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Let G = (V,E) be a network (e.g., social, computer network, ect.),

and let S0 be any subset of V .

. Every node in S0 is infected with a virus that spreads from each

infected node to all of its nonvaccinated neighbors in one time-step.

. Our allowed response: vaccinate a limited number (about al) of

nodes during each time step l = 1, 2, 3, . . . , t

. Our goal: find what nodes to vaccinate each step to minimize the

total number m of nodes that eventually become infected.

We call this the Containment Problem (input is G, S0, and the al’s).
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Why would we care about solving the Containment Problem?

. Limited supply of vaccine available initially to stop an infection.

. Containment of computer virus spreading through a network.

. Blocking off suspects from escaping the scene of a crime where only

a limited number of policeman are available initially.
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Note that it is always at least as effective to vaccinate a node earlier

rather than later.

Lemma 1 Let C be the set of nodes that we vaccinate at some point

or another. If each node v in C is vaccinated before the infection

reaches it, then the number of nodes that eventually become infected

is the number of nodes that share a component in G \C with a node

in S0.
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Unfortunately, the Containment Problem (CP) is NP-hard: It is

probably impossible to devise a tractable algorithm that returns an

optimum strategy.

So we devise a tractable approximation algorithm for CP that returns

a (slightly) inferior vaccination strategy:

. have to vaccinate slightly more (O(log |V (G)|)× al nodes instead of only al

nodes as before) at each time-step l, and

. the total number of nodes that become infected is no more than 3m (instead
of the minimum m as before).

And we also require that the network G satisfy the following expansion

property: Every subset S of no more than a quarter of the nodes of G

has at least |S| neighbors outside S.

5



. Empirical evidence: social networks resemble random graphs

. Random graphs have expansion property

. So our assumption about the expansion properties of G is reasonable.
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Overview of the approximation algorithm for the CP

Lemma 2 If G is an expander, then it is possible to vaccinate only twice

as many nodes per time-step as before for the first t = log |V (G)|
time-steps, and then none after, so that no more than nodes than

before become infected.

. Formulate CP as an integer program (IP), where we vaccinate 2al

nodes per time-step l ≤ t (and none thereafter) instead of only al.

. State and solve an appropriate linear relaxation (LP) of (IP).

. Use combinatorial techniques (and that t in Lemma 2 is small) to

convert the solution for (LP) into a vaccination strategy.
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. Formulate the CP as an integer program (IP). ←

. State and solve an appropriate linear relaxation (LP) of (IP).

. Use combinatorial techniques...

(IP) Minimize ∑
v∈V

|V |∑
i=0

|xv,i|

subject to

.
∑l+1

i=1 yv,i +
∑l+1

i=1 xv,i ≥
∑l

i=1 xu,i, ∀v ∈ V , ∀{u, v} ∈ E, and

∀j = 1, 2, . . .

.
∑

v∈V yv,l ≤ 2al, ∀l = 1, 2, . . . , t, and yv,l = 0 for all l > t.

. xs,0 = 1, ∀s ∈ S0, and

. xv,i, yv,i ∈ {0, 1}, ∀v ∈ V ; ∀i = 1, 2, . . . , |V |.
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. Formulate the CP as an integer program (IP).
√

. State and solve an appropriate linear relaxation (LP) of (IP). ←

. Use combinatorial techniques...

(LP) Minimize ∑
v∈V

|V |∑
i=0

|xv,i|

subject to

.
∑l+1

i=1 yv,i +
∑l+1

i=1 xv,i ≥
∑l

i=1 xu,i, ∀v ∈ V , ∀{u, v} ∈ E, and

∀l = 1, 2, . . .

.
∑

v∈V yv,l ≤ 2al, ∀l = 1, 2, . . . , t, and yv,l = 0 for all l > t.

. xs,0 = 1, ∀s ∈ S0, and

. 0 ≤ xv,i, yv,i ≤ 1, ∀v ∈ V ; ∀i = 1, 2, . . . , |V |.
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. Formulate the CP as an integer program (IP).
√

. State and solve an appropriate linear relaxation (LP) of (IP).
√

. Use combinatorial techniques (and the fact that t (number of time-steps) is
small) to convert the solution of (LP) into a vaccination strategy←

Sol’n of LP → vaccination strategy

. Let {xv,i, yv,i| v ∈ V ; i = 0, 1, . . . , |V |} be the sol’n to (LP).

. Set S to be the nodes v s.t.
∑

i xv,i ≥ 2
3, and T to be the nodes v

s.t.
∑

i xv,i < 1
3, and let C be a min-cut in G between S and T .

. Let C1 be the vertices v in S such that yv,1 ≥ 1
3t. For general l < t,

set Cl+1 to be the vertices v in S of distance at least l + 1 from a

vertex in S0 in G \ (C1 ∪ . . . ∪ Cl), s.t.
∑l

i=1 yv,i ≥ 1
3t.

. For each l < t, vaccinate the vertices in Cl at time step l, and the

vertices in Ct ∪ C at time step t, and return.
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Further research directions

. Remove the condition that G is an expander.

. Improve the approximation factors of the algorithm.

. Establish stronger hardness results.
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