A survey on approximating graph spanners

Guy Kortsarz, Rutgers Camden

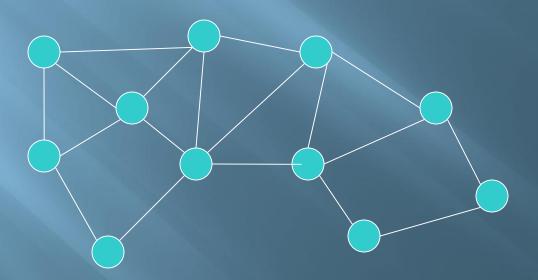
Unweighted undirected k-spanners Peleg and Ullman 1987 Input: An undirected graph G(V,E) and an integer k Required: a subgraph G' so that for every u and $\mathbf{v} \in \mathbf{V}$:

Dist $(u,v)/Dist (u,v) \le k$

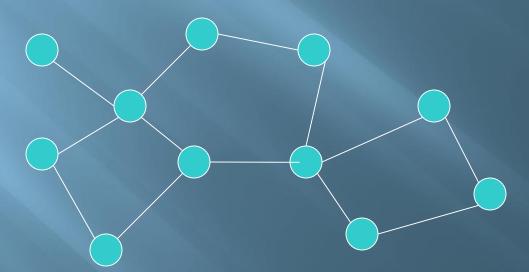
• DATA COMPRESSION

An example of a 2-spanner

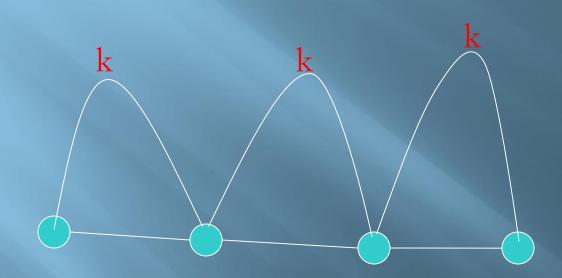
• The original graph:



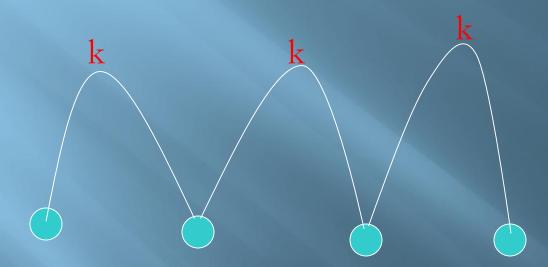
 Easy to check the new distance for every pair is at most twice the original distance.



Why dealing with edges is enough?



Why dealing with edges is enough?



Distance 3 becomes 3k

An alternative definition

- Find a subgraph G'(V,E') so that for every edge e in E-E', adding e must close a cycle of size at most k+1.
- More general variants in which the above is not true.
- The case of general lengths over the edges.
 Then a k-spanner must be a k-spanner with respect to weighted distance.

Applications

- In geometry.
- Small routing tables: spanners have less edges. Thus smaller tables. But not much larger distance
- Synchronizers: make non synchronized distributed computation, synchronized.
- Parallel distributed and streaming algorithms.
- Distance oracles. Handle queries about distance between two vertices quick by preprocessing.
- Property testing
- Minimum time broadcast.

2-spanners

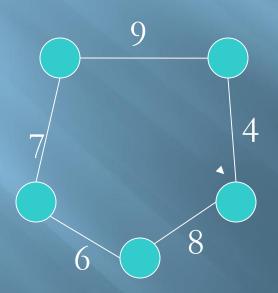
- There is a difficulty. Unlike k≥3 there are not necessarily 2 spanners with few edges.
- The only 2-spanners of a complete bipartite graph is the graph itself.
- Like in 2-SAT and 2-Coloring and other problems, 2-spanners is different than the rest.

For k at least 3 there are spanners with few edges

- As we shall see: 3-spanners with O(n*sqrt{n}) edges always exist, and the same goes for 4spanners. And this is tight.
- The larger k is, the smaller is the upper bound on the number of edges in the best spanner.
- Remarkable fact: maximum number of edges in a graph with girth g not known.
- Maybe for 40 years the upper and lower bound are quite far!

Heaviest edge on a short cycle

For example a 4-spanner, only the edge 9 can be removed, while maintaining a 4-spanner



A generalization of the Kruskal algorithm:

Sort the edges of the graph in increasing weights.

 $\mathbf{c}(\mathbf{e}_1) \leq \mathbf{c}(\mathbf{e}_2) \leq \mathbf{c}(\mathbf{e}_3) \leq \dots \leq \mathbf{c}(\mathbf{e}_m)$

- Go over all edges from small cost to large.
- For the next edge e_i, if the edge does not close a cycle of length at most k+1 with previously added edges, add e_i to G' or else i=i+1
- This algorithm is due to I. Althofer, G. Das, D.
 Dobkin, D. Joseph, and J. Soares. 1993

The resulting graph is a k-spanner

- If an edge e is missing, then by construction, this edge is the most heavy edge in a cycle of length at most k+1.
- This is because we go over edges in non decreasing costs.
- If we reach a cycle of size k+1, then it means that previous edges were not removed.
- This implies that e is the largest edge in a cycle of length at most k+1 and it is safe to remove it.

Girth k+2

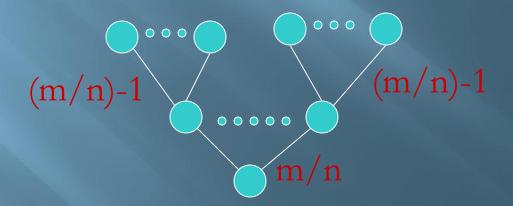
- We observe that the resulting graph has girth at least k+2
- The girth is the size of the minimum simple cycle.
- Observe that when we reach the largest edge e of a cycle with at most k+1 edges, this edge will be removed.
- Therefore, there are no k+1 size or smaller cycles.
 - Graphs with large girth have "few" edges.

Example: graphs with girth 5 and 6

- We show that graphs with girth 5 and 6 have O(n*sqrt{n}) edges.
- First remove all vertices of degree strictly smaller than m/n.
- Here m is the numbers of edges and n is the number of vertices.
- Since we have removed at most n vertices and each vertex removes less than m/n edges it is clear that the resulting graph is not empty.

Two layers BFS graph

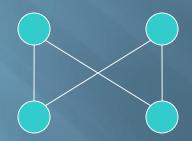
All the vertices seen below are distinct as otherwise there is a cycle of length at most 4.



Number of edges

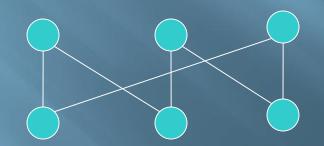
- This implies that $m/n(m/n-1) \le n$, or $m^2/n^2 m/n \le n$
- As m/n < n we get that $m^2/n^2 < 2n$ or $m^2 < 2n^3$
- Thus m=O(n sqrt{n})
- A matching lower bound. A graph of girth 6 that has Ω(n*sqrt{n}) edges.
- A projective plane for our needs is a bipartite graph with n vetices on each side and degree Θ(sqrt{n}) thus contains Θ(n*sqrt{n}) edges.
- The main property: every pair of vertices in the same side share exactly 1 neighbor.

• There could not be a cycle of size 4:



A cycle of length 4 implies that two vertices on the same side share two neighbors. Contradiction

• There could not be a cycle of size 4:



Therefore girth 6

General bounds on the minimum number of edges for a given girth It is known that there is always a 2k-1 spanner with $O(n^{1+1/k})$ edges. • Using this formula: 3-spanners needs k=2. This gives the correct and tight $O(n^* \operatorname{sqrt}\{n\})$ upper bound on the number of edges in a 3-spanner.

Approximating spanners

- There are only very few approximations.
- Length 1 arbitrary costs 2-spanners.
- O(log d) approximation with d the average degree for minimum cost 2-spanners.
- As we shall see such an approximation does not exist for k≥3.

An O(log(|E|/|V|)) ratio for k=2 for arbitrary weight

- Due to K, Peleg 1992.
- For a vertex v look at the graph induced by N(v)
- Find a desnsest subgraph S(v) in N(v)
- Return the edges from v to S(v) that is the most dense set over all v and iterate

The problem we need to solve is the densest subgraph • Let e(S), $S \subset N(v)$ be the number of edges in the graph induced by S. This problem requires finding a subset of the vertices with maximum density e(S)/|S| and can be solved exactly via flow. This implies an O(log d) ratio for d the average degree.

The problem we need to solve is the densest subgraph

- A faster algorithm, approximates the best density by 2 but gets O(n) time and not flow time. Adds 2 to the ratio (so negligible).
- Was done by K,Peleg in 1992. Also Charikar 1998.
- Very extensively cited in social networks. Almost always attribute the result to Charikar.

How hard is it to approximate spanners for k≥3?

- Strong hardness is exp(log ^{1-ε} n)
- Weak hardness is (log n)/k
- K. 98. First hardness. Weak hardness for w(e)=l(e)=1.
- Tight for k=2.
- Later similar methods employed for hardness for Buy at Bulk.
- Elkin Peleg: Strong hardness for:
- 1) General length
- 2) Weights=1 and general length
- 3)Unit length, arbitrary weights, $k \ge 3$
- 4) Basic but directed spanners.

Only basic spanners from now on

- From now on, edges have weights and lengths
 1.
- Thus the results presented from now on are only for basic spanners.
- In fact giving a similar result for arbitrary weights already unknown for some of the problems in later slides.
- And none of the algorithms to follow work on general lengths.

A question posed in 1992

- Is undirected the basic spanner problem strongly hard?
- In ICALP 2012 Dinitz, K, Raz : k≥3 is Labelcover-Hard (means only polynomial ratio is possible).

- Second important result: Labelcover with large girth is as hard as Labelcover
- Its rare (for me) to solve a 20 years old problem.

A technique employed for approximating directed Steiner Forest Feldman, K. and Nutov. 2009. The following situation:

LP flow at least ¹/4 between every pair s,t

At most n^{2/5} vertices in every layer

An edge with large x_e

- Between every two layers there is at most n^{4/5} edges.
- Let x_e be the largest capacity. Thus via every edge at most x_e flow unit pass from s to t.
- The total flow between s and t is at least ¹/₄.
- Therefore $n^{4/5} \cdot x_e \ge 1/4$
- Therefore there is an edge of value about 1/4n^{4/5}
- Iterative rounding gives ratio n^{4/5}

Approximating directed spanners

- Krauthgamer and Dinitz 2012, employed (part of) our techniques to get an $n^{2/3}$ approximation for directed k-spanners. The techniques was (re)invented independently.
- Improvement: non iterative but randomized rounding gets about n^{1/2} ratio. Very clever trick!
- Due to Berman, Bhattacharyya, Makarychev, Raskhodnikova, Yaroslavtsev. 2013.

Other results

- For k=3 they get ratio n^{1/3} for the directed case.
 Note that even for undirected graphs n^{1/2} is trivial but n^{1/3} not.
- They also improve the result for Directed Steiner forest. The new best ratio is n^{2/3}.
- Can we show a better integrality gap for the natural LP?
- The answer is no.

Dinitz and Zhang 2016

- Ratio $n^{1/3}$ for k=4
- The ADDJ upper bound and the integrality gaps of the natural LP are not that far.
- Interesting proof: builds its own type of Min-Rep and uses the fact that Min-Rep is hard for large super girth several times.
- I would guess that the ratio of ADDJ will not be easily improved if at all.

Preservers

- The input contains a collection of pairs {x,y} and you want minimum edges G' so that the distance between every x,y is the same as in G.
- A paper by Chlamtac, Dinitz, K, and Laekhanukit, SODA 2017.
- Ratio O(n^{3/5}) approximation for preservers.
 There is a big problem. The inequality opt≥n-1 does not hold.

How to overcome this

- The SODA 2017 paper introduced junction trees at the last stage.
- Junction trees are trees that connect many s,t pairs so that all paths from s,t for every pair goes via the same vertex r.
- Invented in relation to Buy at Bulk.
- Namely when the relative cost of items goes down if you buy many.

Why do the junction trees help

- Instead of bounding the cost by n-1 you bound the cost by the number of terminal pairs connected, times the maximum length.
- It has some small tricks like applying a different algorithm if the number of pairs is $\Omega(n^{4/5})$.

Approximation Steiner Forest with distance bounds

- Input: Given the pairs {s,t} each pair has a distance bound D(s,t)
- Objective: find a minimum cost solution so that the distance between every pair of vertices s,t is at most D(s,t).
- The same approximation ratio: O(n^{3/5})

Getting back to Directed Steiner Forest

- First sub-linear ratio by Feldman, Kortsarz, Nutov, 2009, O(n^{4/5}).
 - Berman et al, 2013, improved the ratio to $O(n^{2/3})$ using their clever randomized rounding method.
- Using our additional junction tree and threshold trick we improve Berman et al to O(n^{3/5}) (however recall that our result is for the unweighted case). SODA 2017.

The message of this last paper

 Introducing junction tress can help approximating spanner problems. The first time junction trees ever used in spanners.

• A second message is that it seems that additive spanners are harder to approximate than usual spanners.

Additive spanners

- Aingworth, Chekuri, Indyk, Motwani 1996. For any graph, n· sqt{n} edges +2 spanners.
 Chechik. +4 spanners always exists with O(n^{7/5}) 2013.
- Baswana, Kavitha, Mehlhorn, Pettie show: Always exists +6, O(n^{4/3}) 2010 (before +4).
- Can we continue with this hobby for k=8, k=10 and so on?

Surprise (at least for me)

- Amir Abboud and Greg Bodwin. 2016
 The O(n^{4/3}) can not be not be improved.
- There are large μ , so that μ , additive spanners requires $\Omega(n^{4/3})$ edges.
- The last result for k=6 is best possible for much higher k.
- How do additive spanners compare to spanners for approximation? Turns out: Also harder.

The case of k=1

- We gave the first lower bound. SODA 2017.
- If we have edges of cost 0 this is easy.
- We can not show that its hard to spann edges because of the O(log n) for k=2.
- Dividing edges brings new edges that need to be spanned. Feels like catch 22.
- Overcoming that by making the new paths added the same Labelcover hard. CDLK, SODA 2017.

For k=O(polylog(n))

- Again Labercover hard. Harder proof.
- Additive spanners are harder to aproximate than spanners.
- Any +1 spanner is a 2-spanner but +1 spanner much harder
- Also O(log n) spanner has constant ratio but additive polylog(n) spanner is Labelcover hard.
- The +1 spanners result surprised me.

Open problems

- Transitive closure spanners. Tree spanners
- Fault tolerant spanners. Simple and nice Algorithm by Dinitz and Krauthgamer.
- Fault tolerant spanners: new version
- Preserve the distance from s to G-s under at most f edges that can fall. Parver and Peleg.
- Find a minimum H so that for any |F|≤f, dist(s,u,G-F)=dist(s,u,H-F). Turned to be equivalent to Set Cover. Parver and Peleg.
- Many open questions remain here.

It is not possible to predict the future. Did you know that?

- Peleg and Ulman invented spanners in 1987.
- There was nothing. Only some results from geometry.
- I would imagine Peleg and Ulman did not expect the extent of which this subject will develop back then.