Games in Networks: the price of anarchy, stability and learning

Éva Tardos Cornell University

Why care about Games?

Users with a multitude of diverse economic interests sharing a Network (Internet)

- browsers
- routers
- · servers

Selfishness:

Parties deviate from their protocol if it is in their interest

Model Resulting Issues as

Games on Networks

Main question: Quality of Selfish outcome

Well known: Central design can lead to better outcome than selfishness.

e.g.: Prisoner Dilemma

Question: how much better?

2 1 2 99 99 98 1 98

Our Games

 Routing and Network formation: Users select paths that connects their terminals to minimize their own delay or cost

Example: Routing Game

- Traffic subject to congestion delays
- cars and packets follow shortest path
 Congestion games: cost depends on congestion includes many other games

Computer Science Games

- Routing:
- routers choose path for packets though the Internet
- Bandwidth Sharing:
- · routers share limited bandwidth between processes
- Facility Location:
- Decide where to host certain Web applications
- Load Balancing
- Balancing load on servers (e.g. Web servers)
- Network Design:
- Independent service providers building the Internet

Congestion sensitive load balancing

Routing network:

Cost/Delay/Response time as a fn of load:

x unit of load \rightarrow causes delay $\ell_e(x)$

A congestion game

Model of Routing Game

- A directed graph G = (V,E)
- source-sink pairs s_i,t_i for i=1,...,k
- User i selects path P_i for traffic between s_i and t_i for each i=1,...,k

For each edge e a latency function $\ell_e(\cdot)$ Latency increasing with congestion $\ell_e(x)$ congestion: χ

Cost-sharing: a Coordination Game

- jobs i=1,...,k
- For each machine e a cost function e(•)
 - E.g. cloud computing

$$\ell_e(x) = \frac{c_e}{x}$$

Goal's of the Game

Personal objective: minimize

 $\ell_P(x)$ = sum of latencies or costs of edges along the chosen path P (with respect to flow x)

Overall objective:

 $C(x) = \text{total latency/cost of a flow } x := \Sigma_P \times_P \cdot \ell_P(x)$ delay summed over all paths used, where \times_P is the amount of flow carried by path P.

What is Selfish Outcome (1)?

Traditionally: Nash equilibrium

- Current strategy "best response" for all players (no incentive to deviate)

Theorem [Nash 1952]:

- Always exists if we allow randomized strategies

Price of Anarchy: cost of worst (pure) Nash

"socially optimum" cost

Price of Stability: worst → best

Selfish Outcome (2)?

- Does natural behavior lead no Nash?
- Which Nash?
- Finding Nash is hard in many games...
- What is natural behavior?
 - Best response?
 - learning?

Games with good Price of Anarchy/Stability

- Routing and load balancing: routers choose path [Koutsoupias-Papadimitriou '99], [Roughgarden-Tardos 02], etc
- Network Design: [Fabrikant et al'03], [Anshelevich et al'04], etc
- Facility location Game
- Placing servers (e.g. Web) to extract income [Vetta '02] and [Devanur-Garg-Khandekar-Pandit-Saberi-Vazirani'04]
- Bandwidth Sharing:

routers decide how to share limited bandwidth between many processes [Kelly'97, Johari-Tsitsiklis 04]

Example: Atomic Game (pure Nash)

n jobs and n machines with identical $\ell_e(x)$ functions

Pure Nash: each job selects a different machine, load = $\ell_e(1)$:

Optimal...

Load balancing:

machines $\ell_e(x)$

Example: Atomic Game (mixed Nash)

n jobs and n machines with identical $\ell_e(x)$ functions

Mixed Nash: e.g. each job selects uniformly random:

With high prob.

max load ~ log n/loglog n

 \Rightarrow expected load is approx

$$\rightarrow \sim \ell_e(1) + \ell_e(\log n)/n$$

a lot more when $\ell_e(x)$ grows fast

Load balancing:

Example: Cost-sharing (mixed vs pure)

n jobs and n machines with identical costs c_e/x functions

Pure Nash: select one machine to use. Total cost ce

Mixed Nash: e.g. each job selects uniformly random:

With high prob.

expected cost $\sim \Omega(n c_e)$

 $\Omega(n)$ times more than pure Nash

Learning?

Iterated play where users update play based on experience

Traditional Setting: stock market

m experts Noptions

Goal: can we do as well as the best expert?

Regret = long term average cost - average cost of single best strategy with hindsight.

Learning and Games

Goal: can we do as well as the best expert?

- As the single stock in hindsight?

Focus on a single player:

experts = strategies to play

Learn to play the best

strategy with hindsight?

Best depends on others

A Natural Learning Process

Iterated play where users update probability distributions based on experience

Example: Multiplicative update (Hedge) strategies 1,...,n

Maintain weights $w_e \ge 0$ probability $p_e \sim w_e$ all e

Update w_e to w_e (1- ϵ)^{cost(e)} α =1- ϵ think of ϵ ~ learning rate

Learning and Games

Regret = long term average cost - average cost of single best strategy with hindsight.

Nash = all players have no regret

Hart & Mas-Colell: general games → Long term average play is (coarse) correlated equilibrium

Correlated?

Correlate on history of play

(Coarse) correlated equilibrium

Coarse correlated equilibrium: probability distribution of outcomes such that for all players

expected cost \leq exp. cost of any fixed strategy

Correlated eq. & players independent = Nash

Learning:

Players update independently, but correlate on shared history

Example Correlated Equilibrium: Load Balancing

- n jobs and n machines with identical $\ell_e(x)$ functions
 - Select a k jobs and 1 machine at random and send all k jobs to the one machine.
 - Send all remaining jobs to different machines

Load balancing:

jobs

machines

Correlated equilibrium if two costs same

- •Correlated play cost: $\sim \ell_e(1) + k/n \ell_e(k)$
- •Fixed other strategy cost $\sim \ell_e(2)$

When $\ell_e(x)$ costs balance when $k=\sqrt{n}$: bad congestion

What are learning outcomes?

Blum, Even-Dar, Ligett'06: In non-atomic congestion games Routing without regret ⇒ learning converge to Nash equilibria 2006.

What about atomic games?

Hope: learning will not make users coordinate on bad equilibria

Quality of learning outcome

Price of Anarchy

Pure Price of Anarchy

OPT

Main question: Quality of Selfish outcome

Answer: depends on which learning...

Theorem: \forall correlated equilibrium is the limit point of no-regret play

Intelligent designer algorithm is no regret:

 Follow the designed sequence as long as all other players do.

Hope: natural learning process (Hedge) coordinates on good quality solutions

Quality of learning outcome

Roughgarden 2009

 In congestion games with any class of latency functions the worst price equilibrium same as quality loss in worst pure equilibrium

Yet in load balancing games...

R. Kleinberg-Piliouras-Tardos 2009

 natural learning process converges to pure Nash in almost all congestion games

Summary

We talked about Congestion Games (Routing)

- Learning (via Hedge algorithm) results in a weakly stable fixed point
- Almost always ⇒ weakly stable = pure Nash

Many natural questions:

- Other learning methods?
- Outcome of natural learning in other games?

Note: finding Nash can be hard

what does learning converge to?