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Abstract

A lot of models used to represent preferences or other relations have been charac-
terized in the framework of measurement theory. To assess the empirical validity of
one of these models, we can either test the model itself or test the axioms character-
izing it. When a model is rejected, the latter approach has the advantage of indicat-
ing why it is rejected. The available statistical techniques for testing measurement-
theoretic axioms are complex and not always satisficing. In this paper, we present a
new statistical technique based on a Bayes factor, very simple and flexible.
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1 Introduction

Measurement is a fundamental and ubiquitous operation in most modern sciences and has
usually been considered as unproblematic until the end of the nineteenth century. Hölder
[1901] was one of the first scientists to question the very nature of measurement and made
the first steps towards the development of a theory of measurement. In the second half of
the twentieth century, measurement-theory made enormous progress [Krantz et al., 1971,
Suppes et al., 1989, Luce et al., 1990] and helped us to understand what measurement is
and which hypotheses (called axioms) underly the various measurement techniques. Si-
multaneously with these theoretical developments, some researchers started to cast doubts
on the empirical validity of some axioms [e.g. Allais, 1953, Tversky, 1969]. For instance,
Tversky [1969] used an experiment to produce data in contradiction with transitivity. Un-
fortunately, these data were not easy to use in a statistical analysis and the first sound
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analysis of Tversky’s data appeared in Iverson and Falmagne [1985]. The approach fol-
lowed by Iverson and Falmagne was based on a likelihood ratio and was very complex,
making its use with large data sets or other axioms than transitivity very difficult or even
impossible. Actually, since 1985, this technique was almost never used. Since then, a lot
of empirical research took place, usually producing difficult to analyze data, but no signif-
icant advance occured in the statistical analysis of experimental data, until very recently,
with different papers by Iverson, Karabatsos and Myung [e.g. Karabatsos, 2005, Myung
et al., 2005].

In Karabatsos [2005], it is assumed that, at the time of the experiment, the subject
chooses at random one binary relation according to some probability distribution. Based
on the data, the probability of each possible binary relation is estimated and the hypothesis
that is actually tested is whether the total probability, of all relations satisfying the axiom
under scrutiny, is larger than1/2. A drawback of this method is that it can lead to the ac-
ceptance of an axiom with strange probability distributions. Suppose for instance that we
test transitivity, on four elementsa, b, c, d, and that the probability distribution governing
the subject’s choices isP [ordera � b � c � d] = .26, P [orderd � c � b � a] = .26,
P [hamiltonian cyclec � b � a � d � c] = .48 andP [any other relation] = 0. The total
probability of the relations satisfying transitivity is.52 > 1/2. So, according to Karabat-
sos [2005], transitivity holds. Yet, the relation with the largest (by far) probability is not
at all transitive. Furthermore, the only two transitive relations with a positive probability
are contradictory. This does not speak in favor of transitivity.

Myung et al. [2005] assume that the subject has in mind a probabilitypab for each
pair (a, b) and, when presented with the pair(a, b), selectsa with probabilitypab or b with
probability 1 − pab. Using a very sophisticated Bayesian technique, based on posterior
parameter samples, they then test a stochastic recasting of the axiom under scrutiny. For
example, instead of transitivity, they test weak stochastic probability, i.e.pab ≥ .5 and
pbc ≥ .5 implies pac ≥ .5. This approach has two weaknesses: (1) for each parame-
ter pab, they assume a prior Beta distribution on[0, 1] which is very convenient for the
computations but difficult to motivate and (2) as they say in the footnote on p. 207, “The
approach based on posterior model probabilities may be theoretically more appealing than
that based on posterior parameter samples . . . ”

In this paper, we propose an approach based on a Bayes factor, thus based on posterior
model probabilities. It is a generalization of the approach proposed by Desimpelaere and
Marchant [2006]. In Section 2, we present the probabilistic model, supposed to generate
the data, that we will test, and, in Section 3, we show how to test the model, using a Bayes
factor.
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2 Probabilistic model

2.1 Notation and model

Let X = {a, b, c, . . .} be the set of objects or stimuli that we will use in a forced choice
experiment (#X = m). We suppose that the subject has a complete binary relation onX
in mind. This relation, called true relation and denoted by%T , is of course unknown. The
symmetric (respectively asymmetric) part of this relation is denoted by∼T (resp.�T ).
When we ask the subject to choose between two objectsa andb from X, we assume that
he chooses according to%T . But, since humans are not always consistent, the subject
makes some errors. So, ifa �T b, the subject choosesa with probabilitypab ( ≥ 1/2 and
unknown) orb with probability1− pab (we assumepab = pba but this can be relaxed). If
a ∼T b, the subject choosesa or b with equal probability (pab = 1/2).

Let C be the set of all complete binary relations onX andA be the set of all relations
in C that satisfy a given axiom (also calledA). The hypothesis that we will test is that
%T belongs toA. Let D be the set of all unordered pairs of distinct objects inX. Since
we will follow a Bayesian approach, we consider that%T is a random variable taking
its values inC and, attached to each relationR in C, there is a vector of parameters
p(R) = (pab(R))(a,b)∈D. This is in contrast with Myung et al. [2005]: they consider that
the parameterspab are continuous random variables with values in[0, 1]. Nevertheless,
in our model, once the value of%T is fixed, the parametersp are fixed and satisfy weak
stochastic transitivity, just like in Myung et al. [2005].

2.2 Likelihood

Suppose each of them(m− 1)/2 pairs inD is presentedNab times (Nab ≥ 0) to a subject
and he choosesnab timesa (this implies that he choosesNab − nab timesb). Our data
consist then of the vectorn = (nab)(a,b)∈D. Suppose we know% T andp(%T ). The
likelihood is then

P [n| %T ,p(%T ),N] =
∏

(a,b):a�T b

pnab
ab (1− pab)

Nab−nab

∏
(a,b):a∼T b

(1/2)Nab .

If we know %T but do not knowp(%T ), we can estimate it. We havêpab(%T ) =
max(nab/Nab, 1/2) if a �T b andp̂ab(%T ) = pab(%T ) = 1/2 if a ∼T b. It is then possible
to estimate the likelihoodP [n| %T ,N] by P [n| %T , p̂(%T ),N].
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3 Bayes factor

In this section, we will use the Bayes factor

P [%T∈ A|n,N]

P [%T∈ A∗|n,N]
,

whereA∗ = C \ A in order to weigh the evidence in favour ofA against the evidence in
favour ofA∗. The Bayes factor can be estimated by

P [n| %T∈ A,N]

P [n| %T∈ A∗,N]

P [%T∈ A]

P [%T∈ A∗]
, (1)

whereP [%T∈ A] is the prior probability ofA andP [%T∈ A∗] = 1 − P [%T∈ A] is the
prior probability ofA∗. Using standard probability rules, we have

P [n| %T∈ A,N] =

∑
R∈A (P [n| %T = R,N] P [%T = R])

P [%T∈ A]
(2)

and a similar expression forP [n| %T∈ A∗,N]. Using these, we can rewrite the Bayes
factor (1) as ∑

R∈A (P [n| %T = R,N] P [%T = R])∑
R∈A∗ (P [n| %T = R,N] P [%T = R])

. (3)

If we know the priorsP [%T = R], for all R ∈ A and allR ∈ A∗, it is possible to
compute (3). If we have no prior information, we can use Laplace’s principle and assume
that all relations inA have the same probability (i.e.P [%T = R] = P [%T∈ A]/#A, for
R ∈ A) and that all relations inA∗ have the same probability (i.e.P [%T = R] = P [%T∈
A∗]/#A∗, for R ∈ A∗). The Bayes factor then becomes

P [%T∈ A]

P [%T∈ A∗]

#A∗

#A

∑
R∈A P [n| %T = R,N]∑
R∈A∗ P [n| %T = R,N]

. (4)

Here, again, in absence of prior information, we can assume thatP [%T∈ A] = P [%T∈
A∗] = 1/2 and the Bayes factors simplifies to

#A∗

#A

∑
R∈A P [n| %T = R,N]∑
R∈A∗ P [n| %T = R,N]

. (5)

Exact values of expressions (3–5) can easily be computed form ≤ 5 but are intractable
for largem. Desimpelaere and Marchant [2006] showed that a Monte Carlo approxima-
tion converges in a reasonable time form ≤ 10. Using fast computers, optimized code
and good approximation algorithms, it is probably possible to go untilm = 11 or 12
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but not much further. This is a weakness of the approach we present but, since almost
all empirical studies of measurement-theoretic axioms involve less than 10 objects, this
weakness does not seem very important.

When we have prior information, it is sometimes possible to speed up the computa-
tions. Suppose for example that the objects inX are binary lotteries of the form(x, q; y),
wherex obtains with probabilityq andy with probability1 − q, with x andy real num-
bers. We may assume (or we may have previously tested) that preferences over loteries
are monotone in the following sense:x > x′ andy > y′ implies (x, q; y) �T (x′, q; y′).
We then haveP [%T = R] = 0 for any relationR violating monotonicity (denoted byM ).
Expression (3) can then be rewritten as∑

R∈A∩M (P [n| %T = R,N] P [%T = R])∑
R∈A∗∩M (P [n| %T = R,N] P [%T = R])

. (6)

The sums being now overA ∩M (or A∗ ∩M ), they can be computed faster.

4 Conclusion

We presented a simple technique to test any deterministic measurement-theoretic axiom
involving a binary relation. It is based on a Bayes factor and can handle prior information
that we have about the axiom under scrutiny or about other characteristics of the relation.
The computation of the Bayes factor requires a lot of time, thereby limiting the size of the
problems we can analyze. Our approach can easily be adapted to measurement techniques
involving ak-ary relation instead of a binary one.
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