  countermeasures	  
	   	  DifferenIal	  privacy	  
	   	  SensiIve-‐feature-‐aware	  CART	  
	   	  Rounded	  confidence	  values	  

(1)	  Linear	  regression	  for	  personalized	  medicine	  
	   	  Predict	  genotypes	  of	  paIents	  

Model	  inversion	  aBacks:	  



Differen'al	  privacy	  
Given	  model	  f	  adversary	  can’t	  learn	  whether	  any	  single	  	  
individual	  contributed	  to	  training	  data	  set	  

[Dwork,	  McSherry,	  Nissim,	  Smith	  ‘06]	  

Pa?ent	  DB	  
D1	  

ε-‐DP	  model	  f	  

Pa?ent	  DB	  
D2	  

ε-‐DP	  model	  f	  

Inversion	  success:	   Can’t	  vary	  by	  >	  eε	  for	  dataset	  with	  or	  w/o	  individual	  

Guarantees	  nothing	  about	  absolute	  success	  

≈	  

≈	  
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Figure 1: Mortality risk (relative to current clinical practice)
for, and VKORC1 genotype disclosure risk of, e-differentially
private linear regression (LR) used for warfarin dosing (over
five values of e , curves are interpolated). Dashed lines corre-
spond to non-private linear regression.

Model inversion. We study the degree to which these
models leak sensitive information about patient geno-
type, which would pose a danger to genomic privacy. To
do so, we investigate model inversion attacks in which
an adversary, given a model trained to predict a specific
variable, uses it to make predictions of unintended (sensi-
tive) attributes used as input to the model (i.e., an attack
on the privacy of attributes). Such attacks seek to take
advantage of correlation between the target, unknown at-
tributes (in our case, demographic information) and the
model output (warfarin dosage). A priori it is unclear
whether a model contains enough exploitable informa-
tion about these correlations to mount an inversion at-
tack, and it is easy to come up with examples of models
for which attackers will not succeed.

We show, however, that warfarin models do pose a
privacy risk (Section 3). To do so, we provide a gen-
eral model inversion algorithm that is optimal in the
sense that it minimizes the attacker’s expected mispre-
diction rate given the available information. We find that
when one knows a target patient’s background and stable
dosage, their genetic markers are predicted with signifi-
cantly better accuracy (up to 22% better) than guessing
based on marginal distributions. In fact, it does almost as
well as regression models specifically trained to predict
these markers (only ˜5% worse), suggesting that model
inversion can be nearly as effective as learning in an
“ideal” setting. Lastly, the inverted model performs mea-
surably better for members of the training cohort than
others (yielding an increased 4% accuracy) indicating a
leak of information specifically about those patients.

Role of differential privacy. Differential privacy (DP)
is a popular framework for designing statistical release
mechanisms, and is often proposed as a solution to pri-
vacy concerns in medical settings [10, 12, 45, 47]. DP is
parameterized by a value e (sometimes referred to as the

privacy budget), and a DP mechanism guarantees that the
likelihood of producing any particular output from an in-
put cannot vary by more than a factor of ee for “similar”
inputs differing in only one subject.

Following this definition in our setting, DP guaran-
tees protection against attempts to infer whether a subject
was included in the training set used to derive a machine
learning model. It does not explicitly aim to protect at-
tribute privacy, which is the target of our model inversion
attacks. However, others have motivated or designed DP
mechanisms with the goal of ensuring the privacy of pa-
tients’ diseases [15], features on users’ social network
profiles [33], and website visits in network traces [38]—
all of which relate to attribute privacy. Furthermore, re-
cent theoretical work [24] has shown that in some set-
tings, including certain applications of linear regression,
incorporating noise into query results preserves attribute
privacy. This led us to ask: can genomic privacy benefit
from the application of DP mechanisms in our setting?

To answer this question, we performed the first end-
to-end evaluation of DP in a medical application (Sec-
tion 5). We employ two recent algorithms on the IWPC
dataset: the functional mechanism of Zhang et al. [47]
for producing private linear regression models, and Vin-
terbo’s privacy-preserving projected histograms [44] for
producing differentially-private synthetic datasets, over
which regression models can be trained. These algo-
rithms represent the current state-of-the-art in DP mech-
anisms for their respective models, with performance re-
ported by the authors that exceeds previous DP mecha-
nisms designed for similar tasks.

On one end of our evaluation, we apply a model in-
verter to quantify the amount of information leaked about
patient genetic markers by e-DP versions of the IWPC
model. On the other end, we quantify the impact of
e on patient outcomes, performing simulated clinical
trials via techniques widely used in the medical litera-
ture [4, 14, 18, 19]. Our main results, a subset of which
are shown in Figure 1, show a clear trade-off between
patient outcomes and privacy:

• “Small e”-DP protects genomic privacy: Even though
DP was not specifically designed to protect attribute
privacy, we found that for sufficiently small e ( 1),
genetic markers cannot be accurately predicted (see the
line labeled “Disclosure, private LR” in Figure 1), and
there is no discernible difference between the model
inverter’s performance on the training and validation
sets. However, this effect quickly vanishes as e in-
creases, where genotype is predicted with up to 58%
accuracy (0.76 AUCROC). This is significantly (22%)
better than the 36% accuracy one achieves without the
models, and not far below (5%) the “best possible” per-
formance of a non-private regression model trained to
predict the same genotype using IWPC data.

2

End-‐to-‐end	  analysis	  of	  DP	  in	  warfarin	  case	  
Differen?ally	  private	  version	  of	  model	  hides	  whether	  individual	  contributed	  	  
to	  training	  data	  set	  with	  efficacy	  a	  func?on	  of	  privacy	  budget	  ε	  

	  	  

We	  performed	  end-‐to-‐end	  case	  study:	  	  
•  Evaluate	  model	  inversion	  disclosure	  risk	  for	  	  DP	  models	  
•  Use	  simulated	  clinical	  trials	  to	  evaluate	  u?lity	  of	  DP	  models	  

[Zhang	  et	  al.]	  func?onal	  mechanism	  for	  private	  linear	  regression	  



Other	  simple	  countermeasures?	  
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Figure 9: Reconstruction attack results from Mechanical Turk surveys. “Skilled workers” are those who

completed at least five MTurk tasks, achieving at least 75% accuracy.
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Figure 11: White-box MI vs. classification accuracy

on decision trees trained on FiveThirtyEight data

with the sensitive feature at each priority level `.

For this data, the optimal placement of the sensi-

tive feature is at the first level, achieving the best

classification accuracy while admitting MI accuracy

only 1% greater than baseline.

the level at which the sensitive feature occurs may a↵ect the
accuracy of the attack. To test this hypothesis, we imple-
mented a variant of CART learning that takes a parameter
` which specifies the priority at which the sensitive feature is
considered: the feature is only considered for splitting after
`�1 other features have already been selected, and removed
from consideration afterwards. We then sampled 90% of the
FiveThirtyEight dataset 100 times, and used this algorithm
to train a decision tree on each sample for every value of `.
We evaluated the classification accuracy of the tree alongside
white-box inversion performance.

The results are displayed in Figure 11 (we observed similar
trends for black-box performance). The e↵ectiveness of the
attack in this case is clearly a↵ected by the depth at which
the sensitive feature appears in the tree. When the feature
appears near the top or bottom of the tree, the attack fails
with greater probability than otherwise. Furthermore, al-
though prioritizing placement of the sensitive feature at a
particular level does impact model accuracy, there is an op-
timal placement in this case: when the feature is placed at
the top of the tree, classification accuracy is maximized while
inversion accuracy is only 1% greater than baseline guess-
ing. This suggests that it may be possible to design more
sophisticated training algorithms that incorporate model in-
version metrics into the splitting criteria in order to achieve
resistance to attacks without unduly sacrificing accuracy.

no rounding r = 0.001 r = 0.005 r = 0.01 r = 0.05

Figure 12: Black-box face reconstruction attack

with rounding level r. The attack fails to produce a

non-empy image at r = 0.1, thus showing that round-

ing yields a simple-but-e↵ective countermeasure.

To understand why attack performance is not monotone
in `, we counted the number of times each tree used the
sensitive feature as a split. This measure increases until it
reaches its maximum at ` = 8, and steadily decreases until
` = 12. The di↵erence in split frequency between ` = 8 and
` = 12 is approximately 6⇥. This is most likely because once
most of the features have been used, the training algorithm
deems further splitting unnecessary, thus omitting the sen-
sitive feature from many subtrees. The inversion algorithm
is unable to do better than baseline guessing for individu-
als matching paths through these subtrees, thus making the
attack less e↵ective.

Facial Recognition. Our attacks on facial recognition
models are all based on gradient descent. One possible de-
fense is to degrade the quality or precision of the gradient
information retreivable from the model. There is no obvious
way to achieve this in the white-box setting while preserv-
ing model utility, but in the black-box setting this might be
achieved by reducing the precision at which confidence scores
are reported. We tested this approach by rounding the score
produced by the softmax model, and running the black-box
reconstruction attack. The results are presented in Figure 12
for rounding levels r = {0.001, 0.005, 0.01, 0.05}; the attack
failed to produce an image for r = 0.1. “No rounding” corre-
sponds to using raw 64-bit floating-point scores to compute
numeric gradients. Notice that even at r = 0.05, the attack
fails to produce a recognizable image. This suggests that
black-box facial recognition models can produce confidence
scores that are useful for many purposes while remaining
resistant to reconstruction attacks.

ABacks	  that	  rely	  on	  confidence	  data:	  	  degrade	  it	  

Sensi?ve-‐feature-‐aware	  CART	  decision	  tree	  training	  
(see	  paper)	  

Rounding	  confidence	  values	  to	  nearest	  r	  

Our	  MI	  aBack	  against	  soimax	  with	  rounded	  confidences:	  



Model	  inversion	  and	  ML	  privacy	  
The image on the left is a face that was altered by computer processing. It may or may not correspond to one of the faces displayed to the

right of it.

If you believe that it does correspond to one of the other faces, please select the corresponding image. If you do not believe that it corresponds

to one of the other faces, select “Not Present”.

Altered Image

Fig. 10. Task shown to Mechanical Turk workers for reconstruction attack evaluation. The actual tasks shown to workers rendered the “altered” image above
the other images, while here we show them configured horizontally to save space.
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Fig. 11. Reconstruction attack results.

In 80% of the experiments, one of the five images contained
the individual corresponding to the label used in the attack.
As a control, 10% of the instances used a plain image from
the data set rather than one produced by MI-FACE. This
allowed us to gauge the baseline ability of the workers at
matching faces from the training set. In all cases, the images
not corresponding to the attack label were selected at random
from the training set. Workers were paid $0.08 for each task
that they completed, and given a $0.05 bonus if they answered
the question correctly, and workers were generally able to
provide a response in less than 40 seconds. They were allowed
to complete at most three tasks for a given experiment. As
a safeguard against random or careless responses, we only
allowed workers who have completed at least 1,000 jobs on
Mechanical Turk and achieved at least a 95% approval rating,
to complete the task.

algorithm time (s) epochs

Softmax 1.4 5.6
MLP 1298.7 3096.3
DAE 692.5 4728.5

Fig. 12. Attack performance.

1) Performance: We
ran the attack for each
model on an 8-core
Xeon machine with 16G
memory. The results are
shown in Figure 12.
Reconstructing faces out of the softmax model is very
efficient, taking only 1.4 seconds on average and requiring
5.6 epochs of gradient descent. MLP takes substantially
longer, requiring about 21 minutes to complete and on the
order of 3000 epochs of gradient descent. DAE requires less
time (about 11 minutes) but a greater number of epochs. This

Target Softmax MLP DAE

Fig. 13. Reconstruction of the individual on the left by Softmax, MLP, and
DAE.

is due to the fact that the search takes place in the latent
feature space of the first autoencoder layer. Because this has
fewer units than the visible layer of our MLP architecture,
each epoch takes less time to complete.

2) Accuracy results: The main accuracy results are shown
in Figure 11. In this figure, overall refers to all correct
responses, i.e., the worker selected the image corresponding
to the individual targeted in the attack when present, and
otherwise selected “Not Present”. Identified refers to instances
where the targeted individual was displayed among the test
images, and the worker identified the correct image. Excluded
referes to instances where the targeted individual was not
displayed, and the worker correctly responded “Not Present”.

Figure 11a gives results averaged over all responses,
whereas 11b only counts an instance as correct when a
majority (at least two out of three) users responded correctly.
In both cases, Softmax produced the best reconstructions,
yielding 75% overall accuracy and up to an 87% identifi-
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Open	  ques?ons:	  beBer	  aBacks,	  handling	  more	  
sophis?cated	  ML	  models,	  principled	  countermeasures	  

Adversarial	  access	  to	  models	  has	  subtle	  implica?ons	  



Exploi'ng	  Leakage	  	  
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