
THE HEBREW
UNIVERSITY
OF JERUSALEM

Reusing Network Services Logic to 

Improve Network Performance

Yotam Harchol

Research

(This work was done while at the Hebrew University)

Joint work with Anat Bremler-Barr and David Hay

Appeared in ACM SIGCOMM 2016

This research was supported by the European Research Council ERC Grant agreement no 259085, the Israeli Centers of Research 
Excellence (I-CORE) program (Center No. 4/11), and the Neptune Consortium.



Network Functions (Middleboxes)

2

Firewall

Load Balancer

Intrusion Prevention 
System

• Monolithic closed black-boxes
✘ High cost
✘ Limited provisioning and scalability

Network Function Virtualization (NFV):
✔ Reduce cost (by moving to software)
✔ Improve provisioning and scalability

(by virtualizing software NFs)
At the cost of:

✘ Reduced performance
(mainly latency)



Network Functions (Middleboxes)

✘High cost

✘Limited provisioning and scalability

✘Limited and separate management

• Different vendors

• No standards

• Separate control plane

3



Network Functions (Middleboxes)

• Actually, many of these black-boxes are very modular

4

Network Function

✘ High cost

✘ Limited provisioning and scalability

✘ Limited and separate management

✘ Limited functionality and limited innovation
(High entry barriers)

✘ Similar complex processing steps, no re-use



OpenBox
Controller

OBI

OBI

OBI

OpenBox

• OpenBox: A new software-defined framework for network functions

• Decouples network function control from their data plane

• Unifies data plane of multiple network functions

Benefits:

Easier, unified control

Better performance
(improved latency)

Scalability

Flexible deployment

 Inter-tenant isolation

 Innovation

github.com/OpenBoxProject

www.openboxproject.org



• High cost of middleboxes

• Limited provisioning and scalability of middleboxes

• Limited management of middleboxes

• Limited functionality
and limited innovation

• Complex processing steps

Software Defined Networking

6

OpenFlow
Controller

OpenBox
Controller

OBI

OBI

OBI

switches

switches

switches

distributed algorithms

40%-60% of the appliances 
in large-scale networks
are middleboxes!
[Sherry & Ratnasamy, ‘12]



The OpenBox Framework

7

Logically-Centralized
OpenBox Controller

Network Functions:
OpenBox Applications

Control Plane

Data Plane

OpenBox Service Instances

OpenBox
Protocol

Northbound 
API

Additionally:

 Isolation between NFs / multiple tenants

 Support for hardware accelerators

 Dynamically extend the protocol



Most network functions do 

very similar processing 

steps

Observation:

8

But there is no re-use…

The design the OpenBox framework is based on this observation



Network Function Decomposition

9

Firewall:

Read 
Packets

Header 
Classifier

Drop

Alert

Output

Load Balancer:

Read 
Packets

Header 
Classifier

Rewrite 
Header

Output

Intrusion Prevention System:

Read 
Packets

Header 
Classifier

Drop

Alert

DPI

DPI

DPI Output



Northbound API

10

OpenBox 
Protocol

OpenBox Service Instances

OpenBox
Controller

OpenBox
Applications

Control Plane

Data Plane

NB API

Read 
Packets

Header 
Classifier

Drop

Alert

Output
Read 

Packets
Header 

Classifier

Rewrite 
Header

Output
Read 

Packets
Header 

Classifier

Drop

Alert

DPI

DPI

DPI Output

Specify processing graph
and block configuration

Events,
Load information

Intrusion Prevention SystemLoad BalancerFirewall



Logically-Centralized Controller

11

OpenBox 
Protocol

OpenBox Service Instances

OpenBox
Controller

OpenBox
Applications

Control Plane

Data Plane

NB API

Multiple tenants
run multiple applications 
for multiple policies
in the same network

Isolation between
applications and tenants 
enforced by NB API

SDN
Protocol

SDN Switches

SDN
ControllerNetwork-wide view

Automatic scaling, provisioning, 
placement, and steering



Naïve Graph Merge

12

Firewall:

Read 
Packets

Header 
Classifier

Drop

Alert

Output

Intrusion Prevention System:

Read 
Packets

Header 
Classifier

Drop

Alert

DPI

DPI

DPI Output

Header 
Classifier

Drop

Alert
(IPS)

DPI

DPI

DPI Output
Read 

Packets
Header 

Classifier

Drop

Alert
(Firewall)

Concatenated Processing Graph:

Performance ≈ Diameter of Graph (# of classifiers)

Total: 134μs

30μs

10μs

50μs 10μs2μs 2μs30μs



Graph Merge Algorithm

13

Firewall:

Read 
Packets

Header 
Classifier

Drop

Alert

Output

Intrusion Prevention System:

Read 
Packets

Header 
Classifier

Drop

Alert

DPI

DPI

DPI Output

Input Graphs: ?



Graph Merge Algorithm

14

Firewall:

Read 
Packets

Header 
Classifier

Drop

Alert

Output

Intrusion Prevention System:

Read 
Packets

Header 
Classifier

Drop

Alert

DPI

DPI

DPI

Output

Step 1: Normalize graphs to trees

Output

Alert

Alert Output

Output

Output

Drop

Drop

Output

Output

Output



Graph Merge Algorithm

15

Read 
Packets

Header 
Classifier

Drop

Alert
(Firewall)

Header 
Classifier

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Step 2: Concatenate graphs

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output

Header 
Classifier

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output



Graph Merge Algorithm

16

Read 
Packets

Header 
Classifier

Drop

Alert
(Firewall)

Header 
Classifier

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Step 3: Merge classifiers

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output

Header 
Classifier

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output



Graph Merge Algorithm

17

Read 
Packets

Header 
Classifier

Drop

Alert
(Firewall)

Header 
Classifier

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Step 3: Merge classifiers

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output

Can we change block order?



Graph Merge Algorithm

18

Read 
Packets

Header 
Classifier

Drop

Alert
(Firewall)

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Step 3: Merge classifiers

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output

Alert
(Firewall)

Alert
(Firewall)

Alert
(Firewall)



Graph Merge Algorithm

19

Read 
Packets

Header 
Classifier

Drop

Alert
(Firewall)

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Step 4: Remove redundant block copies
(and rewire connectors accordingly)

Alert
(IPS)

Alert
(IPS)

Output

Output

Output

Drop

Drop

Output

Output

Output

Drop

Alert
(IPS)

DPI

DPI

DPI

Output

Alert
(IPS)

Alert
(IPS)

Output

Output

DPI

Drop

Drop

Output

Output

Output

Alert
(Firewall)

Alert
(Firewall)

Alert
(Firewall)



Graph Merge Algorithm

20

Merged Processing Graph:

Read 
Packets

Header 
Classifier

Drop

Alert 
(IPS)

DPI

DPI

DPI Output

Alert 
(Firewall)

Alert 
(Firewall)

Alert 
(Firewall)

Alert 
(Firewall)

Shorter Diameter (less classifiers)

30μs

10μs

50μs 10μs

Total: 104μs (22% improvement)

2μs
2μs



When NOT to Merge?

When cross product is too large:

• Two d-dimensional classifiers: A – n rules, B – m rules

• Classification is logarithmic with # of rules, exponential with dimension

• Serial classification time: (log 𝑛)𝑑−1+(log𝑚)𝑑−1

• Cross product: 𝑛 ∙ 𝑚 rules (worst case)

• Single classifier worst case time: 

log(𝑛 ∙ 𝑚) 𝑑−1 = (log 𝑛)𝑑−1+(log𝑚)𝑑−1+ 

𝑖=1

𝑑−2
𝑑 − 1

𝑖
(log 𝑛)𝑖 + (log𝑚)𝑑−𝑖−1

> (log 𝑛)𝑑−1 + (log𝑚)𝑑−1

When most packets won’t go through both classifiers:

21

Classifier
A

Output

Classifier
B

Drop

?

?



OpenBox Data Plane Processing

22

Read 
Packets

Header 
Classifier

DPI

Classification

VLAN Pop

VLAN Push

Rewrite 
Header

Header Modification

Begin 
Transaction

Rollback 
Transaction

Commit 
Transaction

Transactions

Gzip
Decompress

Gzip
Compress

De/compression

HTML 
Normalizer

JavaScript 
Normalizer

XML 
Normalizer

Normalization

Store 
Packet

Restore 
Packet

Caching

Alert

Log

Reporting

Output

Drop

Terminals

FIFO Queue
Front Drop 

Queue

RED Queue
Leaky 
Bucket

Queue Management



OpenBox Data Plane Processing

23

Read 
Packets

Header 
Classifier

DPI

Classification

VLAN Pop

VLAN Push

Rewrite 
Header

Header Modification

Begin 
Transaction

Rollback 
Transaction

Commit 
Transaction

Transactions

Gzip
Decompress

Gzip
Compress

De/compression

HTML 
Normalizer

JavaScript 
Normalizer

XML 
Normalizer

Normalization

Store 
Packet

Restore 
Packet

Caching

Alert

Log

Reporting

Output

Drop

Terminals

FIFO Queue
Front Drop 

Queue

RED Queue
Leaky 
Bucket

Queue Management

OpenBox Service Instance

Virtual or Physical

• Provides data plane services to realize the logic of network functions

• Controlled by the logically-centralized OpenBox controller



Distributed Data Plane

OpenBox Service Instance

Software

OpenBox Service Instance

Hardware
(TCAM)

E.g., an OpenFlow switch
with encapsulation features

(e.g., NSH, Geneve, FlowTags)

Header 
Classifier

Alert

DPI

Rewrite 
Header

Metadata



Split Processing Graph

25

Read 
Packets

Header 
Classifier

Drop

Output
Write

Metadata
Encapsulate

Metadata

Read 
Packets

Drop

Alert 

DPI

DPI

DPI Output
Decapsulate

Metadata
Read

Metadata

HW Instance:

SW Instance:

?



Distributed Data Plane

26

OpenBox
Controller

OpenBox
Applications

OBI VM

HW OBI

OBI VM2
3 4 5

1 6

A

B



Extensible Data Plane

27

OpenBox 
Protocol

OpenBox Service Instances

OpenBox
Controller

Control Plane

Data Plane

NB API

Media 
Encoder

Option 1:
New hardware implementation
Supports encapsulation

Option 2:
Software module injection

NEW
APP

Custom
software
module (signed)

On the fly
No need to recompile
No need to redeploy



Scalable & Reliable Data Plane

28

OBI OBI

OBI

OBI OBI

Scalability Provisioning Reliability

OBI OBI
OBI OBI
OBI OBI
OBI OBI
OBI OBI
OBI OBI
OBI OBI

OpenBox
Controller

OBI

Hypervisor

Hypervisor



OpenBox Protocol:

Block Hierarchy

29

HeaderClassifier

TCAMClassifier TrieClassifier

Controller
Service

Instance

Hello
…
Supported implementations:
HeaderClassifier: 
[TCAMClassifier, TrieClassifier]

SetProcessingGraphRequest
…
Use TCAMClassifier in graph

Abstract Processing Block



Future Work: Infrastructure Support

• Infrastructure can help VNFs
– Provide high performance (e.g., hardware accelerators)
– Reuse processing (e.g., packet switching, “outsourced” services)

• Challenge: Design a system, define a protocol to offload processing 
from VNFs to infrastructure

• Gradual solution, easier to adopt for existing VNFs

30

Offloading
Controller

VNF VNF

Hypervisor

Other 
VM

Network

VNF VNF

Hypervisor

Other 
VM

VNF

Hypervisor

Other 
VM

Other 
VM

?



Implementation

31

Java-based OpenBox Controller

Software OpenBox
Service Instance

Generic wrapper for execution engines (Python)

FW

Northbound API

REST 
client/server

Graph 
Aggregator

Management
API

Network
Manager

Translation Engine

github.com/OpenBoxProject

REST

IPS
Load

Balancer . . .

Click-based execution engine (C++)

Control Plane

Data Plane
REST API

(Plug here other execution engines. E.g., ClickNP [SIGCOMM ‘16])

5500 LoCs
(Python)

2400 LoCs for plugin (C++)

7500 LoCs
(Java)



Performance Improvement

32

VM1
Firewall

VM2
IPS

Without OpenBox
VM1

OBI1: FW+IPS

VM2
OBI2: FW+IPS

With OpenBox

0

10

20

30

40

50

60

70

80

0

100

200

300

400

500

600

700

800

900

Firewall IPS

La
te

n
cy

 [
µ

s]

Th
ro

u
gh

p
u

t 
[M

b
p

s]

Standalone VM

0

20

40

60

80

100

120

140

0

100

200

300

400

500

600

700

800

900

1 2

La
te

n
cy

 [
µ

s]

Th
ro

u
gh

p
u

t 
[M

b
p

s]

NF Pipeline

Without 
OpenBox

With
OpenBox



Related Work

• Orthogonal to OpenBox:
– NF traffic steering (e.g., SIMPLE [SIGCOMM ’14])

– NF orchestration (e.g., Stratos, OpenMano, OpenStack)

– Runtime platforms (e.g., xOMB [ANCS ‘12], ClickNP [SIGCOMM ‘16])

• Similar Motivation:
– CoMb [NSDI ‘12] – focuses on resource sharing and placement

– E2 [SOSP ‘15] – composition framework for virtual NFs

– Slick [SOSR ’15] – focuses on the placement of data plane units

• Only OpenBox provides:
– Core processing decomposition and reuse

– Standardization and full decoupling of NF control and data planes

33



Conclusions

• Network functions are currently a real challenge in large scale 
networks

• By decoupling the data plane processing of NFs their control 
logic we:
– Reduce costs

– Enhance performance

– Improve scalability

– Increase reliability

– Provide inter-tenant isolation

– Allow easier innovation

• There is still work to do…

34

OpenBox 
Protocol

OpenBox Service Instances

OpenBox
Controller

OpenBox
Applications

Control Plane

Data Plane

NB API



THANK YOU!

Questions?

35

Play with OpenBox on a Mininet VM:
github.com/OpenBoxProject/openbox-mininet


