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Abstract

In many practical situations, indifference is intransitive. This led Luce (1956) to
base a preference model on the following principle: an alternative is judged better
than another one only if the utility value of the first alternative is significantly higher
than the value of the second alternative. Here, ‘significantly higher’ means higher
than the value augmented by some constant threshold. The resulting relations are
called “semiorders” by Luce. Their axiomatic description is established by Scott and
Suppes (1958)—see below for details.

Given a semiorder P , we form the collection of all numerical representations of
P . This collection R happens to be a convex set, although not a closed or open one.
It is naturally turned into (and approximated by) a polyhedral set Rε consisting of
all ε-representations. We first explain the facets of Rε: in general, they bijectively
correspond to the “noses” and “hollows” of the semiorder P . Noses and hollows
were introduced by Pirlot (1991) as a tool for proving the existence of the “minimal
ε-representation” of P . They were further investigated by Doignon and Falmagne
(1997).

Next, we impose that the ε-representations of the semiorder P are nonnegative,
and denote with R+

ε the collection of such representations. Understanding the ver-
tices and extreme rays of R+

ε seems to be a more difficult problem. The minimal
ε-representation of P is always a vertex of R+

ε , and sometime the only one. We
provide examples with other vertices, even with vertices involving another threshold
than the one in the minimal ε-representation. We then offer some partial results on
the vertices and extreme rays of R+

ε .
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1 Weak Orders and Semiorders

We denote by X = {a1, a2, . . . , an} a finite set of n alternatives and by P a relation
on X . Formula i P j is interpreted as “alternative j is strictly prefered to alternative i”.
Assigning utility values to alternatives consists in selecting some real-valued mapping f
defined on X . In our models, more an object is prefered, higher is its utility value. All
mappings from X to R form the real vector space RX , which can be identified with Rn

when f ∈ RX is summarized as the n-tuple (f(a1), f(a2), . . . , f(an)).

A weak order P on X is any relation that satisfies the conditions in the following (very
easy) proposition.

Proposition 1 There exists f : X → R such that

i P j ⇐⇒ f(i) < f(j), for all i, j ∈ X,

if and only if P is asymmetric and negatively transitive.

For such a weak order, indifference between two alternatives i and j occurs exactly
when f(i) = f(j). As a consequence, indifference is a transitive relation. However,
in many practical situations, it can be seen that indifference is not transitive. Indeed, as
Luce (1956) formulated it, addding only one grain of sugar to a cup of coffee results in
another cup judged as indifferent to the first one, but adding a sufficient number of grains
will produce a definitively different beverage. This observation led Luce to introduce
“semiorders”. Later, Scott and Suppes (1958) proved the following proposition; we call
semiorder any relation satisfying the conditions in Proposition 2.

Proposition 2 (Scott and Suppes, 1958) There exist f : X → R and r ∈ R+ such that

i P j ⇐⇒ f(i) + r < f(j), for all i, j ∈ X,

if and only if P is irreflexive and satisfies for all i, j, k, ` ∈ X

i P j and k P ` =⇒ i P ` or k P j,
i P j and j P k =⇒ i P ` or ` P k.

Any pair (f, r) as in Proposition 2 is called a (numerical) representation of the semiorder
P ; we denote with R the set of all representations of P . Thus R ⊂ RX . Because X is
a finite set, there exists some strictly positive real number ε such that the following holds
for all i, j ∈ X: {

i P j =⇒ f(i) + r + ε ≤ f(j),
¬i P j =⇒ f(i) + r ≥ f(j).

(1)

For a given ε ∈ R∗+, we denote with Rε the collection of all pairs (f, r) satisfying
Equations (1). Those pairs are the ε-representations of the semiorder P .
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2 The Polyhedral Sets Rε and R+
ε

Keeping the same notation, consider some fixed semiorder P on the finite set X .

Proposition 3 The collectionR of all representations of P is a convex set inRX . In most
cases, R is neither closed nor open.

We next notice that Rε is a good approximation of R, in the following sense.

Proposition 4 For any strictly positive real number ε, the set Rε of all ε-representations
is a polyhedral set in RX . Moreover,

ε′

ε
Rε = Rε′ when ε, ε′ > 0;

Rε ⊆ Rε′ when ε ≥ ε′ > 0;

R = ∪↑{Rε | ε > 0}.

Our main question now is to better understand the polyhedral set Rε. This question
is of interest for real-life applications of semiorders. As a matter of fact, Pirlot (1990)
proposed to investigate the collection of all representations of a semiorder P , although
his paper is centered on a particular representation, called the “minimal ε-representation”.
Here is his result, a particularly remarkable one.

Proposition 5 (Pirlot, 1990) Take ε > 0. There is a (unique) ε-representation (f0, r0) of
the semiorder P such that for any ε-representation (f, r) of P :

∀i ∈ X : f0(i) ≤ f(i).

Moreover r0 ≤ r.

In order to prove the existence of the minimal representation (f0, r0), Pirlot intro-
duced (in fact, only for “reduced” semiorders) the notions of “noses” and “hollows” of
a semiorder. In a further paper, he showed that noses and hollows determine completely
the “reduced” semiorder P (see Pirlot, 1991). The notions of noses and hollows were
generalized, and also characterized, by Doignon and Falmagne (1997).

Proposition 6 (Doignon and Falmagne, 1997) The noses of the semiorder P are the
pairs (i, j) satisfying any of the two equivalent conditions:

(i, j) ∈ R \
(
R R R̄−1 ∪R R̄−1 R ∪ R̄−1 R R

)
;
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(i, j) ∈ R and R \ {(i, j)} is again a semiorder.

The hollows of P are the pairs (i, j) satisfying any of the two equivalent conditions:

(i, j) ∈ R̄ \
(
I ∪ R̄ R̄ R−1 ∪ R̄ R−1 R̄ ∪R−1 R̄ R̄

)
;

(i, j) ∈ R̄ and R ∪ {(i, j)} is again a semiorder.

We now present the results we have obtained so far on the polyhedral set Rε, begin-
ning with a complete description of the facets.

Proposition 7 Assume P is a semiorder which is not a weak order. Then the facets of Rε

are in one-to-one correspondence with the noses and hollows of (X,P ). More precisely,
they are all obtained as follows:

An equation f(i) + r + ε ≤ f(j) defines a facet iff (i, j) is a nose.

An equation f(i) + r ≥ f(j) defines a facet iff (i, j) is a hollow.

Next, we remark that the polyhedral setRε contains lines: if (f, r) is any ε-representation
of P , then all points (f + λ, r) for λ ∈ R also belong to Rε. It is thus better to project
Rε along the direction of these lines, or else to consider only nonnegative points of Rε;
these are the nonnegative ε-representations of the semiorder P . We denote with R+

ε their
collection. The current problem now is to understand the vertices and extreme rays of
R+

ε , in particular to relate them to the structure of P . We have only partial results here.

Proposition 8 The minimal ε-representation (f0, r0) of P is always a vertex of the poly-
hedral set R+

ε . Depending on the semiorder P , there can be other vertices, even vertices
(f, r) with r 6= r0.

More insight on the structure of the polyhedral set R+
ε will be provided during the

presentation.

References

[1] Doignon and Falmagne (1997). Well graded families of relations, Discrete Mathemat-
ics 173, 35–44.

[2] Luce (1956). Semiorders and a theory of utility discrimination, Econometrica 26,
178–191.

[3] Pirlot (1990). Minimal representation of a semiorder, Theory and Decision 28,
109–141.

4



Annales du LAMSADE n¡5

[4] Pirlot (1991). Synthetic description of a semiorder, Discrete Applied Mathematics
31, 299–308.

[5] Scott and Suppes (1958). Foundational aspects of theories of measurement, Jour-
nal of Symbolic Logic 23, 113–128.

5


