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Abstract. Given a set of individua preferences defined on a same finite set, we consider the
problem of aggregating them into a collective preference minimizing the number of
disagreements with respect to the given set and verifying some structura properties like
trangitivity. We study the complexity of this problem when the individua preferences as wdl as
the collective one must verify different properties, and we show that the aggregation problem is
NP-hard for different types of collective preferences, even when the individual preferences are
linear orders.
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1. Introduction

The problem that we deal with in this communication can be stated as follows. given a set
(called aprofile) I'Tof binary relations defined on the samefinite set X, find a binary relation R*
defined on X verifying certain properties like trangitivity and summarizing IT as accurately as
possible. This problem occursin different fields, for instance in the socia sciences, in dectrical
engineering, in agronomy or in mathematics (see for example J.-P. Barthéemy et alii (1995),
J.-P. Barthédlemy and B. Monjardet (1981 and 1988), A. Guénoche et alii (1994), L. Hubert
(1976) or M. Junger (1985) for references). For example, in voting theory, X can be considered
asaset of candidates, ITas aprofile of individual preferences expressed by voters and R* as the
collective preference that we look for.

The am of this communication is to study the complexity of finding R*. We consider
different types of ordered relations for the individual preferences of IT as well as for R* and we
show that for most cases, the decision problem associated with the determination of R* is NP-
complete. This problem has been dready studied in some specid cases, namely for the
aggregation of a profile of linear orders into a linear order by J.B. Orlin (1988) and by
J.J. Bartholdi 111, C.A. Tovey and M.A. Trick (1989), and for the aggregation of a profile of
binary relationsinto alinear order, apartial order, a complete preorder or a preorder (see below
for the definitions of these structures) by Y. Wakabashi (1986 and 1998). We generdlize these
results by extending them to other cases.



This extended abstract is organized as follows. Section 2 recalls the definitions of the ordered
relations that we take into account. In section 3, we show how the aggregation problem can be
formulated in graph theoreticad terms. Then we state our complexity results upon this
aggregation problem without proofsin the last section (the proofs of these results can be found
in O. Hudry (1989)).

2. Theordered relations

Given a finite set X, a binay reaion R defined on X is a subset of
Xx X ={(x,y):x € Xandy € X}. Wenote n the number of elements of X and we suppose
that nisat least equal to 4. We note xRy instead of (X, y) € Rand xRy instead of (X, y) ¢ R
The following properties that abinary relation R can satisfy are basic:

s reflexive: V x e X, XRx;

sirreflexivel V x e X, XRX;

« antisymmetric: V (x,y) € X2, (xRy and x#y) = YRX;

« asymmetric: V (x,y) € X2, xRy = YRX;

« trangitive; V (x,y,2) € X3, (xRy and yRz) = xRz,

 complete: V (xy) € X2 with x2y, XRy or (inclusive) yRx.

From abinary relation R, we may define an asymmetric relation Ar (caled the asymmetric part
of R) by: XAry < (XRy and yRX).

By combining the above properties, we may define different types of binary relations (see for
instance J.-P. Barthélemy and B. Monjardet (1981) or P.C. Fishburn (1985)):

» A partial order is an asymmetric and trangtive binary relation; O will denote the set of the
partia orders defined on X;

* alinear order isacomplete partial order; £ will denote the set of the linear orders defined on
X

 atournament is a complete and asymmetric binary relation; 7 will denote the set of the
tournaments defined on X;

» apreorder is areflexive and trandtive binary relation; ® will denote the set of the preorders
defined on X;

» acomplete preorder isareflexive, transitive and complete binary relation; ¢ will denote the set
of the complete preorders defined on X;

» aweak order isthe asymmetric part of acomplete preorder; 7 will denote the set of the wesk
orders defined on X;

« an interval order is a partia order R satisfying: V (x, ¥, z t) € X4, (xRy and zRt) = {xRt or
(inclusive) zZRy}; 1will denote the set of the interval orders defined on X;

« asemiorder is an interva order R satisfying: V (X, ¥, z t) € X4, (xRy and yRz) = {xRt or
(inclusive) tRz} ; swill denote the set of the semiorders defined on X;

» aquasi-order isacomplete relation of which the asymmetric part isa semiorder; Q will denote
the set of the quasi-orders defined on X;

« an acyclicrelationisardation Rverifying: Vv 1< k<n, (xRx+1 for 1 <i < k—1) = x¢«Rxq;
A will denote the set of acyclic relations defined on X.

Itis possibleto get other structures by adding or by removing reflexivity or irreflexivity from
the above definition (and by changing asymmetry by antisymmetry). In fact, the distinction
between reflexive and irreflexive relations is not relevant for our study (see O. Hudry (1989)):
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the complexity resultswill remain the same. Thus, in the following, we do not take reflexivity or
irreflexivity into account (for instance, we will consider that alinear order is aso a preorder).

These types include the most studied and used partially ordered relations. We will also
consider generic binary relations, without any particular property. The set of the binary relations
will be noted 8. We may notice severa inclusions between these sets, especialy the following
oneVvVze{4BCILLO®PQS T W, LC z inother words, a linear order can be
considered as a special case of any one of the other types.

3. Formulation of the aggregation problem

In order to get an optimization problem to deal with, it is necessary to explicit what we mean
when we say that R* must summarize I1" as accurately as possible’. To do so, we consider the
symmetric difference distance 6: given two binary relations R and S defined on the same set X,

we have
S(RS) = H(x y) € X2: [xRy and xSy] or [ xRy and x&/]}‘

This quantity 6 (R, S) measures the number of disagreements between R and S. Though some
authors consider sometimes another distance, 6 is used widely and is appropriate for many
applications. J.-P. Barthdlemy (1979) shows that ¢ satisfies a number of naturaly desirable
properties and J.-P. Barthélemy and B. Monjardet (1981) recal that 6 (R, S) is the Hamming
distance between the characteristic vectors of Rand S and point out the links between 6 and the
L, metric or the square of the Euclidean distance between these vectors (see also K.P. Bogart

(1973 and 1975) and B. Monjardet (1979 and 1990)).
Then, for a profile IT = (Ry, Ry, ..., Ry) of m relations, we can define the remoteness

A(IT, R) (J.-P. Barthdlemy and B. Monjardet (1981)) between arelation R and the profile ITby:
m
A(IT,R) = Y 5(RR)
i=1

The remoteness A(I'1, R) measures the total number of disagreements between ITand R

Our aggregation problem can be seen now as a combinatoria problem: given a profile I7T,
determine abinary relation R* minimizing A over one of thesets 4, B, G I, £, O, 2, Q S, T, ‘W.
Such arelation R* will be caled a median relation of IT (J.-P. Barthédlemy and B. Monjardet
(1981)). According to the properties assumed for the relations belonging to I7 or required from
the median relation, we get many combinatorial problems. They are too numerous to state al of
them explicitly; so we note them asfollows:

Problems Py (9; 2). For apositive integer m, for o’belongingto{4, B,C, I, £, O, P, Q, S, T, W
and zbelongingasoto{4, B, C I, , O, P, Q S, T, W}, Pm(9; 2) denotesthe following problem:
given afinite set X, given aprofile ITof mbinary relations al belonging to 9; find a relation R*
belonging to Zzwith : A(IT, R*) = lgleigA(H, R).

To study the complexity of P(9; 2), we develop the expression of A. For this, consider the

characteristic vectors ri = (rj(y)(x Dex of the relations R (1 < i < m) defined by r}, =1 if
¥)e

xRy and rj, = 0 otherwise, and similarly the characteristic vector r = (ryy) of any

(x,y)eX?
binary relation R. Then, it iseasy to get alinear expression of A(11, R):
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S(RR) = Z‘rxy—r" Z‘rxy—r" [rxyl 2ri, +r']

(x,y)e X2 (x,y)eX2 (x,y)ex2
m
hence ALR) =Y, ¥ |ny -ty
i=1(x,y)eX?
and, after simplifications: A(IT,R)=C— ) my.ry
(x,y)eX?
m
with C = z > ri, and myy = Z(Zr' )=22r)'(y—
i=1(x,y)eX? i=1

Notice that, with this expression of AT, R), it is easy to get a 0-1 linear programming
formulation of the problems Py(9; z) by adding the 0-1 linear constraints associated with each
type of median relation; for example, the trandtivity of R can be written: V(X,y,z) € X3,
Iy + Iyz — Iy < 1 (seeforinstance Y. Wakabayashi (1986) or O. Hudry (1989) for details).

4. The complexity results

In this section, we pay attention to the complexity of P(9; z) for different types of profiles
and different types of median relations.

For the profile IT, three cases will be distinguished below:
* inthefirst one, ITwill be aprofile of mbinary relations, for any positive value of m;
* in the second one, ITwill be aprofile of mtournaments, for any even positive value of m;
* inthethird one, ITwill be aprofile of agreat enough number of relations belonging to any set
yincluding £: L C 9; asnoticed above, thisalowsall the previous sets 4, B, G I, £, O, P, Q S,
7, W, aswell as“mixed” setssuchasou Por AU CuU T...

For the median relations, they belong to oneof thesets 4, B, C, I, £, O, P, Q, S, T, or ‘W.

We may summarize the complexity results by the following table. In this table, “NP-C”
means that the decision problem associated with the considered problem Py(9; z) is NP-

complete, while “?” means that the complexity status of Py(9; 2) is unknown. The symbol
v (respectively &) showsthe results got by Y. Wakabayashi (1986 and 1998) (respectively by

J.B. Orlin (1988) and by J.J. Bartholdi 1ll, C.A. Tovey and M.A. Trick (1989)). The NP-
completeness of the case for which IT is reduced to only one binary relation while the median

relation must be acyclicis directly given by the complexity of the well-known Feedback Arcset
Problem (see M.R. Garey and D.S. Johnson (1979)); it is represented by the symbol & in the

table.



Median relation (2)

ITe BM (y=3)

ITe 7™M (=17)

ITe yMwithLc oy

binary relation (B)
tournament ()
acyclic relation ()
complete preorder (O
interval order (1)
linear order (L)
partiel order (0O)
preorder (P)
quasi-order (Q)
semiorders ()
weak order (1)

(trividly) polynomia
(trivialy) polynomial
NP-C for any m=> 14
NP-C for mgreat¥
NP-C for any m> 2
NP-C for any m> 1¥
NP-C for any m> 2v
NP-C for mgreat*
NP-C for m great
NP-C for any m> 2
NP-C for mgreat

(trividly) polynomia
(trivialy) polynomial
NP-C for any meven
NP-C for mgreat
NP-C for mgreat
NP-C for any meven
?
?
NP-C for mgreat
NP-C for mgreat
NP-C for mgreat

(trividly) polynomid
(trivialy) polynomia
NP-C for m great
NP-C for m great
NP-C for m great
NP-C for m great*
?
?
NP-C for m great
NP-C for m great
NP-C for m great

From thistable, it appears that some cases are still unsolved, for instance for the computation
of amedian preorder of aprofile of linear orders. It isalso the case for special values of m. One
such interesting case is the one for which IT is reduced to one tournament (m = 1) while the
median relation must be a linear order. This problem is known as the Sater problem (P. Sater
(1961)).
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