Demand Aware Network (DAN) Design Some Results and Open Questions

Chen Avin

Joint work with Stefan Schmid, Kaushik Mondal, Alexandr Hercules, Andreas Loukas

Motivation

- Demand Aware Network Design?
 - "self-adjust" the networks' routing paths (topology) to routing requests
- Data Centres?
 - ProjecTor / Wireless technologies
 - Skype example?
- Peer-to-Peer Networks

Outline

- Motivation
- Problem Settings
 - Relation to other problems
- Lower Bounds
- Bounded degree network design
- The continuous discrete approach
- Future work

Problem Settings

- Demand distribution, \mathcal{D} over $V \times V$.
 - Pairwise communication demands
 - Can be represented as directed weighted graph
- A network N = (V, E)
- Metric of interest: Expected Path Length

$$\operatorname{EPL}(\mathcal{D}, N) = \mathbb{E}_{\mathcal{D}}[\operatorname{d}_{N}(\cdot, \cdot)] = \sum_{(u,v)\in\mathcal{D}} \operatorname{p}(u,v) \cdot \operatorname{d}_{N}(u,v)$$

 $d_N(u, v)$ - hop distance between u, v in N

Problem Settings

- Demand distribution, ${\cal D}$
- Expected path length

$$\operatorname{EPL}(\mathcal{D}, N) = \mathbb{E}_{\mathcal{D}}[\operatorname{d}_{N}(\cdot, \cdot)] = \sum_{(u,v)\in\mathcal{D}} \operatorname{p}(u, v) \cdot \operatorname{d}_{N}(u, v)$$

- Desired topology family $\,\mathcal{N}\,$
 - e.g., bounded degree, trees, sparse, etc.
- Optimal Demand Aware Network (DAN)

$$N^* = \arg\min_{N \in \mathcal{N}} \operatorname{EPL}(\mathcal{D}, N)$$

Relation to Other Problems

• Minimum Linear Arrangement (MLA)

Relation to Other Problems

- Minimum Linear Arrangement (MLA)
- Embeddings (guest, host graphs)
- Spanners
- Information Theory / Coding

• Entropy:
$$H(X) = \sum_{i=1}^{n} p(x_i) \log_2 \frac{1}{p(x_i)}$$

- Conditional Entropy: $H(X|Y) = \sum_{i=1}^{n} p(y_i)H(X|Y = y_i)$
- Coding Expected code length

Lower Bound

- For a Δ bounded degree <code>DAN</code>
- Theorem

 $N^* \ge \Omega(\max(H_{\Delta}(Y|X), H_{\Delta}(X|Y)))$

- Proof Idea (using coding):
 - Replacing each row with an optimal Δ -ary tree
 - Same for columns
 - Optimal code length is larger than row Entropy

Bounded Degree DAN

- Bounded (e.g., Δ = constant) degree
- Theorem: Can design "optimal" network N, s.t

 $EPL(\mathcal{D}, N) \le O(H(Y \mid X) + H(X \mid Y))$

for,

- Sparse distributions (weighted, directed)
- Local doubling dimension distribution
 - Possibly dense but uniform and regular

Sparse Distributions

• Proof idea

Optimal bounded degree tree

Sparse Distributions

• Proof idea

Optimal bounded degree tree

Sparse Distributions

Proof idea i

Problem

Optimal bounded degree tree

Doubling Dimensions Dist.

Local Doubling Dimension distribution

2-hops balls can be covered by 1-hop balls

Doubling Dimensions Dist.

Local Doubling Dimension distribution

2-hops balls can be covered by 1-hop balls

• Can be a dense graph

• Greedy routing

	1	2	3	4	5	6	7
1	0	_2_	1	1	1	_2_	3
		65	13	65	65	65	65
2	2	0	1	0	0	0	_2_
-	65	Ū	65	Ū	Ū	Ũ	65
3	1	1	0	2	0	0	1
5	13	65	Ŭ	65	Ŭ	U	13
4	1	0	2	0	4	0	0
	65	Ŭ	65	Ŭ	65	U	Ŭ
5	1	0	3	4	0	0	0
5	65	U	65	65	U	U	U
6	2	0	0	0	0	0	3
0	65	0	U	0	0	U	65
7	3	2	1	0	0	3	0
1	65	65	13	0	0	65	0

• Greedy routing

Shannon-Fano-Elias Coding

	1	2	3	4	5	6	7
1	0	2	1	1	1	2	3
		65	13	65	65	65	65
2	2	0	1	0	0	0	2
-	65	Ũ	65	Ũ	Ū	Ū	65
2	1	1	0	2	۵	۵	1
5	13	65	0	65	0	0	13
4	1	~	2	~	4	~	~
4	65	0	65	0	65	0	0
	1		2	4	05		
5	<u> </u>	0		4	0	0	0
	65		65	65			
6	2	0	0	0	\mathbf{O}	\mathbf{O}	3
Ŭ	65	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	65
7	3	2	1	۵	۵	3	۵
1	65	65	13	U	U	65	U

De-Bruijn Graph

- Greedy routing
- Theorem:
 - Linear size
 - Fair (please explain)
 - Robust to failures
 - Expected path length:

 $EPL(\mathcal{R}, G, \mathcal{A}) < \min\{H(\boldsymbol{p}_{\boldsymbol{s}}), H(\boldsymbol{p}_{\boldsymbol{d}})\} + 2.$

	1	2	3	4	5	6	7
1	0	2	1	1	1	2	3
_		65	13	65	65	65	65
2	2	0	1	0	0	0	2
	65	-	65	-	-	-	65
3	1	1	0	2	0	0	1
•	13	65	•	65	•	•	13
4	1	0	2	0	4	0	0
-	65	•	65	•	65	•	•
5	1	0	3	4	0	0	0
•	65	•	65	65	•	•	•
6	2	0	0	0	0	0	3
Ũ	65	Ū	Ū	Ū	Ū	Ū	65
7	3	2	1	0	0	3	0
•	65	65	13	Ŭ	0	65	•

Future Work / Discussion

- New "Graph Entropy" measure for networks
- Online algorithms Amortize analysis
 - Splay-nets example
- Distributed algorithms?
- Practical use ???

Thank you

avin@cse.bgu.ac.il

See papers:

- Demand-Aware Network Designs of Bounded Degree. Chen Avin, Kaushik Mondal, and Stefan Schmid.. ArXiv Technical Report, May 2017. <u>https://arxiv.org/ abs/1705.06024</u>
- Towards Communication-Aware Robust Topologies. Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid. <u>https://arxiv.org/abs/1705.07163</u>
- SplayNet: Towards Locally Self-Adjusting Networks. Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker. IEEE/ACM Transactions on Networking (ToN). <u>http://ieeexplore.ieee.org/document/7066977/</u>