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Abstract. Given a set of individual preferences defined on a same finite set, we consider the
problem of aggregating them into a collective preference minimizing the number of
disagreements with respect to the given set and verifying some structural properties like
transitivity. We study the complexity of this problem when the individual preferences as well as
the collective one must verify different properties, and we show that the aggregation problem is
NP-hard for different types of collective preferences, even when the individual preferences are
linear orders.
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1. Introduction

The problem that we deal with in this communication can be stated as follows: given a set
(called a profile) Π of binary relations defined on the same finite set X, find a binary relation R*
defined on X verifying certain properties like transitivity and summarizing Π as accurately as
possible. This problem occurs in different fields, for instance in the social sciences, in electrical
engineering, in agronomy or in mathematics (see for example J.-P. Barthélemy et alii (1995),
J.-P. Barthélemy and B. Monjardet (1981 and 1988), A. Guénoche et alii (1994), L. Hubert
(1976) or M. Jünger (1985) for references). For example, in voting theory, X can be considered
as a set of candidates, Π as a profile of individual preferences expressed by voters and R* as the
collective preference that we look for.

The aim of this communication is to study the complexity of finding R*. We consider
different types of ordered relations for the individual preferences of Π as well as for R* and we
show that for most cases, the decision problem associated with the determination of R* is NP-
complete. This problem has been already studied in some special cases, namely for the
aggregation of a profile of linear orders into a linear order by J.B. Orlin (1988) and by
J.J. Bartholdi III, C.A. Tovey and M.A. Trick (1989), and for the aggregation of a profile of
binary relations into a linear order, a partial order, a complete preorder or a preorder (see below
for the definitions of these structures) by Y. Wakabashi (1986 and 1998). We generalize these
results by extending them to other cases.
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This extended abstract is organized as follows. Section 2 recalls the definitions of the ordered
relations that we take into account. In section 3, we show how the aggregation problem can be
formulated in graph theoretical terms. Then we state our complexity results upon this
aggregation problem without proofs in the last section (the proofs of these results can be found
in O. Hudry (1989)).

2. The ordered relations

Given a finite set X, a binary relation R defined on X is a subset of
X × X = (x, y): x ∈ X and y ∈ X{ } . We note n the number of elements of X and we suppose
that n is at least equal to 4. We note xRy instead of (x, y) ∈ R and xRy  instead of (x, y) ∉ R.
The following properties that a binary relation R can satisfy are basic:
• reflexive: ∀ x ∈ X, xRx;
• irreflexive: ∀ x ∈ X, xRx ;
• antisymmetric: ∀ (x,y) ∈ X2, (xRy and x≠y) ⇒ yRx ;
• asymmetric: ∀ (x,y) ∈ X2, xRy ⇒ yRx ;
• transitive: ∀ (x,y,z) ∈ X3,  (xRy and yRz) ⇒ xRz;
• complete: ∀ (x,y) ∈ X2 with x≠y, xRy or (inclusive) yRx.
From a binary relation R, we may define an asymmetric relation AR (called the asymmetric part
of R) by: xARy ⇔ (xRy and yRx ).

By combining the above properties, we may define different types of binary relations (see for
instance J.-P. Barthélemy and B. Monjardet (1981) or P.C. Fishburn (1985)):
• A partial order is an asymmetric and transitive binary relation; O will denote the set of the
partial orders defined on X;
• a linear order is a complete partial order; L will denote the set of the linear orders defined on
X;
• a tournament is a complete and asymmetric binary relation; T will denote the set of the
tournaments defined on X;
• a preorder is a reflexive and transitive binary relation; P will denote the set of the preorders
defined on X;
• a complete preorder is a reflexive, transitive and complete binary relation; C will denote the set
of the complete preorders defined on X;
• a weak order is the asymmetric part of a complete preorder; W will denote the set of the weak
orders defined on X;
• an interval order is a partial order R satisfying: ∀ (x, y, z, t) ∈ X4, (xRy and zRt) ⇒ {xRt or
(inclusive) zRy}; I will denote the set of the interval orders defined on X;
• a semiorder is an interval order R satisfying: ∀ (x, y, z, t) ∈ X4, (xRy and yRz) ⇒ {xRt or
(inclusive) tRz}; S will denote the set of the semiorders defined on X;
• a quasi-order is a complete relation of which the asymmetric part is a semiorder; Q will denote
the set of the quasi-orders defined on X;
• an acyclic relation is a relation R verifying: ∀ 1 ≤ k ≤ n, (xiRxi+1 for 1 ≤ i ≤ k – 1) ⇒ xk Rx1;
A will denote the set of acyclic relations defined on X.

It is possible to get other structures by adding or by removing reflexivity or irreflexivity from
the above definition (and by changing asymmetry by antisymmetry). In fact, the distinction
between reflexive and irreflexive relations is not relevant for our study (see O. Hudry (1989)):
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the complexity results will remain the same. Thus, in the following, we do not take reflexivity or
irreflexivity into account (for instance, we will consider that a linear order is also a preorder).

These types include the most studied and used partially ordered relations. We will also
consider generic binary relations, without any particular property. The set of the binary relations
will be noted B. We may notice several inclusions between these sets, especially the following
one: ∀ Z ∈ {A, B, C, I, L, O, P, Q, S, T, W}, L ⊆ Z; in other words, a linear order can be
considered as a special case of any one of the other types.

3. Formulation of the aggregation problem

In order to get an optimization problem to deal with, it is necessary to explicit what we mean
when we say that R* must summarize Π “as accurately as possible”. To do so, we consider the
symmetric difference distance δ: given two binary relations R and S defined on the same set X,
we have

δ ( R, S) = x, y( ) ∈ X2 : xRy and xSy[ ] or xRy and xSy[ ]{ }
This quantity δ ( R, S)  measures the number of disagreements between R and S. Though some
authors consider sometimes another distance, δ is used widely and is appropriate for many
applications. J.-P. Barthélemy (1979) shows that δ satisfies a number of naturally desirable
properties and J.-P. Barthélemy and B. Monjardet (1981) recall that δ ( R, S)  is the Hamming
distance between the characteristic vectors of R and S and point out the links between δ and the
L1 metric or the square of the Euclidean distance between these vectors (see also K.P. Bogart
(1973 and 1975) and B. Monjardet (1979 and 1990)).

Then, for a profile Π = (R1, R2, …, Rm) of m relations, we can define the remoteness
∆(Π, R) (J.-P. Barthélemy and B. Monjardet (1981)) between a relation R and the profile Π by:

∆ (Π , R) = δ R, Ri( )
i =1

m

∑
The remoteness ∆(Π, R) measures the total number of disagreements between Π and R.

Our aggregation problem can be seen now as a combinatorial problem: given a profile Π,
determine a binary relation R* minimizing ∆ over one of the sets A, B, C, I, L, O, P, Q, S, T, W.
Such a relation R* will be called a median relation of Π (J.-P. Barthélemy and B. Monjardet
(1981)). According to the properties assumed for the relations belonging to Π or required from
the median relation, we get many combinatorial problems. They are too numerous to state all of
them explicitly; so we note them as follows:

Problems Pm(Y, Z). For a positive integer m, for Y belonging to {A, B, C, I, L, O, P, Q, S, T, W}
and Z belonging also to {A, B, C, I, L, O, P, Q, S, T, W}, Pm(Y, Z) denotes the following problem:
given a finite set X, given a profile Π of m binary relations all belonging to Y, find a relation R*
belonging to Z with : ∆(Π, R*) 

  
= Min

R∈Z
∆(Π, R) .

To study the complexity of Pm(Y, Z), we develop the expression of ∆. For this, consider the

characteristic vectors ri = rxy
i( )

( x , y )∈X 2
 of the relations Ri (1 ≤ i ≤ m) defined by rxy

i = 1 if

xRiy and rxy
i = 0 otherwise, and similarly the characteristic vector r = rxy( )( x , y )∈X 2  of any

binary relation R. Then, it is easy to get a linear expression of ∆(Π, R):
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δ R, Ri( ) = rxy − rxy
i

( x , y )∈X2
∑ = rxy − rxy

i
2

( x , y )∈X 2
∑ = rxy 1 − 2rxy

i( ) + rxy
i[ ]

( x , y )∈X 2
∑

hence ∆ Π , R( ) = rxy − rxy
i

( x , y )∈X2
∑

i =1

m

∑
and, after simplifications: ∆ Π , R( ) = C − mxy . rxy

( x , y )∈X 2
∑

with C = rxy
i

( x , y )∈X 2
∑

i =1

m

∑  and mxy = 2rxy
i − 1( )

i =1

m

∑ = 2 rxy
i

i =1

m

∑ − m.

Notice that, with this expression of ∆(Π, R), it is easy to get a 0-1 linear programming
formulation of the problems Pm(Y, Z) by adding the 0-1 linear constraints associated with each
type of median relation; for example, the transitivity of R can be written: ∀(x, y, z) ∈ X3,
rxy + ryz − rxz ≤ 1 (see for instance Y. Wakabayashi (1986) or O. Hudry (1989) for details).

4. The complexity results

In this section, we pay attention to the complexity of Pm(Y, Z) for different types of profiles

and different types of median relations.
For the profile Π, three cases will be distinguished below:

• in the first one, Π will be a profile of m binary relations, for any positive value of m;
• in the second one, Π will be a profile of m tournaments, for any even positive value of m;
• in the third one, Π will be a profile of a great enough number of relations belonging to any set
Y including L: L ⊆ Y ; as noticed above, this allows all the previous sets A, B, C, I, L, O, P, Q, S,
T, W, as well as “mixed” sets such as O ∪ P or A ∪ C ∪ T…

For the median relations, they belong to one of the sets A, B, C, I, L, O, P, Q, S, T, or W.

We may summarize the complexity results by the following table. In this table, “NP-C”
means that the decision problem associated with the considered problem Pm(Y, Z) is NP-
complete, while “?” means that the complexity status of Pm(Y, Z) is unknown. The symbol
♥ (respectively ♣) shows the results got by Y. Wakabayashi (1986 and 1998) (respectively by
J.B. Orlin (1988) and by J.J. Bartholdi III, C.A. Tovey and M.A. Trick (1989)). The NP-
completeness of the case for which Π is reduced to only one binary relation while the median
relation must be acyclic is directly given by the complexity of the well-known Feedback Arcset
Problem (see M.R. Garey and D.S. Johnson (1979)); it is represented by the symbol ♠ in the
table.
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 Median relation (Z) Π ∈ B m   (Y = B) Π ∈ T m   (Y = T) Π ∈ Y m with L ⊆ Y
binary relation (B) (trivially) polynomial (trivially) polynomial (trivially) polynomial
tournament (T) (trivially) polynomial (trivially) polynomial (trivially) polynomial

acyclic relation (A) NP-C for any m ≥ 1♠ NP-C for any m even NP-C for m great   

complete preorder (C) NP-C for m great♥ NP-C for m great NP-C for m great   

interval order (I) NP-C for any m ≥ 2 NP-C for m great NP-C for m great   

linear order (L) NP-C for any m ≥ 1♥ NP-C for any m even NP-C for m great♣

partiel order (O) NP-C for any m ≥ 2♥ ? ?

preorder (P) NP-C for m great♥ ? ?

quasi-order (Q) NP-C for m great NP-C for m great NP-C for m great   

semiorders (S) NP-C for any m ≥ 2 NP-C for m great NP-C for m great   

 weak order (W) NP-C for m great NP-C for m great NP-C for m great   

From this table, it appears that some cases are still unsolved, for instance for the computation
of a median preorder of a profile of linear orders. It is also the case for special values of m. One
such interesting case is the one for which Π is reduced to one tournament (m = 1) while the
median relation must be a linear order. This problem is known as the Slater problem (P. Slater
(1961)).
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