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Online Load Balancing 
[Graham ’66]

Job: 

Machine 1

Machine 2

Machine m

(processing time)

Load:

1 2 3 4 5 6 7 8

0.8 2 0.9 1.2 1.21.3 1.2 1.1 
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Online Load Balancing 
[Graham ’66]

Job: 

Machine 1

Machine 2

Machine m

(processing time)

Load:

1 2 3 4 5 6 7 8

1.1 + 1.2 = 2.3  

1.3 

0.8 2 0.9 1.2 1.2

(load of a machine
is the sum of its job loads)
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Online Load Balancing 
[Graham ’66]

Job: 

Machine 1

Machine 2

Machine m

(processing time)

Load:

1 2 3 4 5 6 7 8

1.1 + 1.2 = 2.3  

1.3 

0.8 2 0.9 1.2 1.2
Online problem: cannot see future jobs.  

(load of a machine
is the sum of its job loads)
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Online Load Balancing 
[Graham ’66]

Machine 1

Machine 2

Machine m

Objective: minimize the 
makespan of the schedule
(maximum load)

Job: 1 2 3 4 5 6 7 8

Load:

Algorithm performance benchmark: Competitive ratio
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Online Load Balancing 
[Variants]

Machine 1

Machine 2

Machine m

Objectives: minimize the 
p-norm of the machine loads
(makespan is the ∞-norm)
[CW ’75, CC ’76, AAGKKV ’95, AAS ’01, C ’08, CFKKM ’11]

Job: 1 2 3 4 5 6 7 8

Load:

Machine models:
- Identical machines (load = pj)
[G ’66, FKT ’89, BKR ’94, BFKV ’95, KPT ’96, A ’99, FW ’00, GRTW ’00, R ’01, AAS ’01]

- Related machines (load = pj / si)
[AAFPW ’97, BCK ’00]

- Unrelated machines (load = pij)
[CW ’75, CC ’76, AAGKKV ’95, AAFPW ’97, C ’08, ANR ’95, CFKKM ’11]
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8

How do we load balance simultaneously on 
multiple resources (e.g., in data centers)?
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Online Vector Scheduling

Jobs: 

Machine 1

Machine 2

Machine m

2 3 4

(2, 2.8, 1.3) 

Dimension 1 Dimension 2 Dimension 3

(2, 1.5, 1) (1, 1.5, 1.3) (1, .8, .9) 

1

(processor) (network)(storage)
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Online Vector Scheduling

Jobs: 

Machine 1

Machine 2

Machine m

2 3 4

Dimension 1 Dimension 2 Dimension 3

(2, 1.5, 1) (1, 1.5, 1.3) (1, .8, .9) 

2 2.8 1.3

(processor) (network)(storage)

1
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Online Vector Scheduling

Jobs: 

Machine 1

Machine 2

Machine m

4

Dimension 1 Dimension 2 Dimension 3

(1, .8, .9) 

2 1.5 1

2+1 = 3 

3

2.8 + 1.5 = 4.3
1.3 + .9 = 2.2

(processor) (network)(storage)

2

(loads accumulate 
in each dimension)
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Online Vector Scheduling

Jobs: 

Machine 1

Machine 2

Machine m

makespan: maximum over makespan in individual dimensions

Dimension 1 Dimension 2 Dimension 3
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Online Vector Scheduling

Jobs: 

Machine 1

Machine 2

Machine m

p-norms: maximum over p-norms in individual dimensions

Dimension 1 Dimension 2 Dimension 3
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Summary of Results
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Makespan
minimization

p-norm 
minimization

Identical machines O(log d) 
[Azar et al ’13,  

Meyerson et al ’14]

Our result: 
Θ(log d/log log d) 

Our result: 
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)

Unrelated machines
(machine dependent 
loads)

O(log d + log m) 
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related machines
(non-uniform 
machine speeds)

Later… Later… (Im-Kell-P.-Shadloo
’17)
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Identical machines algorithm: 
First attempt

Greedy assignment
(minimize maximum load 

across all machines and dimensions)

unbalanced loads on dimensions
…can be as bad as poly(d)-competitive
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Identical machines algorithm: 
First attempt

Random Assignment
(assignment uniformly at random)

Chernoff bounds: 
O(log(dm))-competitive

(optimal for unrelated machines)

Greedy assignment
(minimize maximum load 

across all machines and dimensions)

unbalanced loads on dimensions
…can be as bad as poly(d)-competitive
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Algorithm: Random and Greedy

Assign uniformly at random

Online Vector Scheduling 18



Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Algorithm: Random and Greedy
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Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Algorithm: Random and Greedy
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Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Exceeds threshold

Algorithm: Random and Greedy
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Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Greedy schedule
(minimize max over 

all machines and dimensions)

Algorithm: Random and Greedy
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Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Greedy schedule
(minimize max over 

all machines and dimensions)

E[greedy volume] < volume/poly(d)
(Chernoff bounds) 

E[greedy makespan] = O(1)

Algorithm: Random and Greedy
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Algorithm: Random and Greedy

Competitive ratio: O(log d/log log d) 

Turns out yes:

Best we can do? 

Ω(log d/log log d) lower bound
For vector scheduling Coloring lower bound 

implies
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Online Monochromatic Clique

1

2

Given fixed of t colors:  red, blue, and green. (here t = 3)

3

4

5

7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the 
largest monochromatic clique.

Clique:

6
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Online Monochromatic Clique

Given fixed of t colors:  red, blue, and green. (here t = 3)

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the 
largest monochromatic clique.

Clique:

GoodBad
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The Game: Bins versus Colors
(…or robots versus blue devils) 

Adversary (us) Online Algorithm

Number of colors: t = 4

Bins = algorithm’s coloring

1

2

3

Bin 1 Bin 2

Bin 3 Bin 4

My turn!

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision) 
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Adversary (us) Online Algorithm

Bins = algorithm’s coloring

1

23
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Bin 3 Bin 4
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Adversary (us) Online Algorithm

Bins = algorithm’s coloring

1

23

Bin 1 Bin 2

Bin 3 Bin 4

My turn!

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision) 

Number of colors: t = 4

The Game: Bins versus Colors
(…or robots versus blue devils) 
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The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a 
distinct set of √t colors

Online Vector Scheduling 37



The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

vertex i

Online Vector Scheduling 38



The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a 
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a √t 
alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134

– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1 
of bin 3, etc

Online Vector Scheduling 39



The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

vertex i
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Code string:
1312121121413134



The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a 
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a √t 
alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134

– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1 
of bin 3, etc

– If the algorithm places the vertex in bin 2, then place it in slot 3 of bin 
2
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The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

Online Vector Scheduling 42

Code string:
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The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a 
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a 
√t alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134
– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, 

slot 1 of bin 3, etc
– If the algorithm places the vertex in bin 2, then place it in slot 3 

of bin 2
– OPT colors the vertex with a color from the √t colors associated 

with slot 3 that is currently unused in bin 2
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The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4
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Code string:
1312121121413134

Bin 15

Color black



The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a 
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a 
√t alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134
– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, 

slot 1 of bin 3, etc
– If the algorithm places the vertex in bin 2, then place it in slot 3 

of bin 2
– OPT colors the vertex with a color from the √t colors associated 

with slot 3 that is currently unused in bin 2

• Terminate when some slot in some bin has √t vertices
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The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

Online Vector Scheduling 46

Observation 1: Algorithm has created a monochromatic √t-clique

Observation 2: OPT has perfectly colored the graph in a bin

Lemma (via the probabilistic method): There exist codes that 
produce only constant-sized monochromatic cliques in OPT



The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

(t = number colors)
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Now for the reduction…

Ω(log d/log log d) lower bound
For vector scheduling Coloring lower bound 

implies
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Using MC Lower Bound for
Vector Scheduling

Colors correspond 
to machines 

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

2

3

4

5

1

5

1 3

2

3

2(Algorithm’s colors)

# colors t = m
jobs <-> vertices 
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Using MC Lower Bound for
Vector Scheduling

Colors correspond 
to machines 

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5

1 3

2

3

2(Algorithm’s colors)

# colors t = m
jobs <-> vertices 

6
(issued by MC instance)
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Using MC Lower Bound for
Vector Scheduling

Colors correspond 
to machines 

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5
5

1 3

2

3

2(Algorithm’s colors)

# colors t = m
jobs <-> vertices 

6
(issued by MC instance)
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Using MC Lower Bound for
Vector Scheduling

Colors correspond 
to machines 

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

3

5

1 3

2

3

2(Algorithm’s colors)

# colors t = m
jobs <-> vertices 

6
(issued by MC instance)

(0,           0          , 0 ,    . . .      1,        0,     . . .       0)                 

1 iff vertex forms a clique with 
previous vertices in the set 
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Using MC Lower Bound for
Vector Scheduling

Colors correspond 
to machines 

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5

1 3

2

3

2(Algorithm’s colors)

# colors t = m
jobs <-> vertices 

6
(issued by MC instance)

(0,           0          , 0 ,    . . .      1,        0,     . . .       0)                 

6
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Using MC Lower Bound for
Vector Scheduling

Colors correspond 
to machines 

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5

1 3

2

3

2(Algorithm’s colors)

# colors t = m
jobs <-> vertices 

6
(issued by MC instance)

(0,           0          , 0 ,    . . .      1,        0,     . . .       0)                 

6
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Using MC Lower Bound for
Vector Scheduling

Colors correspond 
to machines 

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

3

5

1 3

2

3

2(Algorithm’s colors)

# colors t = m
jobs <-> vertices 

6

6

1. After m2 vertices, there  will exist a monochromatic clique of size √m on 
some color c.

2. => dimension corresponding to these vertices will have a load of √m on 
machine c. 

3. Size of largest monochromatic clique in OPT’s graph coloring is O(1). 
4. ALGO/OPT => Ω(√m)  = Ω(log d / log log d) 
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Summary of Results
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Makespan
minimization

p-norm 
minimization

Identical machines O(log d) 
[Azar et al ’13,  

Meyerson et al ’14]

Our result: 
Θ(log d/log log d) 

Our result: 
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)

Unrelated machines
(machine dependent 
loads)

O(log d + log m) 
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related machines
(non-uniform 
machine speeds)

(Im-Kell-P.-Shadloo
’17)



Related Machines (homogenous)

Jobs: 

Machine 1

Machine m

(2, 2.8, 1.3) 

1

speed = 1 

Processing time = load/speed 

(2, 1.5, 1) 

2

speed = 1/2 
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Jobs: 

Machine 1

Machine m

speed = 1 

Execution time = load/speed 

(2, 1.5, 1) 

2

speed = 1/2 

2 2.8 1.3

Related Machines (homogenous)
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Jobs: 

Machine 1

Machine m

speed = 1 

Execution time = load/speed 

speed = 1/2 

2 2.8 1.3

4 3 2

Related Machines (homogenous)
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Related Machines (heterogeneous)

Jobs: 

Machine 1

Machine m

(2, 2.8, 1.3) 

1

speed = 1 

Processing time = load/speed 

(2, 1.5, 1) 

2

speed = 1 speed = 1/2 

speed = 1/3 speed = 1/4speed = 1/2 Online Vector Scheduling 60



Related Machines (heterogeneous)

Jobs: 

Machine 1

Machine m

speed = 1 

Processing time = load/speed 

(2, 1.5, 1) 

2

speed = 1 speed = 1/2 

speed = 1/3 speed = 1/4speed = 1/2 

2 2.8 2.6
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Related Machines (heterogeneous)

Jobs: 

Machine 1

Machine m

speed = 1 

Processing time = load/speed 

speed = 1 speed = 1/2 

speed = 1/3 speed = 1/4speed = 1/2 

2 2.8 2.6

4 4.5 4
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Summary of Results
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Makespan
minimization

p-norm 
minimization

Identical machines O(log d) 
[Azar et al ’13,  

Meyerson et al ’14]

Our result: 
Θ(log d/log log d) 

Our result: 
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)Unrelated machines

(machine dependent 
loads)

O(log d + log m) 
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related 
machines
(non-
uniform 
machine 
speeds)

Homo-
geneous

Our result: 
Θ(log d/log log d) 

Our result: 
O(log3 d) 

(Im-Kell-P.-Shadloo
’17)

Hetero-
geneous

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)
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Makespan
minimization

p-norm 
minimization

Identical machines O(log d) 
[Azar et al ’13,  

Meyerson et al ’14]

Our result: 
Θ(log d/log log d) 

Our result: 
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)Unrelated machines

(machine dependent 
loads)

O(log d + log m) 
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related 
machines
(non-
uniform 
machine 
speeds)

Homo-
geneous

Our result: 
Θ(log d/log log d) 

Our result: 
O(log3 d) 

(Im-Kell-P.-Shadloo
’17)

Hetero-
geneous

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

First O(1) 
competitive for d = 1



Machine Grouping

Want to reduce problem to identical machines… 
Natural to try to groups machines of similar speed.

speed = 1

Issue: if total speed (processing power) of faster 
machines is large, slower machines go unutilized.   

speed = 1

speed = 1

speed = 1

speed = 1/2

speed = 1/2

speed = 1/2 speed = 1/4

speed = 1/4

speed = 1/8
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Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2 

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3 Online Vector Scheduling 66



Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2 

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

speed = 1

Group 0: (total speed 1)

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed. 
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Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2 

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

speed = 1

Group 0: (total speed 1)

Group 1: speed = 1/2 speed = 1/2

speed = 1/2 speed = 1/2

(total speed 2)

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed. 
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Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2 

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed. 

speed = 1

Group 0: (total speed 1)

Group 1: speed = 1/2 speed = 1/2

speed = 1/2 speed = 1/2

(total speed 2)

Group 2:

speed = 1/4 (each) (total speed 4)
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Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2 

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed. 

speed = 1

Group 0: (total speed 1)

Group 1: speed = 1/2 speed = 1/2

speed = 1/2 speed = 1/2

(total speed 2)

Group 2:

speed = 1/4 (each) (total speed 4)
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Lemma (informal): Any schedule on a smoothed instance can be 
replicated on the original instance with constant change in 
makespan, and vice-versa. A similar statement can be shown for all 
p-norms as well.



Makespan minimization:
Slowest fit on Smoothed Instance

speed = 1

speed = 1/2

speed = 1/4 

Suppose OPT = 10 

Jobs: 
(3, 3, 1) 

1

(2, 1.5, 1) 

2

Algorithm: Assign to slowest group 
such that all execution times are <= c. OPT  
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Makespan minimization:
Slowest fit on Smoothed Instance
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Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT = 10 



speed = 1

speed = 1/2

speed = 1/4 

Jobs: 

(3, 3, 1) 

(2, 1.5, 1) 

Algorithm: Assign to slowest group 
such that all processing times are <= c. OPT  

…. Then, assign jobs using the identical
machines algorithm (within each group). 

+

+
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Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT = 10 



speed = 1

speed = 1/2

speed = 1/4 

Challenge: Even if we are able to guess 
OPT, how do we divide it among the 
machine groups?

Indeed, no algorithm previously known
even for d = 1
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p-norm minimization



speed = 1

speed = 1/2

speed = 1/4 

Challenge: Even if we are able to guess 
OPT, how do we divide it among the 
machine groups?

Indeed, no algorithm previously known
even for d = 1
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p-norm minimization

Algorithm has two interleaved stages:
• fractional solution via gradient 

descent on a potential defined by a 
suitable fractional relaxation

• online rounding uses a slowest-fit  
strategy on the fractional solution



Thank You

Questions?
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