Exploiting Leakage in Searchable Encryption and Machine Learning

Tom Ristenpart

Covering joint work with:

David Cash, Paul Grubbs, Jason Perry (Searchable encryption) Matthew Fredrikson, Eric Lantz, Simon Lin, David Page, Somesh Jha (ML)

Plaintext keyword search

Appended-PRF Searchable Encryption

Appended-PRF Searchable Encryption

Works with existing plaintext storage interfaces

Two more schemes to consider

(2) Unordered appended-PRFs

Randomize order of PRF values The attached contract is ready for signature. Please print 2 documents and have Atmos ...

 $H_{K}(contract) H_{K}(ready) H_{K}(attach) ...$

(3) Encrypted index

Encrypt each document list under keyword-specific key

Qualitative comparison of schemes

Appended-PRF scheme used in industry

Unordered appended-PRF used in research literature

Mimesis Aegis [Lau et al. 2014] ShadowCrypt [He et al. 2014]

Encrypted index in literature & starting to appear in industry [Cash et al. 2014]

Qualitative comparison of schemes

Appended-PRF scheme used in industry

Unordered appended-PRF used in research literature

Encrypted index in literature & starting to appear in industry

Provable Ease of security deployment claims

Leakage-abuse attacks

All searchable encryption leaks information about plaintexts and queries. Appended-PRF case:

 $H_{K}(attach) H_{K}(contract) H_{K}(ready) ...$

Upload encrypted documents

Search: "H_K(contract)"

[Islam, Kuzu, Kantarcioglu – 2013] [Cash, Grubbs, Perry, R. – 2015]

Leakage-abuse attacks

All searchable encryption leaks information about plaintexts and queries. Appended-PRF case:

"Keyword 7813fed came second in Document 1" Keyword **Documents** (Keyword location) 7813fed 1, 7 ab34df 7813fed 873f63 ... 456abc3 8, 9, 1, 15, 200 Upload encrypted documents Search: "7813fed" **Adversarial** storage provider "Keyword 7813fed searched often" "Document 1 and 7 both contain (Search frequency) 7813fed" (Co-occurrence relationships)

Unordered appended-PRF: order of keywords not leaked Encrypted index: order of keywords not leaked & leakage only after queries made

[Islam, Kuzu, Kantarcioglu – 2013] [Cash, Grubbs, Perry, R. – 2015]

We don't know answers to basic security questions:

• Does leakage damage confidentiality?

 How much more security does one achieve via more complex schemes?

• What adversarial capabilities are likely to arise in practice?

Leakage-abuse attack taxonomy

Attacker goal	Query recovery		
	Plaintext recovery		
Attacker capabilities	Passive	Observe queries and stored ciphertexts	
	Active	Force insertion of documents and/or queries	
Document knowledge	Full	Know all plaintexts exactly	
	Partial	Know some plaintexts	
	Distributional	Know similar plaintexts	

IKK 2013 against encrypted index: Query recovery Passive Full

Simulations with Enron email corpus: 80% of queries recoverable We'll come back to this

Partial plaintext recovery against appended-PRF

[Cash, Grubbs,
Perry, R. - 2015]PlaintextPassivePartial

Partial plaintext recovery against appended-PRF

Plaintext recovery Passive Partial

Simulations with Enron email corpus

- 30,109 emails from employee sent_mail folders
- Adversary knows 20 random emails (0.06%)
- Simply match keywords in known emails to unknown

	The attached contract is ready for signature.
Unknown email plaintext	Please print 2 documents and have Atmos execute
	both and return same to my attention. I will re-
	turn an original for their records after ENA has
	signed. Or if you prefer, please provide me with
	the name / phone # / address of your customer and
	I will Fed X the Agreement.
Recovered information	attach contract signatur pleas print 2 document
	have execut both same will origin ena sign prefer
	provid name agreement

Randomizing hash order

Leaving hashes in document order makes attack easy

Simple change: randomize order of hashes to leak less information (sort by hash value)

Randomizing hash order

Leaving hashes in document order makes attack easy

Simple change: randomize order of hashes to leak less information (sort by hash value)

Order issue left implicit in prior work

Mimesis Aegis: randomizes order due to Bloom filter ShadowCrypt: implementation randomizes order, paper does not discuss

Chosen-email attacks

Plaintext recovery

Active Distributional

Chosen-email attacks

Plaintext recovery

Active Distributional

Email client					Keyword	Docume	nts
	89123fdbf32a665befg8819890fbacda 4320182321a1343187fabaedf3140fba		8819890fbacda abaedf3140fba	4	7813fed	1, 7	
				456abc3	A, 9, 1, 1	5, 200	
	456abc3 78	7813fed				Adver	sarial
-	Insert new email				\rightarrow	storag provid	ge der
			Disambiguate 2 by their expect	2 key ed fr	words equency		
Send victim an email		To: <u>victi</u> From: sa	m@victim.com ally@sally.net				
		Contrac	t signature				

Disambiguation performance

Keywords per chosen document

Related: split Enron into training and testing sets, train frequency on training Unrelated: train on distinct email corpus (Apache corpus)

Case studies of three attacks

1. Simple attack against *appended-PRF* Plaintext recoveryPassivePartial

2. Chosen-email attack against unordered appended-PRF

Plaintext recoveryActiveDistributional

3. Query recovery against encrypted index schemes

IKK query recovery attack

IKK detail expensive attack using simulated annealing to solve NP-complete problem sufficient to reveal queries

We give way simpler attack

Query recoveryPassiveFull

Attacker sees number of documents returned Many keywords appear in a unique number of documents Disambiguate with co-occurrence relationships

IKK vs "count" attack

Subset of Enron emails (known to attacker) Most popular x keywords considered 10% of keywords uniformly sampled and queried

Summary of leakage-abuse attacks

Provable security must be (at least) paired with empirical security analyses

Lots of open questions:

- Leakage of richer queries
- Role of updates
- Effect of re-encryption
- Viability of active attacks in practice

And challenges:

- Better data sets for simulations
- Query traces
- Countermeasures

Part 2: Machine learning model inversion

Machine learning (ML) systems

(1) Gather some labeled data

(2) Train ML model f from data

$$f(x_1, ..., x_n) = y$$

(3) Use f in some application or publish it for others to use

Increasing use of ML

Privacy concerns in machine learning?

Release of sensitive data?

Even de-identified data dangerous

[Sweeney '00] [Naranayan & Shmatikov '08] ...

k-anonymity [Sweeney '02] Differential privacy

[Dwork, McSherry, Nissim, Smith '06]

Overarching lesson:

. . .

Don't release sensitive data sets without due care

Privacy concerns in machine learning?

Release of sensitive data?

Even de-identified data dangerous

[Sweeney '00] [Naranayan & Shmatikov '08] ...

k-anonymity [Sweeney '02] Differential privacy

. . .

[Dwork, McSherry, Nissim, Smith '06]

What about risks related to adversarial access to (just) model f?

[Ateniese et al. 2013]: Determine one bit of info about DB given ability to download f

New privacy concerns in ML

Model inversion attacks:

[Fredrikson, Lantz, Lin, Jha, Page, R. – Security `14] [Fredrikson, Jha, R. – CCS `15]

(1) Linear regression for personalized medicine *Predict genotypes of patients*

(2) Decision trees trained from lifestyle surveys *Predict marital infidelity of training set members*

(3) Neural networks for facial recognition Recover recognizable images of training set members

Preliminary investigation of countermeasures Differential privacy Sensitive-feature-aware CART decision trees Rounded confidence values

Privacy in pharmacogenetics

[Fredrikson, Lantz, Lin, Jha, Page, R. – Security `14]

Case study in context of *personalized medicine*

WARFARINDOSING

www.WarfarinDosing.org

IWPC study:

- Linear regression based classifier
- Trained on demographics, health history, and genetic markers
- Predicts initial dose of warfarin
- [IWPC] researchers showed evidence that this outperformed clinical practice

Data set is publicly available (in de-identified form), but similar data sets must be private

WARFARINDOSING

www.WarfarinDosing.org

	Required Patient Information					
	Age: Sex: -Select- + Ethnicity: -Select- +					
Warfarin Dosing	Race: -Select-					
1	Weight: Ibs or kgs					
<u>Clinical Trial</u>	Height: (feet and inches) or (cms)					
Outcomes	Smokes: -Select- Liver Disease: -Select-					
	Indication: -Select-					
Hemorrhage Risk	Baseline INR: Randomize & Blind					
Patient Education	Amiodarone/Cordarone® Dose: mg/day					
	Statin/HMG CoA Reductase Inhibitor:					
Contact Us	Any azole (eq. Eluconazole): -Select-					
References	Sulfamethoxazole/Septra/Bactrim/Cotrim/Sulfatrim: -Select-					
<u>Glossary</u>	Genetic Information					
About Us	VKORC1-1639/3673: Not available/pending					
	CYP4F2 V433M: Not available/pending					
Jser: Patient:	GGCX rs11676382: Not available/pending					
<u>/ersion 2.42</u> Build : Feb 05, 2014	CYP2C9*2: Not available/pending					
	CYP2C9*3: Not available/pending					
	CYP2C9*5: Not available/pending					
	CYP2C9*6: Not available/pending					

Warfarin model inversion attack

[Fredrikson, Lantz, Lin, Jha, Page, R. – Security `14]

x_n takes on values in set {v₁,...,v_s}
(1) Compute feasible set of input vectors:

$$z_1 = (x_1, ..., x_{n-1}, v_1)$$

 $z_2 = (x_1, ..., x_{n-1}, v_2)$

 $z_s = (x_1, ..., x_{n-1}, v_s)$ (2) Compute $y_j = f(z_j)$ for each j (3) Output v_j that maximizes Linear regression model f

Realizes MAP estimator (optimal subject to info available)

Model inversion results for IWPC model

Model aids attacker in prediction almost as much as training directly on data set

New privacy concerns in ML

Model inversion attacks:

(1) Linear regression for personalized medicine *Predict genotypes of patients*

(2) Decision trees trained from lifestyle surveys Predict marital infidelity of training set members

(3) Neural networks for facial recognition Recover recognizable images of training set members

Preliminary investigation of countermeasures Differential privacy Sensitive-feature-aware CART Rounded confidence values

ML-as-a-service APIs

Sensitive decision tree models

538 steak survey GSS marital happiness study (see paper)

Survey of 332 people to determine if "risky" lifestyle choices correlates with steak preferences

$$f(x_1, ..., x_n) = y$$
Household income
Whether person gambles
Whether cheated on significant other
...
$$Frediction of how person
likes steak prepared:
- rare
- medium-rare
- medium
- medium-well$$

well-done

Black-box warfarin-like attack for 538 survey

<u>Given:</u>

x₁, ..., x_{n-1}
Actual steak preference y'
Marginal priors, queries to f
Confusion matrix **C** for f

Model inversion algorithm

Predict:

Infidelity status x_n

 $C_{y',y}$ = # training instances w/ steak type y' predicted as y

Simple black-box MAP estimator (like the warfarin one):

$$\underset{x_n}{\operatorname{arg\,max}} \ \frac{\mathbf{C}_{y',f(x_1,\dots,x_n)}}{\sum_{l\in Y}\mathbf{C}_{y',l}} \cdot \Pr\left[x_n\right]$$

Black-box warfarin-like attack for 538 survey

<u>Given:</u>

x₁, ..., x_{n-1}
Actual steak preference y'
Marginal priors, queries to f
Confusion matrix **C** for f

Model inversion algorithm

Predict:

Infidelity status x_n

 $C_{y',y}$ = # training instances w/ steak type y' predicted as y

		Accuracy	Precision	Recall
Performance:	Baseline guessing	82.9%	0.0%	0.0%
	MI attack	85.8%	85.7%	21.1%

BigML reveals confidence values

New MI attack using granular confidence data

<u>Given:</u>

x₁, ..., x_{n-1}
Actual steak preference y'
Marginal priors, queries to f
Confusion matrix **C** for f
Path counts

Predict:

Infidelity status x_n

New model inversion algorithm

C_{y',y} = # training instances w/ steak type y' predicted as y

	Accuracy	Precision	Recall
Baseline guessing	82.9%	0.0%	0.0%
MI attack	85.8%	85.7%	21.1%
MI attack w/ confidences	86.4%	100%	21.1%

New privacy concerns in ML

Model inversion attacks:

(1) Linear regression for personalized medicine Predict genotypes of patients

(2) Decision trees trained from lifestyle surveys *Predict marital infidelity of training set members*

(3) Neural networks for facial recognition Recover recognizable images of training set members

Preliminary investigation of countermeasures Differential privacy Sensitive-feature-aware CART Rounded confidence values

Model inversion for facial recognition

Bob

Harry

lan

Model inversion for facial recognition

Taking advantage of confidence values

Naïve brute-force search won't work

Taking advantage of confidence values

$$f(x_1, ..., x_n) = [y_{Bob}, ..., y_{Jake}]$$

Unknown pixel data

Vector of class confidences each in [0,1] Output label of highest confidence class

Insight:

confidences allows efficient gradient descent-based search

Find x₁,...,x_n with highest confidence for 'Bob'

Gradient descent:

- White-box we calculate symbolically
- Black-box need to do numerical estimation

Model (trained on AT&T faces)	Local white-box time (seconds)
Softmax	1
Multi-layer perceptron	1,298
Denoising autoencoder	692

Example outputs of MI attack for different models

Target

DAE

Inversion for three neural-network classifiers :

Softmax, Multi-layer perceptron, De-noising auto-encoder Trained on AT&T faces dataset (40 individuals, 400 images)

Recognizability?

Amazon Mechanical Turk to evaluate image reconstruction recognizability

The image on the left is a face that was altered by computer processing. It may or may not correspond to one of the faces displayed to the right of it.

If you believe that it does correspond to one of the other faces, please select the corresponding image. If you do not believe that it corresponds to one of the other faces, select "Not Present".

Altered Image

Not Present

Re-identification accuracy up to 95% for skilled workers

New privacy concerns in ML

Model inversion attacks:

(1) Linear regression for personalized medicine Predict genotypes of patients

(2) Decision trees trained from lifestyle surveys Predict marital infidelity of training set members

(3) Neural networks for facial recognition Recover recognizable images of training set members

Preliminary investigation of countermeasures Differential privacy Sensitive-feature-aware CART Rounded confidence values

Differential privacy

Given model f adversary can't learn whether any single individual contributed to training data set

Inversion success: Can't vary by > e^{ϵ} for dataset with or w/o individual

Guarantees nothing about absolute success

End-to-end analysis of DP in warfarin case

Differentially private version of model hides whether individual contributed to training data set with efficacy a function of privacy budget ε

[Zhang et al.] functional mechanism for private linear regression

We performed end-to-end case study:

- Evaluate model inversion disclosure risk for DP models
- Use simulated clinical trials to evaluate utility of DP models

Other simple countermeasures?

Attacks that rely on confidence data: degrade it

Our MI attack against softmax with rounded confidences:

no rounding r = 0.001 r = 0.005 r = 0.01 r = 0.05Rounding confidence values to nearest r

Sensitive-feature-aware CART decision tree training (see paper)

Model inversion and ML privacy

Adversarial access to models has subtle implications

<u>Open questions:</u> better attacks, handling more sophisticated ML models, principled countermeasures

Exploiting Leakage in Searchable Encryption and Machine Learning

Tom Ristenpart

Covering joint work with:

David Cash, Paul Grubbs, Jason Perry (Searchable encryption) Matthew Fredrikson, Eric Lantz, Simon Lin, David Page, Somesh Jha (ML)