Online Vector Scheduling

Debmalya Panigrahi
Duke University

slides

Work done with:

Nat Kell
(Duke)

Janardhan Kulkarni Maryam Shadloo
(MSR > UMN) (UC Merced)

Sungjin Im
(UC Merced)

Online Load Balancing

[Graham ’66]
Job: 1 2 3 4 5 6 7 8

Load:

1.1 1.3 1.2 0.8 2 0.9 1.2 1.2

(processing time)

Machine 1 ——

Machine 2

Machine n — Online Vector Scheduling

[[] []
|\ 7 |- >) - - \ _J A -’
—— ~ ~~ —— ~ —— " y

Online Load Balancing

[Graham ’66]

Job: 2 3 4 5 6 7 8

Load:

1.3 1.2 0.8 2 0.9 1.2 1.2

1
| 1.1 (processing time) e

Machine 1

Machine 2

Machine m Online Vector Scheduling

o o o
(. I o \ J N - \ J N\)
g Y " W—' " ~

Online Load Balancing

[Graham ’66]
Job: 1 2 3 4 5 6 7 8

Load:

e o o
H_J\— S R B J O\ _J
v g g

0.8 2 0.9 1.2 1.2

1.1+1.2=2.3

(load of a machine
1.3 isthe sum of its job loads)

(processing time)

Machine 1 ——

Machine 2

Machine m | — Online Vector Scheduling

Online Load Balancing

[Graham ’66]
Job: 1 2 3 4 5 6 7 8
Load: .
—_—— . -~ e |- v _) |- > _J
0.8

Online problem: cannot see future jobs.

11+12=23 (processing time)
Ve T (load of a machine
lﬂ 1.3 isthe sum of its job loads)
Machine2 [

Machine n — Online Vector Scheduling

Online Load Balancing

[Graham ’66]
Job: 1 2

-~ LSS

Mae 1 ——
Objective: minimize the
_—— makespan of the schedule
Machine 2 _ (maximum load)

Algorithm performance benchmark: Competitive ratio

Online Makespan < « - Optimal Makespan

—> «-competitive

Mac — Online Vector Scheduling 6

Online Load Balancing

[Variants]
Job: 1 2

-~ LSS

Machinel o

Objectives: minimize the
p-norm of the machine loads

S — (makespan is the eo-norm)
[CW ’75, CC'76, AAGKKV ’95, AAS ‘01, C’08, CFKKM ’11]

Machine 2

° Machine models:

- ldentical machines (load = p))

[G’66, FKT '89, BKR 94, BFKV "95, KPT ‘96, A’99, FW ‘00, GRTW “00, R ‘01, AAS '01]
- Related machines (load = p /s)

[AAFPW ‘97, BCK '00]

- Unrelated machines (load = p;)
[CW ’75, CC’76, AAGKKV 95, AAFPW 97, C’08, ANR '95, CFKKM ’11]

Machine m e—

. .
4 - The Cloud OS &4 Microsoft
’ b b’ modern platform for the world's apps

s S ¢ N
} ' "& -:‘ ‘§ ‘\4 A_‘ ‘ /7Y transforms (") empowers
How do we load balance simultaneously on

multiple resources (e.g., in data centers)?

i

Online Vector Scheduling 8

Jobs: F F i E

(1, 1.5, 1.3)

Machine 1

.\
|
|

Machine 2

Machine m

Online Vector Scheduling

(2,2.8,1.3)

Dimension 1 (processor)

(2, 1.5, 1)

Dimension 2

JQalingector Schedu

(1,.8,.9)

I(s%orage)

Dimension 3

>

(netwo?k)

Jobs:

Machine 1

.\
|
|

Machine 2

Machine m

Online Vector Scheduling

Fi T

1

ya

[]

2

(2, 1.5, 1)

Dimension 1 (processor)

u 1.5,1.3)

illllll:zs

Dlmen5|on 2

ector Schedul
(s%orage)

(1,.8,.9)

Dimension 3

(network)

Online Vector Scheduling

2 3 4

Jobs:

b 13+ .9=2.2
Machine 1 e (loads accumulate

in each dimension)

Maci2

. I I I

]

° I I I
Mace m _k) i lector Scheddl'n% . - 11

Dimension 1 (processor) Dimension 2 (s orage) Dimension 3 (network)

Jobs:

Machine 1

Machine 2

Mach m

Online Vector Scheduling

makespan: maximum over makespan in individual dimensions

-

A

Dimension 1

e | EEEE———

|\|\|\|\I\I\

—
—

—
—

m' lector Scheduling

Dimension 2

Dimension 3

12

Online Vector Scheduling

Jobs: p-norms: maximum over p-norms in individual dimensions

Machine 1

- —
I

|\|\|\|\I\I\

Machine 2

—
—

|
Machine m imaector Scheduling

Dimension 1 Dimension 2 Dimension 3

13

Summary of Results

Makespan p-norm
minimization minimization

Identical machines O(log d)
[Azar etal °13, Our result:
Meyerson et al *14] ©((log d/log log d)l-llp)
Our result:

®(log d/log log d)

Unrelated machines O(log d + log m) (Im-Kulkarni-Kell-P.
(machine dependent [Meyerson et al *14] our result: FOCS ’15)
loads) Our result: ®(log d + p)

®(log d + log m)

Related machines Later... Later... (Im-Kell-P.-Shadloo
(non-uniform '17)
machine speeds)

Online Vector Scheduling 14

Summary of Results

Makespan p-norm
minimization minimization

Identical machines O(log d)
[Azar etal °13, Our result:
areretal, @((log d/log log d)*-1/r)

Our result:
®(log d/log log d)

Unrelated machines O(log d + log m) (Im-Kulkarni-Kell-P.
(machine dependent [Meyerson et al *14] our result: FOCS ’15)
|oads) OUI‘ reSUIt n

®(log d + log m) ©(log d:Hp)
Related machines Later... Later... (Im-Kell-P.-Shadloo
(non-uniform '17)

machine speeds)

Online Vector Scheduling 15

ldentical machines algorithm:
First attempt

Greedy assignment
(minimize maximum load
across all machines and dimensions)

unbalanced loads on dimensions
...can be as bad as poly(d)-competitive

TITTT

Online Vector Scheduling 16

ldentical machines algorithm:
First attempt

Greedy assignment
(minimize maximum load
across all machines and dimensions)

Random Assignment
(assignment uniformly at random)

L) .. PR
® o
\\\ * 4
-

Ty

Chernoff bounds:
O(log(dm))-competitive
(optimal for unrelated machines)

unbalanced loads on dimensions
...can be as bad as poly(d)-competitive

Online Vector Scheduling 17

Algorithm: Random and Greedy

M 1 [[

[—— | |
C | = | |
I— | | | @
E— I | | ! ...

|

— | | | Pt
[| | | \\\. ,
— I I ! p
— | I |

1 1 1

Assign uniformly at random

Online Vector Scheduling 18

Algorithm: Random and Greedy

i R i : :
l= | | | ."
| | I N
I— ...
— | I I ..‘ P
l= —— | | |
1 1 1

—— —— —— Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Online Vector Scheduling 19

Algorithm: Random and Greedy

o [|
B
= E
| |

| |

| |

=

—— —— —— Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Online Vector Scheduling 20

Algorithm: Random and Greedy

Exceeds threshold

¥

= Y —— :
o = | |
l= I : : : : ... :.‘.
pr— | — ® | co=
I I I \\\. &
| | |
| | |

=

—— —— —— Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Online Vector Scheduling 21

Algorithm: Random and Greedy

=

-

G E ——
G — - PR

.. @

' 4

=

—— —— —— Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d
= &= (/ \\‘@3

HNEREHE
|

Greedy schedule
(minimize max over
all machines and dimensions)

Online Vector Scheduling

22

Algorithm: Random and Greedy

=

=

-

EE =
G —— - TR

® o
@
P

\\\

' 4

=

—— —— —— Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d
/\— ~
l= = — = 4 \\i\ E[greedy volume] < volume/poly(d)
— — \/_@3 (Chernoff bounds)
N - — — Greedy schedule
I I I (minimize max over E[greedy makespan] = O(1)
I= | L | all machines and dimensions)

Online Vector Scheduling 23

Algorithm: Random and Greedy
—F R

E =

Competitive ratio: O(log d/log log d)

Best we can do?

Turns out yes:

=

implies

Coloring lower bound

=F R R

Q(log d/log log d) lower bound
For vector scheduling

Online Vector Scheduling

24

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

Objective: minimize the
largest monochromatic clique.

® 06 ©

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

Objective: minimize the
largest monochromatic clique.

® 06 ©

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

\l Objective: minimize the
largest monochromatic clique.

® 06 ©

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

\ Objective: minimize the
largest monochromatic clique.

® 06 ©

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Vector Scheduling 28

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

Objective: minimize the
largest monochromatic clique.

0 O,

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Vector Scheduling 29

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

Objective: minimize the
largest monochromatic clique.

20

0 O,

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Vector Scheduling 30

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

Objective: minimize the
largest monochromatic clique.

/

0 O,

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Vector Scheduling 31

Online Monochromatic Clique

Cligue:
Given fixed of t colors: red, blue, and green. (here t = 3) d %

Objective: minimize the
largest monochromatic clique.

Bad Good

ith vertex arrives: online algorithm gets adjacencies with vertices 1, ..., i-1

Online Vector Scheduling 32

The Game:Bins versus Colors

(...or robots versus blue devils)

Adversary (us)

My turn!

Number of colors: t =4

©,

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision)

7

Bins = algorithm)'s.colasingeduling

Online Algorithm

Bin 2

33

The Game:Bins versus Colors

(...or robots versus blue devils)

Adversary (us)

My turn!

1. JAdversary defines adjacencies with prior vertices
2. Algorithm places vertex in a bin (ALGO’s color).

Number of colors: t =4

3. Adversary colors the vertex (OPT’s decision)

-

Bins = algorithm)'s.colasingeduling

Online Algorithm

Bin 2

34

The Game:Bins versus Colors
(...or robots versus blue devils)

Number of colors: t =4

Adversary (us) Online Algorithm

My turn!

Bin 1 Bin 2
1.
2.
3. Adversary colors the vertex (OPT’s decision) N

/ Bi(:;ﬁ \Bin 4

Bins = algorithm)'s.colosingcduiing 35

The Game:Bins versus Colors
(...or robots versus blue devils)

Number of colors: t =4

Adversary (us) Online Algorithm
My turn!
[J
(J
¢ Bin 1 Bin 2
1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).

3. | Adversary colors the vertex (OPT’s decision) AN

| ot

Bins = algorithm)'s.colosingcduiing 36

The Adversary Strategy

* Split every bin into Vt slots: each slot is associated with a

distinct set of Vt colors

The Construction

B

3

2

x
v
4
| -
)
>

38

Online Vector Scheduling

Adversary defines adjacencies with prior vertices. g

. Algorithm places vertex in a bin (ALGO’s color).

1.
2
3.

Adversary colors the vertex (OPT’s decision).

1
3

The Adversary Strategy

Split every bin into Vt slots: each slot is associated with a
distinct set of vVt colors

Generate a “code”: a sequence of strings of length t from a Vt
alphabet

For the ith vertex, define adjacencies as follows (say t = 16):
— Suppose the ith string in the code is 1312121121413134

— Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1
of bin 3, etc

The Construction

Adversary defines adjacencies with prior vertices. g

Algorithm places vertex in a bin (ALGO’s color).

1.

2.

Adversary colors the vertex (OPT’s decision).

3.

2

1

40

Online Vector Scheduling

The Adversary Strategy

Split every bin into Vt slots: each slot is associated with a
distinct set of vVt colors

Generate a “code”: a sequence of strings of length t from a Vt
alphabet

For the ith vertex, define adjacencies as follows (say t = 16):
— Suppose the ith string in the code is 1312121121413134

— Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1
of bin 3, etc

— If the algorithm places the vertex in bin 2, then place it in slot 3 of bin
2

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color). g
3. Adversary colors the vertex (OPT’s decision).

1 2

Ih

e LT EE EEEEE EEEEE PEEET E s o e sl

Online Vector Scheduling 42

The Adversary Strategy

Split every bin into Vt slots: each slot is associated with a
distinct set of Vt colors

Generate a “code”: a sequence of strings of length t from a

Vt alphabet

For the it" vertex, define adjacencies as follows (say t = 16):
— Suppose the it string in the code is 1312121121413134

— Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2,
slot 1 of bin 3, etc

— If the algorithm places the vertex in bin 2, then place it in slot 3
of bin 2

— OPT colors the vertex with a color from the Vt colors associated
with slot 3 that is currently unused in bin 2

The Construction

1. Adversary defines adjacencies with prior vertices. -
2.

Algorithm places vertex in a bin (ALGO’s color).

3. Adversary colors the vertex (OPT’s decision). g -

1 2

Ih

e LT EE EEEEE EEEEE PEEET E s o e sl

Online Vector Scheduling 44

The Adversary Strategy

Split every bin into Vt slots: each slot is associated with a
distinct set of Vt colors

Generate a “code”: a sequence of strings of length t from a

Vt alphabet

For the it" vertex, define adjacencies as follows (say t = 16):
— Suppose the it string in the code is 1312121121413134

— Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2,
slot 1 of bin 3, etc

— If the algorithm places the vertex in bin 2, then place it in slot 3
of bin 2

— OPT colors the vertex with a color from the Vt colors associated
with slot 3 that is currently unused in bin 2

Terminate when some slot in some bin has Vt vertices

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

The Construction

|[®> D
o)

2

I

Observation 2: OPT has perfectly colored the graph in a bin

produce only constant-sized monochromatic cliques in OPT

Observation 1: Algorithm has created a monochromatic vt-clique

Lemma (via the probabilistic method): There exist codes that

| I T

e LT EE EEEEE EEEEE PEEET E s o e sl

Online Vector Scheduling

46

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

¢®
KX
3 4

Q(v/t) lower bound

(t = number colors)

e LT EE EEEEE EEEEE PEEET E s o e sl

Online Vector Scheduling 47

Now for the reduction...

v

-

implies

=F b P

Q(log d/log log d) lower bound
Coloring lower bound For vector scheduling

Q(v/t) lower bound

Online Vector Scheduling

48

Using MC Lower
Vector Sche

m = 9 machines

Issue m? = 81 jobs

Job dimension d = =

Colors correspond

Bound for
duling

O(m)

(5)

4 to machines \
: muEciigy Sull, vl B |
5 # colors t = m % ExN
jobs <-> vertices)4 = vl i
(Algorithm’s colors) J : rm— g l 2 2

O [
¢ I
Dimensions correspond to Ouli ’\/ q e

Vm size subsets of {1,..., m?} ==a""" {ef’ 5’ 3;e {J]_, E, 4} {1,2,5} {2,3,6}{2,4,6} {7

et

#

[TTTTTTTT]

9,

0.9]

0,81}

Using MC Lower Bound for
Vector Scheduling

m = 9 machines

Issue m? = 81 jobs

2
Job dimension d = " = 81
Vm 3

6
O (issued by MC instance)

Colors correspond
to machines \

/ 5 # colorst=m

jobs <-> vertices

4

BIEigy sl

F
z

(Algorithm’s colors)

000000000
0
E
G
g
g

Dimensions correspond to

Vm size subsets of {1,.., m2} == "¢ \{ef’ 5’ 3 ; ed{"]_, 57 4} {1,

5} {2,3,6}{2,4,6} {79,80,81}

[\

Using MC Lower Bound for
Vector Scheduling

m = 9 machines

Issue m? = 81 jobs
2 1
Job dimension d = " — 8
\/m 3

(issued by MC instance)

Colors correspond
to machines \

BIEigy sl

F
z

colorst=m
jobs <-> vertices

(Algorithm’s colors)

000000000
0
E
G
g
g

Dimensions correspond to

Vm size subsets of {1,.., m2} == "¢ \{ef’ 5’ 3 ; ed{"]_, 57 4} {1,

5} {2,3,6}{2,4,6} {79,80,81}

[\

Using MC Lower Bound for
Vector Scheduling

m = 9 machines

Issue m? = 81 jobs
2 1
Job dimension d = " — 8
\/m 3

(issued by MC instance)

1 iff vertex forms a clique with
previous vertices in the set

Colors correspond (O; 0 ’ 0 A 1; O; RN O)

to machines \
EAEiigy Sull

F
z
|

colorst=m
jobs <-> vertices

=

(Algorithm’s colors)

L 22 2 £ 2 20202 2

G
g
g

Dimensions correspond to

Vm size subsets of {1,.., m2} == "¢ \{ef’ 5’ 3 ; Ed{"]_, 57 4} {1,

5} {2,3,6}{2,4,6} {79,80,81}

[\

Using MC Lower Bound for
Vector Scheduling

m = 9 machines

Issue m? = 81 jobs
2 1
Job dimension d = " — 8
\/m 3

(issued by MC instance)

1 iff vertex forms a clique with
previous vertices in the set

4 Colors correspond (O; 0 ’ 0 ’ 1; O; RN O)
to machines \

¢ =1 |

EEE ERFE

colorst=m % 6 —

obs <-> verti 4 L —

(Algorithm’s colors) JODS vertices : '@ 2 [7 | [2]

)4 :
¢

’ ——

G

Dimensions correspond to

Vm size subsets of {1,.., m2} == "¢ \{ef’ 5’ 3 ; Ed{"]_, 57 4} {1,

51 {2,3,6}{2,4,6} {79,80,81}

[\

Using MC Lower Bound for
Vector Scheduling

m = 9 machines

Issue m? = 81 jobs
2 1
Job dimension d = " — 8
\/m 3

(issued by MC instance)

1 iff vertex forms a clique with
previous vertices in the set

4 Colors correspond (O; 0 ’ 0 ’ 1; O; RN O)
to machines \

¢ =1 |

EEE ERFE

colorst=m % 6 —

obs <-> verti 4 L —

(Algorithm’s colors) JODS vertices : '@ 2 [7 | [2]

)4 :
¢

’ ——

G

Dimensions correspond to

Vm size subsets of {1,.., m2} == "¢ \{ef’ 5’ 3 ; Ed{"]_, 57 4} {1,

51 {2,3,6}{2,4,6} {79,80,81}

[\

Using MC Lower Bound for
Vector Scheduling

m = 9 machines

Issue m? = 81 jobs

m2
Job dimension d = (\/E) —

(3)

1. After m? vertices, there will exist a monochromatic clique of size vm on

machine

Colors correspond 4.

some color c.
2. =>dimension corresponding to these vertices will have a load of vm on

C.

4 to machines \
: 131 . B
c # colorst=m 2
(Algorithm’s colors) jObS <->vertices : '@ z
¢
¢
4

Dimensions correspond to

v size subsets of {1,.., m2} == " \{ef, ;5’ 3 ; ed{J]

72,4} {1,

G

[\

5}

3. Size of largest monochromatic clique in OPT’s graph coloring is O(1).
ALGO/OPT => Q(Vm) = Q(log d / log log d)

B [—

{2,3,6}{2,4,6} {79,80,81}

Summary of Results

Makespan p-norm
minimization minimization

Identical machines O(log d)
[Azar etal 13, Our result:
Meyerson et al *14] ©((log d/log log d)l-llp)
Our result:
®(log d/log log d)
Unrelated machines O(log d + log m) (Im-Kulkarni-Kell-P.
(machine dependent [Meyerson et al *14] our result: FOCS ’15)
loads) Our result:
®(log d + log m) 2llege==(g)
Related machines (Im-Kell-P.-Shadloo
(non-uniform '17)

machine speeds)

Online Vector Scheduling 56

Related Machines (homogenous)

Processing time = load/speed
; : Jobs: F— F

(2,2.8,1.3) (2,1.5,1)

Machine 1
speed =1

sl\ggggiZi;nZ P— lalica/ector Scheduling

Related Machines (homogenous)

Execution time = load/speed

Machine 1
speed =1

Machine m
speed =1/2

Jobs:

lQalisg\ector Scheduling

ol

(2,1.5, 1)

| 13

58

Related Machines (homogenous)

Execution time = load/speed

Jobs:

Machine m m ector Scheduling —

speed =1/2

59

Related Machines (heterogeneous)

Processing time = load/speed
; : Jobs: F— F

(2,2.8,1.3) (2,1.5,1)

Machine m speed = 1/2 boaliaaalespperaqysling —— speed = 1/4 60

Related Machines (heterogeneous)

Processing time = load/speed

Machine 1

Machine m

Jobs:

— sneed = 1/2

ﬂn&nﬂegb@'egd_q q(;}gling

ol

(2,1.5, 1)

I 2 .6

— speed = 1/4

61

Related Machines (heterogeneous)

Processing time = load/speed

Machine 1

Machine m

2

—— Speed =1

| 4

— sneed = 1/2

Jobs:

I 0 6

r 4.5 I 4
waemlesHEedhaysling s e = 1/4 62

Summary of Results

Makespan p-norm
minimization minimization

Identical machines O(log d)
[Azar etal °13, Our result:
Meyerson et al *14] ®((log d/log log d)l-l/p)
Our result:
2ilie etlie g ey (Im-Kulkarni-Kell-P.
Unrelated machines O(log d + log m) FOCS '15)
(machine dependent [Meyerson et al 14] Our result:
loads) Our result: -
O(log d + log m) ey el
Related Homo- Our result: Our result:
Z“aCh'”es geneous @(log d/log log d) O(log? d)
non- Im-Kell-P.-Shad|
uniform Hetero- Our result: Our result: (Im-Ke '17) a000
machine geneous O(log d + log m) O(logd + p)
speeds)

Online Vector Scheduling 63

Summary of Results

Makespan p-norm
minimization minimization

Identical machines O(log d)
[Azar etal °13, Our result:
Meyerson et al *14] ©((log d/log log d)1-p)
Our result:
®(log dflog log d) (Im-Kulkarni-Kell-P.
Unrelated machines O(log d + log m) FOCS '15)
(machine dependent ~ [Meyersonetal °14] Our result:
|Oad5) Our result: @(Iog d+ D First 0(1)

O(log d + log m) competitive for d = 1

Our resuit:
O(log® d)

Related Homo- Our result:

machines geneous @(log d/log log d)
(non-

(Im-Kell-P.-Shadloo

uniform Hetero- Our result: Our result: ,

. 17)
machine geneous ®(log d + log m) O(log d + p)
speeds)

Online Vector Scheduling 64

Machine Grouping

Want to reduce problem to identical machines...

Natural to try to groups machines of similar speed.

Issue: if total speed (processing power) of faster
machines is large, slower machines go unutilized.

spee= 1
I speed = 1/2
lm speed =1 speed = 1/2

| spee= 1/2

spee= 1/4

spee= 1/4

/ Spee:K ~
=8 é- B

Online Vector Scheduling

spee= 1/8

65

spee= 2/3

spee= 1/2

B

spee= 2/5

speed = 2/5 speed = 2/5

spee= 1/3

speed = 1/3 speed = 1/3

Machine Smoothing

Online Vector Scheduling

66

Machine Smoothing

speed =1

spee= 2/3

speed =1/2

spee= 2/5

speed = 2/5 speed = 2/5

spee= 1/3

:

speed = 1/3 speed = 1/3

—

Group O: [" (total speed 1)

|

spee= 1

e Group machines so that total speed increases exponentially.
* Replace machines with identical machines with
(roughly) same total speed.

Online Vector Scheduling 67

Machine Smoothing

Group O: (total speed 1)

speed =1

spee= 2/3
— .

Group 1: qpeed=1/2 speed=1/2

(total speed 2)
spee= 1/2 w .i

speed = 1/2 speed =1/2

B

spee= 2/5

speed = 2/5 speed =2/5

speed = 1/3 e Group machines so that total speed increases exponentially.
* Replace machines with identical machines with
l (roughly) same total speed.

speed = 1/3 speed = 1/3 Online Vector Scheduling 68

it

spee= 2/3

it

spee= 1/2

spee= 2/5

speed = 2/5 speed = 2/5

It

spee= 1/3

E G

speed = 1/3 speed = 1/3

Machine Smoothing

Group O: (total speed 1)
speed =1

E E

Group 1: speed =1/2 speed = 1/2

(total speed 2)

speed = 1/2 speed = 1/2

Group2:=\
— GEEEEEEEE

speed = 1/4 (each) (total speed 4)

e Group machines so that total speed increases exponentially.
* Replace machines with identical machines with
(roughly) same total speed.

Online Vector Scheduling 69

Machine Smoothing

m Group O: (total speed 1)
lm speed =1
spee= 2/3

m (crniin_ 1. e Bl

speed =1/2 | Lemma (informal): Any schedule on a smoothed instance can be

replicated on the original instance with constant change in
lﬂ makespan, and vice-versa. A similar statement can be shown for all
speed =2/5 | p-norms as well.
speed = 2/5 speed =2/5
m speed = 1/4 (each) (total speed 4)
speed = 1/3 e Group machines so that total speed increases exponentially.
: * Replace machines with identical machines with
(roughly) same total speed.
spe= 1/3 spee= 1/3 Online Vector Scheduling 70

Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT =10

1 2
spee= 1 JO bS . Fl

(3,3, 1) (2, 1.5, 1)

b H /
Algorithm: Assign to slowest group

speed = 1/2 such that all execution times are <= c. OPT

CEEEECEEEE

speed =1/4

Online Vector Scheduling 71

Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT =10 ’)
spe= 1 JObS' Fl
(2, 1.5, 1)
w w w H ‘/Algorithm: Assign to slowest group
speed = 1/2 such that all execution times are <= c. OPT
(3 3,1)

CEEEECEEEE

speed =1/4

Online Vector Scheduling 72

Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT =10
spee= 1 JObS'
w ‘ w H Algorithm: ASsign to slowest group
speed = 1/2 such that All execution times are <= c. OPT

(331)

speed =1/4 Fl

(2,15, 1)

Online Vector Scheduling 73

Makespan minimization:
Slowest fit on Smoothed Instance

{ Suppose OPT =10

spe= 1 JO bS .

;
‘. Algorithm: Assign to slowest group

speed = 1/2 F such that all processing times are <= c. OPT

A Pe 1
‘-...::._ + (@j}) (3; 31)

.... Then, assign jobs using the identical

' H machines algorithm (within each group).
o

Tt (B (2,1.5,1)

Online Vector Scheduling 74

pP-norm minimization

speed =1

speed = 1/2

speed = 1/4

Online Vector Scheduling 75

pP-norm minimization

speed =1

speed = 1/2

speed =1/4

Online Vector Scheduling 76

Thank You

Questions?

