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Abstract— We explore a novel, free-space optics based
approach for building data center interconnects. It uses
a digital micromirror device (DMD) and mirror assembly
combination as a transmitter and a photodetector on top of
the rack as a receiver (Figure 1). Our approach enables all
pairs of racks to establish direct links, and we can recon-
figure such links (i.e., connect different rack pairs) within
12 µs. To carry traffic from a source to a destination rack,
transmitters and receivers in our interconnect can be dynam-
ically linked in millions of ways. We develop topology con-
struction and routing methods to exploit this flexibility, in-
cluding a flow scheduling algorithm that is a constant fac-
tor approximation to the offline optimal solution. Experi-
ments with a small prototype point to the feasibility of our
approach. Simulations using realistic data center workloads
show that, compared to the conventional folded-Clos inter-
connect, our approach can improve mean flow completion
time by 30–95% and reduce cost by 25–40%.
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1. INTRODUCTION
The traditional way of designing data center (DC)

networks—electrical packet switches arranged in a multi-
tier topology—has a fundamental shortcoming. The design-
ers must decide in advance how much capacity to provision
between top-of-rack (ToR) switches. Depending on the pro-
visioned capacity, the interconnect is either expensive (e.g.,
with full-bisection bandwidth) or it limits application perfor-
mance when demand between two ToRs exceeds capacity.
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Figure 1: ProjecToR interconnect with unbundled trans-
mit (lasers) and receive (photodetectors) elements.

Enabler
Tech.

Seamless Fan-
out

Reconfig.
time

Helios, c-Thru, Pro-
teus, Solstice [16, 26,
37, 38]

OCS No 100-
320

30 ms

Flyways, 3DBeam [23,
40]

60GHz No ⇡70 10 ms

Mordia [33] OCS No 24 11 µs
Firefly [22] FSO Yes 10 20 ms
ProjecToR FSO Yes 18,432 12 µs

Table 1: Properties of reconfigurable interconnects.

Many researchers have recognized this shortcoming and
proposed reconfigurable interconnects, using technologies
that are able to dynamically change capacity between pairs
of ToRs. The technologies that they have explored include
optical circuit switches (OCS) [16,25,26,33,37,38], 60 GHz
wireless [23, 40], and free-space optics (FSO) [22].

However, our analysis of traffic from four diverse pro-
duction clusters shows that current approaches lack at least
two of three desirable properties for reconfigurable intercon-
nects: 1) Seamlessness: few limits on how much network
capacity can be dynamically added between ToRs; 2) High
fan-out: direct communication from a rack to many others;
and 3) Agility: low reconfiguration time.

Table 1 compares the existing reconfigurable intercon-
nects with respect to these three properties. Most approaches
(rows 1–3) are not seamless because they use a second, re-
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Problem Settings
• Demand distribution,     over  

• Pairwise communication demands

• Can be represented as directed weighted graph

• A network 

• Metric of interest: Expected Path Length
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original

D

2 Demand-Aware Network Designs of Bounded Degree

direct links or at least short communication paths can be established between frequently
communicating ToR switches. Such links can be implemented using a bounded number of
lasers, mirrors, and photodetectors per node [16]. First experiments with this technology
demonstrated promising results: although the interconnecting networks is of bounded degree,
short routing paths can be provided between communicating nodes.

The problem of designing demand-aware networks is a fundamental one, and finds
interesting applications in many distributed and networked systems. For example, while
many peer-to-peer overlay networks today are designed towards optimizing the worst-case
performance (e.g., minimal diameter and/or degree), it is an intriguing question whether the
“hard instances” actually show up in real life, and whether better topologies can be designed
if we are given more information about the actual communication patterns these networks
serve in practice.

While the problem is natural, surprisingly little is known today about the design of
demand-aware networks. At the same time, as we will show in this paper, the design of
demand-aware networks is related to several classic combinatorial problems.

Our vision is reminiscent in spirit to the question posed by Sleator and Tarjan over 30
years ago in the context of binary search trees [9, 23]: While there is an inherent lower
bound of �(log n) for accessing an arbitrary element in a binary search tree, can we do better
on some “easier” instances? The authors identified the entropy to be a natural metric to
measure the performance under actual demand patterns. We will provide evidence in this
paper that the entropy, in a slightly di�erent flavor, also plays a crucial role in the context of
network designs, establishing an interesting connection.
The Problem: Bounded Network Design. We consider the following network design
problem, henceforth referred to as the Bounded Network Design problem, short BND.
We consider a set of n nodes (e.g., top-of-rack switches, servers, peers) V = {1, . . . , n}
interacting according to a certain communication pattern. The pattern is modelled by D,
a discrete distribution over communication requests defined over V ◊ V . We represent this
distribution using a communication matrix MD[p(i, j)]n◊n where the (i, j) entry indicates the
communication frequency, p(i, j), from the (communication) source i to the (communication)
destination j. The matrix is normalized, i.e.,

q
ij p(i, j) = 1. Moreover, we can interpret

the distribution D as a weighted directed demand graph GD, defined over the same set of
nodes V : A directed edge (u, v) œ E(GD) exists i� p(u, v) > 0. We set the edge weight to
the communication probability: w(i, j) = p(i, j).

In turn, our objective is to design an unweighted, undirected Demand-Aware Network (DAN)
defined over the set of nodes V and the distribution D, henceforth denoted as N(D) or
just N when D is clear from the context. The objective is that N(D) optimally serves the
communication requests from D under the constraint that N must be chosen from a certain
family of desired topologies N . In particular, we are interested in sparse networks (i.e.,
having a linear number of edges) with bounded degree � (i.e., nodes have a small number of
lasers [16]), and we denote the family of �-bounded degree graphs by N

�

.
Note that the designed network can be seen as “hosting” the served communication

pattern, i.e., the demand graph is embedded on the designed network. Accordingly, we will
sometimes refer to the demand graph as the guest network and to the designed network as
the host network.

Our objective is to minimize the expected path length of the designed host network N œ N :
For u, v œ V (N), let dN (u, v) denote the shortest path between u and v in N . Given a
distribution D over V ◊ V and a graph N over V , the Expected Path Length (EPL) of route

N = (V,E)

Avin et al. 3
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original

- hop distance between u,v in N
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original

N

N⇤ = arg min
N2N

EPL(D, N)

Avin et al. 3

1 2 3 4 5 6 7
1 0 2

65
1
13

1
65

1
65

2
65

3
65

2 2
65

0 1
65

0 0 0 2
65

3 1
13

1
65

0 2
65

0 0 1
13

4 1
65

0 2
65

0 4
65

0 0

5 1
65

0 3
65

4
65

0 0 0

6 2
65

0 0 0 0 0 3
65

7 3
65

2
65

1
13

0 0 3
65

0

(a) (b) (c)

Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original
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Relation to Other Problems
• Minimum Linear Arrangement (MLA)

2

5

1

1

2

3

1

2

2

5

4

3

1

2

3 4

5

6

7
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• Spanners 
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a lower bound on the expected path length of local routing tree designs [21] where X, Y
are the random variables distributed according to the marginal distribution of the sources
and destinations in D. This bound is tight for the limited case where D is a product
distribution (i.e., p(i, j) = p(i)p(j)). Additionally the optimal binary search tree can be
computed e�ciently for every D using dynamic programming [21]. In the current work we
extend this line of research by studying more general distributions and a larger family of
host networks (beyond trees [2, 21] and grids [1]).

3 Preliminaries

We start with some notation about D. Let D[i, j] or p(i, j) denote the probability that
source i routes to destination j. Let p(i) denote the probability that i is a source, i.e.,
p(i) =

q
j p(i, j). Similarly let q(j) denote the probability that j is a destination. Let X, Y

be random variables describing the marginal distribution of the sources and destinations
in D, respectively. Let ≠æD [i] denote the normalized i’th row of D, that is, the probability
distribution of destinations given that the source is i. Similarly let Ω≠D [j] denote the normalized
j’th column of D, that is the probability distribution of sources given that the destination
is j. Let Yi and Xj be random variables that are distributed according to ≠æD [i] and Ω≠D [j],
respectively. We say that D is regular if GD is a regular graph (both in terms of in and out
degrees). We say that D is uniform if for every D[i, j] > 0, D[i, j] = 1

m and m is the number
of edges in GD. We say that D is symmetric if D[i, j] = D[j, i].

We will show that a natural measure to assess the quality of a designed network relates to
the entropy of the communication pattern. For a discrete random variable X with possible
values {x

1

, . . . , xn}, the entropy H(X) of X is defined as

H(X) =
nÿ

i=1

p(xi) log
2

1
p(xi)

(1)

where p(xi) is the probability that X takes the value xi. Note that, 0 · log
2

1

0

is considered as
0. If p̄ is a discrete distribution vector (i..e, pi Ø 0 and

q
i pi = 1) then we may write H(p̄)

or H(p
1

, p
2

, . . . pn) to denote the entropy of a random variable that is distributed according
to p̄. If p̄ is the uniform distribution with support s (s being the number of places in the
distribution with pi > 0, i.e., pi = 1/s) then H(p̄) = log s.

Using the decomposition (a.k.a. grouping) properties of entropy the following is well-known
[8]:

H(p
1

, p
2

, p
3

. . . pm) Ø H(p
1

+ p
2

, p
3

. . . pm) (2)

and

H(p
1

, p
2

, p
3

. . . pm) Ø (1 ≠ p
1

)H( p
2

1 ≠ p
1

,
p

3

1 ≠ p
1

. . .
pm

1 ≠ p
1

) (3)

For a joint distribution over X, Y , the joint entropy is defined as

H(X, Y ) =
ÿ

i,j

p(xi, yj) log
2

1
p(xi, yj) (4)
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Also recall the definition of the conditional entropy H(X|Y ):

H(X|Y ) =
ÿ

i,j

p(xi, yj) log
2

1
p(xi | yj) =

ÿ

j

p(yj)
ÿ

i

p(xi | yj) log
2

1
p(xi | yj)

=
nÿ

j=1

p(yj)H(X|Y = yj) (5)

For X and Y defines as above from D we also have

H(X|Y ) =
nÿ

j=1

p(yj)H(X|Y = yj) =
nÿ

j=1

q(j)H(Ω≠D [j]) =
nÿ

j=1

q(j)H(Xj) (6)

H(Y |X) is defined similarly and we note that it may be the case that H(X|Y ) ”= H(Y |X).
We may simply write H for the entropy if the purpose is given by the context. By default, we
will denote by H the entropy computed using the binary logarithm; if a di�erent logarithmic
basis � is used to compute the entropy, we will explicitly write H

�

.
We recall the definition of a graph spanner. Given a graph G = (V, E), a subgraph

GÕ = (V, EÕ) is a t-spanner of G if for every u, v œ V , dG(u, v) Ø t · dGÕ(u, v) and t is the
distortion of the spanner. We say that GÕ = (V, EÕ) is a graph metric t-spanner if it is not a
subgraph of G, i.e., it may have additional edges that are not in G.

4 A Lower Bound

We now establish an interesting connection to information theory and show that the con-
ditional entropy serves as a natural metric for bounded network designs. In particular, we
prove that the expected path length BND(D, �) in any demand-aware bounded network
design, is at least in the order of the conditional entropy. Formally:

I Theorem 2. Consider the joint frequency distributions D. Let X, Y be the random
variables distributed according to the marginal distribution of the sources and destinations in
D, respectively. Then

BND(D, �) Ø �(max(H
�

(Y |X), H
�

(X|Y ))

Before delving into the proof, let EPL(p̄, T ) denote the expected path length in a tree
T from the root to its nodes where the expectation it taking over a distribution p̄. That is
EPL(p̄, T ) =

q
i pidT (root, i). We recall the following well-known theorem:

I Theorem 3 ([17], restated.). Let H(p̄) be the entropy of the frequency distribution p̄ =
(p

1

, p
2

, . . . , pn). Let T be an optimal binary search tree built over the above frequency
distribution. Then EPL(p̄, T ) Ø 1

log 3

H(p̄).

Namely, the entropy H(p̄), is a lower bound on the expected path length from the root to
the nodes in the tree. For higher degree graphs, we can extend the result:

I Lemma 4. Let H
�

(p̄) be the entropy (calculated using the logarithm of base �) of frequency
distribution p̄ = (p

1

, p
2

, . . . , pn). Let T be an optimal �-ary search tree built over the above
frequency distribution. Then, EPL(p̄, T ) Ø 1

log(�+1)

H
�

(p̄).

The proof almost directly follows from the proof of Theorem 3 in [17], by extending properties
of binary trees to �-ary trees, see the appendix for details. We now prove the lower bound.
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original

6 Demand-Aware Network Designs of Bounded Degree

Also recall the definition of the conditional entropy H(X|Y ):

H(X|Y ) =
ÿ

i,j

p(xi, yj) log
2

1
p(xi | yj) =

ÿ

j

p(yj)
ÿ

i

p(xi | yj) log
2

1
p(xi | yj)

=
nÿ

j=1

p(yj)H(X|Y = yj) (5)

For X and Y defines as above from D we also have

H(X|Y ) =
nÿ

j=1

p(yj)H(X|Y = yj) =
nÿ

j=1

q(j)H(Ω≠D [j]) =
nÿ

j=1

q(j)H(Xj) (6)

H(Y |X) is defined similarly and we note that it may be the case that H(X|Y ) ”= H(Y |X).
We may simply write H for the entropy if the purpose is given by the context. By default, we
will denote by H the entropy computed using the binary logarithm; if a di�erent logarithmic
basis � is used to compute the entropy, we will explicitly write H

�

.
We recall the definition of a graph spanner. Given a graph G = (V, E), a subgraph

GÕ = (V, EÕ) is a t-spanner of G if for every u, v œ V , dG(u, v) Ø t · dGÕ(u, v) and t is the
distortion of the spanner. We say that GÕ = (V, EÕ) is a graph metric t-spanner if it is not a
subgraph of G, i.e., it may have additional edges that are not in G.

4 A Lower Bound

We now establish an interesting connection to information theory and show that the con-
ditional entropy serves as a natural metric for bounded network designs. In particular, we
prove that the expected path length BND(D, �) in any demand-aware bounded network
design, is at least in the order of the conditional entropy. Formally:

I Theorem 2. Consider the joint frequency distributions D. Let X, Y be the random
variables distributed according to the marginal distribution of the sources and destinations in
D, respectively. Then

BND(D, �) Ø �(max(H
�

(Y |X), H
�

(X|Y ))

Before delving into the proof, let EPL(p̄, T ) denote the expected path length in a tree
T from the root to its nodes where the expectation it taking over a distribution p̄. That is
EPL(p̄, T ) =

q
i pidT (root, i). We recall the following well-known theorem:

I Theorem 3 ([17], restated.). Let H(p̄) be the entropy of the frequency distribution p̄ =
(p

1

, p
2

, . . . , pn). Let T be an optimal binary search tree built over the above frequency
distribution. Then EPL(p̄, T ) Ø 1

log 3

H(p̄).

Namely, the entropy H(p̄), is a lower bound on the expected path length from the root to
the nodes in the tree. For higher degree graphs, we can extend the result:

I Lemma 4. Let H
�

(p̄) be the entropy (calculated using the logarithm of base �) of frequency
distribution p̄ = (p

1

, p
2

, . . . , pn). Let T be an optimal �-ary search tree built over the above
frequency distribution. Then, EPL(p̄, T ) Ø 1

log(�+1)

H
�

(p̄).

The proof almost directly follows from the proof of Theorem 3 in [17], by extending properties
of binary trees to �-ary trees, see the appendix for details. We now prove the lower bound.

N⇤ = arg min
N2N

EPL(D, N)
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I Theorem 7. Let D be a communication request distribution where �
avg

is the average
degree in GD (so the number of edges m = �avg·n

2

). Let X, Y be the random variables of the
sources and destinations in D, respectively. Then, it is possible to generate a DAN N with
maximum degree 12�

avg

, such that

EPL(D, N) Æ O(H(Y | X) + H(X | Y )) (8)

This is asymptotically optimal when �
avg

is a constant.
Proof. Recall that GD (for short G) is a directed graph and define in-degree and out-degree
in the canonical way. Let the (undirected) degree of a node, be the sum of its in-degree and
out-degree and denote the average degree as �

avg

. Denote the n/2 nodes with the lowest
degree in G as low degree nodes and the rest as high degree nodes. Note that each low degree
node has a degree at most 2�

avg

and both its in-degree and out-degree must be low. A node
with out-degree (in-degree) larger than 2�

avg

is called a high out-degree (high in-degree) node
(some nodes are neither low or high degree nodes).

The construction of N will be done in two phases. In the first phase, we consider only
(directed) edges (u, v) between a high out-degree u and a high in-degree node v. We subdivide
each such edge with two edges that connect u to v via a helping low degree node ¸, i.e.,
removing the directed edge (u, v) and adding the edges (u, ¸) and (v, ¸). Note that there are
at most m such edges, so we can distribute the help between low degree nodes in such a way
that each low degree node helps at most �

avg

such edges. Call the resulting graph GÕ.
Accordingly, we also create a new matrix DÕ which, initially, is identical to D. Then for

each (u, v) and ¸ as above we set DÕ(u, v) = 0, DÕ(u, ¸) = D(u, l) + D(u, v) and DÕ(¸, v) =
D(l, v) + D(u, v). Note that DÕ is not a distribution matrix anymore, as the sum of all the
entries is more than one, but it has the following property: For each high degree node i, we
have H(

≠æDÕ[i]) Æ H(≠æD [i] and H(
Ω≠DÕ[i]) Æ H(Ω≠D [i]) (see Eq. (2)).

In the second phase, we construct N from GÕ. Consider each node i with high out-degree
and create a nearly optimal binary tree ≠æ

B i according to
≠æDÕ[i] using the method of [17]. Add

an edge from i to the root of ≠æ
B i and delete all the out-edges from i from GÕ. Similarly

consider each node j with high in-degree and create a nearly optimal binary tree Ω≠
B j according

to DÕ[i] using the method of [17]. Add an edge from j to the root of Ω≠
B j and delete all the

in-edges of j from GÕ. This completes the construction of N .
We first bound the maximum degree in N . First consider a low degree node ¸, helping an

edge (u, v), i.e., u is high out-degree and v is high-indegree. So ¸ is part of both u’s and v’s
binary tree, hence ¸’s degree increases by at most 6 (two times degree 3 for being an internal
node). Note that ¸ needs to help at most �

avg

edges itself. For each of these �
avg

edges, ¸’s
degree will be at most 6, resulting in a degree of 6�

avg

. Since ¸’s degree was at most 2�
avg

,
in the worst case, ¸ was associate with 2�

avg

high in-degree or out-degree nodes, i.e., ¸ will
be present in all these 2�

avg

trees, which results in another 6�
avg

degrees for ¸. In total, ¸’s
degree is 12�

avg

. If a node h has both high out-degree and high in-degree, then its degree
will be two: h is connected to the root of the tree created of its out-edges and to the root of
the tree created of its in-edges. If a node u is only a high out-degree node, its degree in N is
bounded by 6�

avg

+ 1 (and similarly for a node u which is only a high in-degree node). If a
node is neither high nor low degree, then its degree in N is bounded by 12�

avg

(originally it
was up to 4�

avg

in GÕ). We now bound EPL(D, N). Recall that from Lemma 5 and Eq. (2),
we have,

EPL(
≠æDÕ[i], ≠æ

B i) Æ O(H(Y | X = i))
and

EPL(
Ω≠DÕ[j], Ω≠

B j) Æ O(H(X | Y = j))

N
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original

Continuous-Discrete Design
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original

s(xi) = [xi, xi+1)

x1= 0

x2= F(u1)

xi = F(ui-1) 

xi+1F(ui) =

cs(i) = [cw(i), cw(i)+2-l(ui))

4s

left(s4)

right(s4)

x1= 0

x2= 0.1

x3= 0.25

x4= 0.45

0.7 = x5

0.8 = x6

cs4 

1u
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Figure 2: The edges of a point in the continuous graph Gc.

and denoted by ⇢(x) = max
i,j

|si|
|sj | . The total number of edges in G

x

without

the ring edges is at most 3n�1, the maximum out-degree without the ring edges

is at most ⇢(x) + 4, and the maximum in-degree without the ring edges is at

most d2⇢(x)e+ 1.

In the original construction by Naor and Wieder, the x
i

s were assumed to be

uniform random variables. The goal is to o↵er a constant degree network with

equal loads, and ensure smoothness (i.e., minimal ⇢). The authors also show

that the Distance Halving construction resembles the well known De Bruijn

graphs [24]: if x
i

= i

n

and n = 2r then the discrete Distance Halving graph G
x

without the ring edges is isomorphic to the r-dimensional De Bruijn graph.

Based on this the authors propose two greedy lookup algorithms with a path

length of logarithmic order (i.e., r). We use similar ideas in our routing.

4. CACD Topology Design

We propose a coding-based topology design which reflects communication

patterns. We will show that our solution provides an e�cient routing (the

expected path length is the minimum of the source and destination distribution

entropy), but also meets our requirements in terms of sparsety, fairness and

robustness.

The basic idea behind our Communication-Aware Continuous-Discrete (CACD)

topology design is simple. Similar to the classic continuous-discrete approach,

we start by designing a continuous network G
c

in the 1-dimensional cyclic

space I = [0, 1). This continuous network is subsequently discretized so as

10
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original
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Figure 4.1: Shannon-Fano-Elias Code calculation.

For each xi in X, let W (F̄ (xi) be the binary representation of F̄ (xi). Let l(xi) be the

code word length of xi. Shannon-Fano-Elias coding considers the following length such that

the codewords are unique:

l(xi) = dlog 1

p(xi)
e+ 1 (4.4)

And the codeword for xi, cw(xi), is defined as the l(xi) prefix of W (F̄ (xi)) (i.e., the first

l(xi) bits after decimal point). Formally,

cw(xi) = bW (F̄ (xi))cl(xi) (4.5)

Shannon-Fano-Elias coding guarantees that the code words, cw(xi), are unique and the code

is a prefix code. Algorithm 1 that builds Shannon-Fano-Elias code is given below.

24

directed edge from each node (u
1

. . . ur) to nodes (u
2

. . . ur0) and (u
2

. . . ur1). De Bruijn

graphs make excellent choices for a network structure and parallel computations since they

have low degree, very short diameter, and good expansion [6].

Figure 4.4 presents a de Bruijn graph, where the alphabet contains two symbols ’0’

and ’1’ (d = 2), and dimension is equal to 3.

000 

111 

011 

001 100 

110 

010 

101 

0 

1 

1 

1 

1 1 

1 

1 

1 

0 

0 0 

0 

0 

0 

0 

Figure 4.4: 3-dimensional De-Bruijn graph example.

The r-dimensional De Bruijn graph is a well investigated combinatorial object. The

ease with which short routes are found makes it a popular topology for parallel algorithms.

For more overview of various properties of this graph, see Leighton [15].
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Shannon-Fano-Elias Coding De-Bruijn Graph 
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Figure 1 Example of the bounded network design problem. (a) A given demand distribution D
(which in this case is symmetric). (b) The demand graph GD (with non-normalized weights). Nodes
1, 3, and 7 have a degree more than 3. (c) An optimal solution DAN N with � = 3. In this case, the
solution is not a subgraph but contains auxiliary edges (e.g., {2, 5}), and EPL(D, N) = 1.19 while
H(X | Y ) = 1.08 (the Shannon entropy to the base 3 is H(X) = 1.68).

requests is defined as:

EPL(D, N) = ED[dN (·, ·)] =
ÿ

(u,v)œD
p(u, v) · dN (u, v)

Since routing across the host network usually occurs along shortest paths, the expected
path length captures the average hop-count of a route (e.g., latency incurred or energy
consumed along the way).

Succinctly, the Bounded Network Design (BND) problem is to minimize the expected
path length and is defined as follows:

I Definition 1 (Bounded Network Design). Given a communication distribution, D and
a maximum degree �, find a host graph N œ N

�

that minimizes the expected path length:

BND(D, �) = min
NœN�

EPL(D, N)

Our Contributions. This paper initiates the study of a fundamental problem: the design
of demand-aware communication networks. While our work is motivated by recent trends in
datacenter network designs, our model is natural and finds applications in many distributed
and networked systems (e.g., peer-to-peer overlays). The main contribution of this paper is to
establish an interesting connection of the network design problem to the conditional entropy
of the communication matrix. In particular, we present a lower bound on the expected path
length of a network with maximum degree � which is proportional to the conditional entropy
of D, H

�

(X | Y ) + H
�

(Y | X) where � is the base of the logarithm used for calculating
the entropy. While this lower bound can be as high as log n, many distributions it can be
much lower (even constant). Our main results are presented in Theorem 7 which proves a
matching upper bound for the case when D is a sparse distribution, and Theorem 12 which
proves a matching upper bound for the case when D is a regular and uniform (but maybe
dense) distribution of a locally bounded doubling dimension. Also in these two cases the
conditional entropy could range from a constant and up to log n. At the heart of our technical
contribution is a novel technique to transform a low-distortion network of maximum degree
� to a low-degree network whose maximum degree equals the average degree of the original

Theorem 1. For any request distribution R, the expected path length satisfies

EPL(R, G,A) < min{H(p
s

), H(p
d

)}+ 2.

Proof. By Lemmas 1 and 2, for any two nodes source u
i

and destination u
j

,

the routing path length is at most the codeword length. By Eq. (7) p is the

marginal distribution with minimum entropy and the distribution by which we

build the network. Based on Eq. (5) and Eq. (6), the expected routing path

length is

EPL(R, G,A) =
X

ui,uj2V

R
ij

·Route
G,A(i, j)


X

uj2V

X

ui2V

R
ij

· `(j) =
X

uj2V

`(j)
X

ui2V

R
ij

=
X

uj2V

p
j

· `(j) =
X

uj2V

p
j

(dlog 1

p
j

e+ 1)

<
X

uj2V

p
j

(log
1

p
j

+ 2) = H(p) + 2

A nice observation is that we can devise an Improved Routing Algorithm

by combining forward routing and backward routing. Each node that initiates

a routing decides on the routing mode. If the destination node codeword is

shorter than the source codeword, it selects the forward routing mode, other-

wise it selects the backward routing mode. A relay node processes the message

according to the mode, defined by the source node. Let the improved algorithm

be denoted by A⇤.

Claim 2. For any two nodes source u
i

and destination u
j

, the routing path

length using the improved algorithm A⇤ will be min(`(i), `(j)).

In other words, combining forward and backward routing can only help

and EPL(R, G,A⇤)  EPL(R, G,A).

Routing Under Failure. In case of edge failures, our routing algorithms could

be easily resumed by sending the message to any available neighbor. We add
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Future Work / Discussion
• New “Graph Entropy” measure for networks  

• Online algorithms - Amortize analysis  
• Splay-nets example    

• Distributed algorithms? 

• Practical use ???
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