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Email: {chevaley,maudet}@lamsade.dauphine.fr

2Department of Computing, Imperial College London

Email: ue@doc.ic.ac.uk

Abstract

In this extended abstract, we briefly review previous work on the welfare engineering
framework in which autonomous software agents negotiate on the allocation of a number
of discrete resources, and we point out several connections to combinatorial optimisation
problems that shed light on the computational complexity of the framework. We give
particular consideration to scenarios where the preferences of agents are modelled in
terms of k-additive utility functions.

1 Introduction

Distributed systems in which autonomous software agents interact with each other, in either
cooperative or competitive ways, can often be usefully interpreted as societies of agents ;
and we can employ formal tools from microeconomics to analyse such systems. If we model
the interests of individual agents in terms of a notion of individual welfare, then the overall
performance of the system provides us with a measure of social welfare.

Individual welfare may be measured either quantitatively, typically by defining a util-
ity function mapping “states of affairs” (outcomes of an election, allocations of resources,
agreements on a joint plan of action, etc.) to numeric values; or qualitatively, by defining
a preference relation over alternative states. The concept of social welfare, as studied in
welfare economics, is an attempt to characterise the well-being of a society in relation to
the welfare enjoyed by its individual members [1, 2, 14, 19]. The best known examples
(both relying on quantitative measures of individual welfare) are the utilitarian programme,
according to which social welfare should be interpreted as the sum of individual utilities,
and the egalitarian programme, which identifies the welfare of society with the welfare of its
“poorest” member.

For instance, in an electronic commerce application where users pay a fee to the provider
of the infrastructure depending on the personal benefits incurred by using the system, the
increase in utilitarian social welfare correctly reflects the profit generated by the provider.
The application discussed by Lemâıtre et al. [13], on the other hand, where agents repre-
senting different stake-holders repeatedly negotiate over the access to an earth observation
satellite (which has been jointly funded by the stake-holders), requires a fair treatment of
all agents. Here, the respective values of different access schedules may be better modelled
by an egalitarian social welfare ordering.

We are particularly interested in applications where negotiation between autonomous
agents serves as a means of addressing a resource allocation problem. Recent results in this
framework concern the feasibility of reaching an allocation of resources that is optimal from
a social point of view [7, 17], as well as (certain aspects of) the complexity of doing so,
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in terms of both computational costs and the amount of communication required [4, 5, 6].
Other applications include automatic contracting [17], selfish routing in shared networks [9],
distributed reinforcement learning [20], and data mining [12]. This area of activity, which we
may term computational microeconomics, brings together theoretical computer science and
microeconomics in new and fruitful ways, benefiting not only these disciplines themselves
but also “hot” research topics such as multiagent systems and electronic commerce.

In previous work, we have put forward the framework of welfare engineering [7], which
addresses the design of suitable rationality criteria for autonomous software agents partici-
pating in negotiations over resources in view of different notions of social welfare, as well as
the development of such notions of social welfare themselves. In this extended abstract, we
briefly review the underlying multiagent resource allocation system and recall two previous
results on the feasibility of reaching a socially optimal allocation of resources from a utili-
tarian point of view. As we shall see, in cases where the utility functions used by agents to
model their preferences over alternative bundles of resources are additive, it is sufficient to
use very simple negotiation protocols that only cater for deals involving a single resource at a
time. This result suggests to investigate generalisations of the notion of additivity, and hence
we consider the case of k-additive functions, as studied, for instance, in the context of fuzzy
measure theory [11]. It turns out that the positive result obtained for additive functions
cannot be generalised in the expected manner. However, the notion of k-additivity suggests
an alternative representation of utility functions that can be usefully exploited in other ways.
It does, for instance, often allow for a more concise representation of utility functions.

In the final part of this abstract, we discuss connections to some well-known NP-complete
combinatorial optimisation problems (namely, weighted set packing and the independent set
problem). These can be used to prove NP-hardness results for the problem of finding a
socially optimal resource allocation. We indicate these results with respect to both the
standard representation of utility functions and the representation based on k-additivity.
While NP-completeness can also be shown for an important subclass of the general problem,
we briefly discuss the difficulty of establishing a general completeness result along the same
lines. We also briefly discuss connections to combinatorial auctions.

2 Resource Allocation by Negotiation

An instance of our negotiation framework consists of a finite set of (at least two) agents A
and a finite set of non-divisible resources R. A resource allocation A is a partitioning of the
set R amongst the agents in A. For instance, given an allocation A with A(i) = {r3, r7},
agent i would own resources r3 and r7. Given a particular allocation of resources, agents
may agree on a (multilateral) deal to exchange some of the resources they currently hold.
In general, a single deal may involve any number of resources and any number of agents. It
transforms an allocation of resources A into a new allocation A′; that is, we can define a
deal as a pair δ = (A, A′) of allocations (with A 6= A′).

Each agent i ∈ A is equipped with a utility function ui mapping bundles of resources
(subsets of R) to real numbers. We abbreviate ui(A) = ui(A(i)) for the utility value assigned
by agent i to the set of resources it holds for allocation A. While individual agents may have
their own interests, as a system designer, we are interested in the social welfare associated
with a given allocation. According to the aforementioned utilitarian programme, the social
welfare of an allocation A is given by the sum of utilities exhibited by all the agents in the
system:

sw(A) =
∑

i∈A

ui(A)

One of the main questions we are interested in in the welfare engineering framework is under
what circumstances negotiation between agents will result in an improvement, and eventually
an optimisation, with respect to such a notion of social welfare.
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A deal may be coupled with a number of monetary side payments to compensate some
of the agents involved for an otherwise disadvantageous deal. We call a deal rational iff it
results in a gain in utility (or money) that strictly outweighs a possible loss in money (or
utility) for each of the agent involved in that deal. As shown in previous work [8], a deal
is rational iff it results in an increase in utilitarian social welfare. Given this connection
between the “local” notion of rationality and the “global” notion of social welfare, we can
prove the following result on the sufficiency of rational deals to negotiate socially optimal
allocations [8, 17]:

Any sequence of rational deals (with side payments) will eventually result in an
allocation of resources with maximal utilitarian social welfare.

This means that (i) there can be no infinite sequence of deals all of which are rational, and
(ii) once no more rational deals are possible the agent society must have reached an allocation
that has maximal social welfare. The crucial aspect of this result is that any sequence of
deals satisfying the rationality condition will cause the system to converge to an optimal
allocation. That is, whatever deals are agreed on in the early stages of the negotiation, the
system will never get stuck in a local optimum and finding an optimal allocation remains an
option throughout.

A drawback of the general framework is that the above result only hold if deals involving
any number of resources and agents are admissible [8, 17]. In some cases this problem
can be alleviated by putting suitable restrictions on the utility functions agents may use to
model their preferences. Interesting special classes of utility functions to consider include
non-negative functions (where an agent may not assign a negative utility to any bundle),
monotonic functions (where the utility of a set of resources cannot be lower than the utility
assigned to any of its subsets), or additive functions (described in a further section).

3 Representations of Utility Functions

Agents’ utility functions may be represented in different ways. Maybe the most intuitive
form is the bundle one which amounts to listing all bundles of resources to which the agent
assigns a non-zero value. Clearly, this technique can soon become hard to handle, as they
may be an 2n − 1 bundles to value in the worst case.

An alternative representation, introduced in the context of fuzzy measure theory [11],
is based on the notion of k-additive functions. A utility function is called k-additive iff the
utility assigned to a bundle of resources R can be represented as the sum of basic utilities
ascribed to subsets of R with cardinality ≤ k. More formally, a k-additive utility can be
written as follows:

ui =
∑

T⊆R,|T |≤k

[

αi
T

∏

r∈T

Ij(r)

]

Where Ij(r) equals to 1 iff agent j owns resource r, 0 otherwise. For the sake of simplicity, the
Ij will be omitted, and the utilities will be written ui =

∑

T⊆R,|T |≤k

[

αi
T

∏

r∈T r
]

. Clearly,

agent i enjoys an utility increased by αi
T when owning items r ∈ T together (that is, αi

T

represents the synergetic value of this items held together).
Both representations are equivalent in term of expressive power, in the sense that they

both can represent all utility functions1. As both representations are equivalent regarding
expressiveness, one should consider whether one is stricly better in term of simplicity. This
proves not be the case, i.e there are cases where concise utilities in the bundle form corre-
sponds to huge k-additive formulas, and the other way around. The k-additive form appears
to be more concise in cases where there are synergies between items.

1Converting the k-additive form into the bundle form is trivial, whereas converting the bundle form into
a k-additive form involves the Moebius transform.
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In the field of combinatorial auctions, several bidding languages have also been introduced
and studied [15]. There are links with the representations discussed above, which the details
are currently under investigation.

4 Complexity of Deals with k-additive Utilities

It was shown in an earlier paper that in scenarios where utility functions may be assumed to
be 1-additive (also called additive functions), it is possible to guarantee optimal outcomes
even when agents only negotiate deals involving a single resource and a pair of agents at a
time (so-called one-resource-at-a-time deals) [8]:

If all utility functions are additive, then any sequence of rational one-resource-
at-a-time deals (with side payments) will eventually result in an allocation of
resources with maximal utilitarian social welfare.

This result is of great practical relevance, because it shows that it is sufficient to design
negotiation protocols for pairs of agents (rather than larger groups) and single resources
(rather than sets) for applications in which preferences can be modelled in terms of additive
utility functions.

Intuitively, we could have expected a similar result for k-additive utilities with k ≥ 2.
However, we will see that the deals required to reach maximal social welfare in the k-additive
case are much more complex:

If all utility functions are k-additive, then rational n-resource-at-a-time deals may
be needed to reach maximal utilitarian social welfare.

To prove this result, let us build an example with 2-additive utility functions in which n-
resource-at-a-time deals are needed. Consider 2 agents sharing n resources {r1, r2, ...rn}, with
the following 2-additive utility functions : u1 = 0 and u2 = r1−r1.r2−r1.r3−r1.r4−. . .−r1.rn.
Let Ainit be the initial allocation describing which agent owns which resource at time 0, and
let Aopt be the allocation maximizing the utilitarian social welfare.

Ainit Aopt

a1 {r1} {r2, r3, . . . , rn}
a2 {r2, r3, . . . , rn} {r1}

Here, sw(Ainit) = 0 and sw(Aopt) = 1. In fact, the only allocation which has a social
welfare greater than sw(Ainit) is Aopt. Thus, the only rational deal here is δ(Ainit, Aopt),
which is a bilateral deal of n resources at a time. Furthermore, we showed that adding
constraints on the utility functions did not drastically decrease the complexity of the required
deals:

If all utility functions are k-additive, monotone and super-additive, k-resources-
at-a-time deals will not be sufficient in all cases.

5 Connections to Combinatorial Optimisation

If we view the problem of finding an allocation with maximal social welfare as an algorith-
mic problem faced by a central authority (rather than as a problem of designing suitable
negotiation mechanisms), then we can observe an immediate relation to the so-called winner
determination problem in combinatorial auctions [15, 16, 18]. In a combinatorial auction,
bidders can put in bids for different bundles of items (rather than just single items). After
all bids have been received, the auctioneer has to find an allocation for the items on auction
amongst the bidders in a way that maximises his revenue. If we interpret the price offered
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for a particular bundle of items as the utility the agent in question assigns to that set, then
maximising revenue (i.e. the sum of prices associated with winning bids) is equivalent to find-
ing an allocation with maximal utilitarian social welfare. This equivalence holds, at least,
in cases where the optimal allocation of items in an auction is such that all of the items on
auction are in fact being sold (so-called free disposal).

Winner determination in combinatorial auctions is known to be NP-complete [16]. The
quoted result applies to the case of the “standard” bidding language, which allows bidders
to specify prices for particular bundles and makes the implicit assumption that they are
prepared to obtain any number of disjoint bundles for which they have submitted a bid
(Nisan [15] calls this the “OR language”). Our languages for expressing utilities are more
general than this. Still, the correspondence to combinatorial auctions suggests that the
problem of finding an allocation with maximal utilitarian social welfare is at least NP-hard.
We can make this observation more precise by showing how our problem relates to well-known
NP-complete “reference problems”.

We use a reduction to weighted set packing [3] to establish NP-hardness with respect to
the standard (tabular) representation of utility functions:2

The problem of finding an allocation with maximal utilitarian social welfare whith
utilites represented in bundle form is NP-hard.

By further exploiting the correspondence to weighted set packing, we can also show that our
problem is NP-complete provided the following conditions are met: (i) all utility functions
are non-negative; (ii) ui({ }) = 0 for all agents i ∈ A; and (iii) we have free disposal, i.e. for
any allocation not covering all resources there is always a full allocation that is not worse
(this is the case, for instance, if the society includes at least one agent with a monotonic
utility function). The first restriction comes from the fact that weights are required to be
positive. The second reflects the fact that agents not included in any of the sets in the
optimal allocation will not contribute to the measure either. Finally, the third restriction is
due to the fact that an optimal solution to the weighted set packing problem is not required
to cover all the items present in any of the sets. This latter point appears to be the main issue
that makes our resource allocation problems potentially harder than optimisation problems
without such a constraint. We are currently investigating this issue further.

A related combinatorial optimisation problem, namely maximal independent set can be
used to establish also NP-hardness with respect to our representation based on k-additive
functions:

The problem of finding an allocation with maximal utilitarian social welfare with
utilities in k-additive form is also NP-hard.

The reason why it is important to have these two variants of the NP-hardness result is that
neither one of our two alternative representations for utility functions is the more concise in
all cases, as previously discussed.

6 Conclusion

In this extended abstract, we have given a brief overview of recent work on multiagent
resource allocation in the context of the welfare engineering framework and we have hinted

2Proofs are omitted in this abstract; we only sketch the basic idea of the reduction. An instance of the
weighted set packing problem is a collection of sets, each of which is associated with a positive weight. A
solution to the problem is a collection of disjoint sets out of the full collection and the measure with respect
which such a solution is evaluated is the sum of the associated weights. The problem of finding a solution
that maximises this measure is known to be NP-complete. Broadly speaking, we can reduce our problem of
finding a socially optimal resource allocation to weighted set packing by introducing a set for each pair of
agents i and bundles R such that ui(R) 6= 0, where the associated weight is ui(R). Then the measure used
in weighted set packing corresponds to the utilitarian social welfare.
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at some of the connections to other fields, in particular combinatorial optimisation, we are
currently exploring. We see this work as part of a wider research trend, that brings together
ideas from different areas including microeconomics, game theory, complexity theory, and
algorithm design.

Finally, we would like to stress that the high complexity of of our negotiation framework
does not, at least not necessarily, mean that it cannot be usefully applied in practice. This
view is supported by the fact that, in recent years, several algorithms for winner determina-
tion in combinatorial auctions (a problem of comparable complexity to the problems arising
in the context of welfare engineering) have been proposed and applied successfully [10, 16, 18].

Acknowledgements. We would like to thank Jérôme Lang for many fruitful discussions
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utility functions.
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