
On enumerating the kernels in a
bipolar-valued outranking digraph

Raymond BISDORFF *

Abstract

In this communication we would like to thoroughly cover the problem of com-
puting all kernels, i.e. minimal outranking and/or outranked independent choices in
a bipolar-valued outranking digraph. First we present and discuss several algorithms
for enumerating the kernels in a crisp digraph. The second part will be concerned
with extending these algorithms in order to compute all valued kernels in the corre-
sponding bipolar-valued outranking digraph.

Key words : Graph Theory, Maximum Independent Sets, Enumerating Kernels, Out-
ranking Digraphs

Introduction

Minimal independent and outranking or outranked choices, i.e. kernels, in valued out-
ranking digraphs are an essential formal tool for solving best unique choice problems in
the context of our multicriteria decision aid methodology [9]. It appears, following re-
cent formal results [8], that computing these kernels may rely on the enumeration of all
maximal independent sets in the associated crisp median cut outranking digraph. In this
article we shall therefore first present the bipolar-valued concepts of outranking digraphs,
minimal independent outranking and outranked choices, each associated with their corre-
sponding median cut crisp concept. In a second section, we shall then present known and
new algorithms for directly enumerating these crisp choices in a bipolar-valued digraph.
A third section will be devoted to extending these algorithms in order to compute the
corresponding bipolar-valued choices.

∗Applied Mathematics Unit, University of Luxembourg, 162a, avenue de la Faı̈encerie, L-1511 Luxem-
borg, http://sma.uni.lu/bisdorff

1

On enumerating the kernels in a
bipolar-valued outranking digraph

1 Kernels in bipolar valued directed graphs

1.1 Bipolar valued outranking graphs

We consider a binary outranking relation S defined on a set X : {x, y, z, . . .} of decision
actions. S represents relational statements supporting a “to be at least as good” preference
situation we may observe between the decision actions given in X ([17]).

S is characterised in an ordinal bipolar credibility or robustness domain: S̃ : X×X →
L : {−m, . . . , 0, . . . , m}, with m integer, ≥ 1 and finite. S̃(x, y) > 0 signifies that
the statement x S y, i.e. ”decision action x is at least as good as decision y” is more
true than false. S̃(x, y) < 0 signifies that the same statement x S y is more false than
true. S̃(x, y) = 0 signifies that the truth denotation of statement x S y is suspended, i.e.
statement x S y is logically undetermined. For short we say x S y is either L-true, L-false
or L-undetermined.

We shall distinguish the smallest possible L domain showing three values: {−1, 0, 1},
denoted L3. Similarly, we shall distinguish in particular, the degenerated bi-valued do-
main B = {−1, 1}, missing the undetermined denotation, which corresponds to a classic
“truth”- and “falsity”-valued Boolean characteristic domain. Similarly we shall denote
L/0 a bipolar-valued characteristic domina missing the undetermined value 0.

We denote GL(X, S̃) the digraph representing an L-valued outranking relation, where
S̃ : X×X → L. The semiotic richness of the L-valued characterisation of S is not easily
representable in diagrams where a binary relation either exists or not.

To recover such a logical determination we use the following logical polarizations of
L-valued digraphs. Let GL(X, S̃) be a L-valued We denote G(X, S) its associated strict
median cut crisp digraph where ∀x, y ∈ X : S̃(x, y) > 0 ⇒ (x, y) ∈ S, S̃(x, y) < 0 ⇒
(x, y) 6∈ S.

Furthermore, we shall call L-determined a digraph GL(X, S̃) such that S̃(x, y) 6= 0
for all x, y ∈ X and x 6= y.

Example 1 (B. Roy (2005), private communication).
Let GL

1 (X, S̃1) be the bipolar valued digraph where: X1 = {a, b, c, d, e},
L = {−10, . . . , 0, . . . , 10} and S̃1 is given as follows:

2

Annales du LAMSADE n3

S̃1 a b c d e
a - 6 -10 -7 -9
b -8 - 9 10 0
c -10 -10 - 6 9
d 8 -8 -10 - -7
e -10 -9 -7 -8 -

?
b

a

d

c e

The associated strict median cut digraph

The above strict median cut technique polarizes to true all outranking statements that
are L-true, and to false all outranking statements that are L-false. In the example (1),
we may notice that S̃1(b, e) = 0, i.e. outranking statement bSe may indeed be true or
false. And the associated digraph G(X, S) is a partially defined digraph. It is worthwhile
noticing that in case of an L-determined digraph, the strict median cut polarization gives
a classic binary relation S on X .

In the sequel, we only consider finite sets X of decision actions so that all the digraphs
we consider are finite. The cardinality n = |X| of X gives the order. The cardinality
s = |S| – the number of L-true arcs of the graph – gives the size of GL. All outranking
digraphs we consider are naturally reflexive, so that we generally ignore the reflexive
terms, except if explicitly mentioned. s/n(n − 1) × 100 gives the fill rate (in %) of
GL. We call GL a connected digraph if the symmetric and transitive closure of G(X, S)
corresponds to a complete graph. In fact a connected graph is a graph that contains no
isolated vertices. In example (1) the digraph GL

1 (X1, S̃1) is connected, of order 5, of size
5, of fill rate 6/20× 100 = 30%.

1.2 Outranking and outranked choices

Let GL(X, S̃) be a bipolar valued outranking graph.

A choice Y in GL is a non empty subset Y of X . The set of all possible choices in
GL is the powerset of X , denoted P(X), except the empty set. We call single a minimal
choice reduced to a singleton and greedy the maximal possible choice, i.e. the whole set
X .

Definition 1 (Outranking and outranked choices).
A choice Y in GL is an outranking choice if and only if ∀x ∈ X : x 6∈ Y ⇒ ∃y ∈
Y : S̃(y, x) > 0. Similarly, A choice Y in GL is an outranked choice if and only if
∀x ∈ X : x 6∈ Y ⇒ ∃y ∈ Y : S̃(x, y) > 0.

Example 2 (Choices in GL
1).

3

On enumerating the kernels in a
bipolar-valued outranking digraph

b

a

d

c e

{a, b, d, e} is a outranking choice.

b

a

d

c e

{b, d, e} is an outranked choice.

In example (2), we may notice that the choice {a, b, d, e} in GL
1 (see example 1) may

be reduced without loosing the property of being outranking. The outranked choice in
the same example (2) may not however be reduced without loosing its outrankedness
property. Minimal or maximal cardinality of choices with respect to a given qualification
is formally captured in the following definition.

Definition 2 (Minimal and maximal choices).
A choice Y in GL, verifying a property P , is minimal with this property whenever, ∀Y ′ ∈
GL which verify the same property P , we have Y ′ 6⊆ Y . Similarly, a choice Y in GL,
verifying a property P , is maximal with this property whenever, ∀Y ′ ∈ GL which verify
property P , we have Y ′ 6⊇ Y .

Example 3 (Minimal choices in GL
1).

b

a

d

c e

{a, c} is a minimal outranking choice.

b

a

d

c e

{b, d, e} is a minimal outranked choice

Comparing the outranking choice {a, b, d, e} in example (2) with the minimal out-
ranking choice {a, c} in example (3) we may notice that minimality of outrank is related
to the neighbourhoods of the nodes of the digraph.

Definition 3 (Open and closed neighbourhoods).
We denote N+(x) = {y ∈ X / S̃(x, y) > 0} the open outranked neighbourhood of a
node x ∈ X . We denote N+[x] = N+(x) ∪ {x} the closed outranked neighbourhood of
x. We denote N−(x) = {y ∈ X / S̃(y, x) > 0} the open outranking neighbourhood of a
node x. We denote N−[x] = N−(x) ∪ {x} the closed outranking neighbourhood of x.

The neighbourhood concept may easily be extended to a choice.

4

Annales du LAMSADE n3

Definition 4 (Choice neighbourhoods).
The closed and open outranked neighbourhood of a choice Y in GL are given by the union
of the respective neighbourhoods of the members of the choice:

N+[Y] =
⋃

x∈Y

N+[x], N+(Y) =
⋃

x∈Y

N+(x). (1)

The closed and open outranking neighbourhood of a choice Y in GL are similarly given
by the union of the respective elementary outranking neighbourhoods:

N−[Y] =
⋃

x∈Y

N−[x], N−(Y) =
⋃

x∈Y

N−(x). (2)

Definition 5 (Private neighbourhood).
The (closed) private outranked neighbourhood N+

Y [x] of a node x in a choice Y contain-
ing x is defined as follows: N+

Y [x] = N+[x] − N+[Y − {x}]. Similarly, the (closed)
private outranking neighbourhood N−

Y [x] of a node x in a choice Y is defined as follows:
N−

Y [x] = N−[x] − N−[Y − {x}]. In case of a single choice, both the outranked and the
outranking neighbourhood are considered to be private by convention.

In the outranking choice Y = {a, b, d, e} of example (2), we may notice that action a
for instance has no private outranked neighbourhood. Indeed N+

Y [a] = N+[a]−N+[Y −
{a}] where N+[a] = {a, b} and N+[Y − {a}] = X . Action b however has action c
as private outranked neighbourhood. The concept of private neighbourhoods leads us
naturally to the notion of irredundant choices.

Definition 6 (Irredundant choice).
A outranking choice Y in GL is called +irredundant if and only if all its members have
a non empty private outranked neighbourhood, i.e. ∀x ∈ Y : N+

Y [x] 6= ∅. Similarly,
an outranked choice Y in GL is called -irredundant if and only if all its members have a
private outranking neighbourhood, i.e. ∀x ∈ Y : N−

Y [x] 6= ∅.

In example (3), the outranking choice {a, c} is +irredundant as N+
{a,c}[a] = {a, b}

and N+
{a,c}[c] = {c, d, e}. Similarly the outranked choice {b, d, e} is -irredundant as

N−
{b,d,e}[b] = {a, b}, N−

{b,d,e}[d] = {c} and N−
{b,d,e}[e] = {e}.

Minimality of outrankingness (resp. outrankedness) and maximality of +irredundancy
(resp. -irredundancy) are evidently linked.

Proposition 1.
(i) A outranking (resp. outranked) choice Y in GL is minimal outranking (resp. out-
ranked) if and only if it is outranking (resp. outranked) and +irredundant (resp. -
irredundant) (Cockayne, Hedetniemi, Miller 1978).

(ii) Every minimal outranking (resp. outranked) choice Y in GL is maximal +irredundant
(resp. -irredundant) (Bollobás, Cockayne, 1979).

5

On enumerating the kernels in a
bipolar-valued outranking digraph

Proof. Property (i) following easily from property (2), we demonstrate only the latter one.

[⇒] Let us suppose that Y is minimal outranking but not maximal +irredundant. This
implies that there exists a node x ∈ X−Y such that Y ∪{x} is +irredundant, i.e. N+(Y)
is a proper subset of N+(Y ∪{x}). This contradicts however the fact that Y is outranking.

[⇐] The other way round, let us suppose that Y is maximal +irredundant but not
minimal outranking. This implies that there must exist an y ∈ Y such that Y − {y}
still remains outranking, i.e. this y cannot have a private outranked neighbourhood with
respect to Y . This contradicts however the hypothesis that Y is +irredundant.

A similar reasoning is valid for outranked and -irredundant choices.

1.3 Dominant and outranked kernels in a digraph

Definition 7 (Independent choices).
A choice Y in GL is called independent if and only if for all x, y ∈ Y : S̃(x, y) < 0.
A outranking (resp. outranked) and independent choice Y in GL is called an outranking
(resp. outranked) kernel of the graph GL.

Independence and the outranking or outranked property are tightly related.

Proposition 2 (Berge, 1958).
Let GL(X, S̃) be an L-determined digraph. (i) Every kernel is a minimal outranking
(resp. outranked) choice. (ii) Every minimal outranking (resp. outranked) and indepen-
dent choice is maximal independent.

Proof. (1) Let us suppose that a outranking kernel Y is indeed not a minimal outranking
(respectively outranked) choice. This implies that there exists a outranking (respectively
outranked) choice Y ′ ⊂ Y such that Y ′ is still outranking (respectively outranked). This
implies that ∀y ∈ Y −Y ′ there must exist some y′ ∈ Y ′ such that (y, y′) ∈ S (respectively
(y′, y) ∈ S. This is contradictory with the fact that Y is independent. (2) Let us suppose
that a outranking kernel Y is indeed not a maximal independent choice. This implies
that there must exist a Y ′ ⊃ Y such that Y ′ is still independent. But Y is by hypothesis
a outranking (respectively outranked) choice, i.e. ∀y ′ ∈ Y ′ − Y there must exist some
y ∈ Y such that (y, y′) ∈ S (respectively (y′, y) ∈ S. Hence there appears again a
contradiction.

Not all minimal outranking (resp. outranked) choices are independent, i.e. kernels. In
digraph GL

1 of example 1, for instance, we observe the following four minimal outranking
choices, of which only choice {a, c} is independent and therefore a outranking kernel.

6

Annales du LAMSADE n3

b

a

d

c e

minimal outranking choice,

b

a

d

c e

minimal outranking choice.

b

a

d

c e

outranking kernel,

b

a

d

c e

minimal outranking choice.

Kernels and minimal choices however coincide in L-determined and transitive digraphs.

Proposition 3.
Let GL(X, S̃) be aL-transitive andL-determined digraph, i.e. the associated crisp graph
G(X, S) supports a transitive outranking relation S. A choice Y in GL is a outranking
(resp. outranked) kernel if and only if Y verifies one of the following equivalent condi-
tions:
(i) Y is minimal outranking (resp. outranked);
(ii) Y is outranking (resp. outranked) and independent; (iii) Y is outranking (resp. out-
ranked) and +(-)irredundant. (iv) Y is maximal +(-)irredundant.

Proof. (i)⇔ (iii)⇔ (iv) are covered by proposition 1, and (ii)⇒ (i) is covered by propo-
sition 2. We only need to prove that (i)⇒ (ii).

Let us therefore suppose that a minimal outranking (respectively outranked) choice
Y is indeed not independent. As GL is L-determined, this implies that there exists some
proper subset Y ′ ⊂ Y such that for y ∈ Y − Y ′ and y′ ∈ Y ′ we observe (y, y′) ∈ S
(respectively (y′, y) ∈ S. As Y is a minimal outranking (respectively outranked) choice,
each action in Y must have a private outranked (resp. outranking) neighbourhood and in
particular all actions in Y ′. By transitivity of S, the private neighbourhoods N+

Y (y′) and
N−

Y (y′) of an action y′ ∈ Y ′ are transferred to y ∈ Y −Y ′. And Y −Y ′ remains therefore
a outranking (resp. outranked) choice. This is however contradictory with the hypothesis
that Y is minimal with this quality.

It is worthwhile noticing that proposition (3) only applies to L-determined digraphs.
In case we observe a partially determined graph, it may happen that a minimal outranking
(resp. absobent) choice is not effectively independent, and vice-versa, it may indeed hap-
pen that a maximal independent choice is neither outranking nor outranked. All depends
upon the particular presence of L-undetermined relations.

7

On enumerating the kernels in a
bipolar-valued outranking digraph

We have not the space in this paper to present all existence results for kernels in
a digraph (see for instance [13]). Relevant properties for our purpose are summarized
below, where we generally suppose that the graph is characterized in L/0.

1. Every digraph supports minimal outranking (resp. outranked) choices.

2. A transitive digraph always supports a outranking (resp. outranked) kernel and all
its kernels are of same cardinality (König, 1950 [15]).

3. A symmetric digraph always supports a conjointly outranking and outranked kernel
(Berge, 1958 [1]).

4. An acyclic digraph always supports a unique outranking (resp. outranked) kernel
(Von Neumann, 1944 [21]).

5. If a digraph does not contain any cordless circuit of odd length, it supports an out-
ranking (resp. outranked) kernel (Richardson, 1953).

2 Enumerating outranking and outranked kernels

2.1 Minimal outranking and outranked choices

Definition 8 (Hereditary properties).
A property P of choices is said to be hereditary if whenever a choice Y has property
P , so does every proper subchoice Y ′ ⊂ Y . A property P of choices is said to be
superhereditary if whenever a choice Y has property P , so does every proper superchoice
Y ′ ⊃ Y .

Proposition 4. Being outranking or outranked are superhereditary properties of choices
in GL. Similarly, Independence, +irredundancy, and -irredundancy are hereditary prop-
erties of choices in GL.

Proof. Hereditary follows immediately from the definition of an independent, an +ir-
redundant, and an -irredundant choice. Superhereditary follows again readily from the
definition being outranking or outranked.

Inheritance of being outranking makes it possible to implement the search for minimal
outranking choices as a path algorithm in the outranking choices graph associated with
GL.

8

Annales du LAMSADE n3

Definition 9 (P -Choice graphs).
Let GL(X, S̃) be an outranking graph. Let P(X) represent the powerset of choices in GL

with property P . The couple H(P(X), P) is called the P -choice graph associated with
GL. Two choices are linked in H(P(X), P) if they have some common action.

Proposition 5. The outranking, outranked, +irredundant, -irredundant and independent
choice graphs associated with GL are each strongly connected.

Proof. As being outranking or outranked are hereditary properties, there necessarily ex-
ists a path from every possible minimal outranking (resp. outranked) choice to X , the
largest outranking (resp. outranked choice) and vice versa.

Both irredundancies properties being superhereditary, there necessarily exists a path in
the corresponding choice graphs from a maximal irredundant choice to each of its single
choice members and vice versa.

Following proposition 5, enumerating all minimal outranking or outranked choices
may be implemented as a graph traversal algorithm in the corresponding choic graphs,
where we try to explore all paths from the largest outranking (resp. outranked) choice X
to the first subchoices which are irredundant.

Algorithm 1 (Enumerating outranking choices).

global Hist
Hist ← ∅ # initialise the history
Y0 ← X # start with the greedy choice
K+

0 ← ∅ # initialise the result
K+ ← MinimalOutrankingChoices (Y0, K

+
0)

def MinimalOutrankingChoices (In: Yi outranking, K+
i ; Out: K+

i+1)
K+ ← ∅
IRRED ← True
for [x ∈ Yi : N+

Yi
[x] = ∅]: # Retract in turn all redundant nodes

IRRED ← False
Yi+1 ← Yi − {x} # Yi+1 remains outranking !
if Yi+1 6∈ Hist:

K+ ← K+ ∪MinimalOutrankingChoices (Yi+1, K
+):

Hist ← Hist ∪ {Yi+1}
if IRRED:

K+
i+1+← K+

i ∪ Y # Y is +irredundant (and outranking)
else:

K+
i+1+← K+

i ∪K+

return K+
i+1

9

On enumerating the kernels in a
bipolar-valued outranking digraph

Proof. The algorithm starts with the greedy choice Y = X which is always outranking
and an empty set of minimal outranking choices. The procedure MinimalOutranking-
Choices collects all minimal outranking choices that may be reached from the initial
outranking choice Y .

The call invariants of procedure MinimalOutrankingChoices are that the choice Yi

is outranking and K+
i is a set of minimal outranking choices collected so far.

If Yi is outranking, then Yi+1 = Yi−{x} is constructed only if N+
Yi

[x] = ∅, i.e. in case
x is a +redundant action and Yi+1 remains outranking. If no more +redundant actions may
be found, the procedure stops the walk. As Y0 = X is outranking, the algorithm walks
therefore only on paths of the outranking choice graph.

Let us suppose that at call i, K+
i contains only minimal outranking choices. Two sit-

uations may happen. Either the current choice Yi is irredundant or all redundant actions
have been removed in turn. In the first case, we are in the presence of a maximal irre-
dundant and dominating choice, i.e. a minimal outranking choice which is added to to
the current set K+

i . In the second case, all minimal outranking choices when reducing the
current choice are first added up in a local result K+ to be at the end added up to K+

i .
This way, K+

i+1 can only contain minimal outranking choices. As we start with an empty
initial collection K+

0 , it is verified that in the end K+, if not empty, may only contain
minimal outranking choices.

Finally, that we algorithm collects all existing minimal outranking choices in GL fol-
lows from the fact that the outranking choice graph is strongly connected and that there-
fore, starting from the greedy choice X , the algorithm walks necessarily through all out-
ranking choices in GL. The global history we use keeps track of the visited outranking
choices and avoids to explore several times the same outranking choice.

The same algorithm delivers the minimal outranked choices when replacing in the
loop the private outranked neighbourhood with the corresponding private outranking neigh-
bourhood. This way, we only walk on outranked choices and collect all minimal out-
ranked choices instead.

Based again on proposition (5), we may design a similar graph traversal algorithm
in the irredundant choice graph. This time, we try to explore all paths from the small-
est +irredundant (resp. -irredundent) choices – the single choices – to all outranking or
outranked choices we may find on our way.

Algorithm 2 (Enumerating maximal irredundant outranking choices).

global Hist
Hist ← ∅ # initialise the history
K+ ← ∅ # initialise the result

10

Annales du LAMSADE n3

for x ∈ X:
Y0 ← {x} # each singleton is irredundant
K+ ← K+ ∪ MaxIrredOutrankingChoices (Y0, K

+, Hist)

def MaxIrredOutrankingChoices (In: Yi +irredundant, K+
i ; Out: K+

i+1):
if (Yi −X) − N+(Yi) = ∅:

K+
i+1 ← K+

i ∪ Yi # Yi is outranking
else:

K+
i+1 ← K+

i # initialise the result
for [x ∈ X − Yi : N+

Yi
[x] 6= ∅]: # add all +irredundant actions

Yi+1 ← Yi ∪ {x}
if Yi+1 6∈ Hist:

K+
i+1 ← K+

i+1 ∪MaxIrredOutrankingChoices (Yi+1, K
+
i+1):

Hist ← Hist ∪ {Yi+1}
return K+

i+1

Proof. The algorithm starts with an empty history and an empty set of minimal outranking
choices. The procedure MaxIrredOutrankingChoices then collects all minimal outrank-
ing choices that may be reached in turn from each initial single choice Y0 = {x}, ∀x ∈ X

The call invariants of iteration i are that the current choice Yi is +irredundant and K+
i

contains the minimal outranking choices collected so far.

If Yi is -irredundant, then Yi+1 = Yi ∪ {x} is constructed only if N+
Yi

[x] 6= ∅, i.e. in
case x is a +irredundant action with respect to current choice Yi. Yi+1 remains therefore
+irredundant. As each Y0 is in turn +irredundant, the algorithm walks only on paths of
the +irredundant hypergraph.

Let us suppose that at iteration i, K+
i is either empty or contains only minimal out-

ranking choices. Two situations may happen. First, the current choice Yi is outranking
and we have found a maximal irredundant, i.e. a minimal outranking choice, and we add
it to the current set K+

i . In the second case, we gather all minimal outranking choices
from the union of the current choice Yi with all possible +irredundant actions, i.e. such
that N+

Yi
[x] 6= ∅. This way, K+

i+1 can only contain minimal outranking choices or stay
empty. As we start with an empty initial collection K+

0 , it is verified that in the end K+

may only contain minimal outranking choices.

Finally, that the algorithm collects all existing minimal outranking choices in GL fol-
lows from the fact that the +irredundant choice graph is strongly connected. Starting in
turn from each single choice, the algorithm walks necessarily through all +irredundant
choices existing in H(P(X), +irredundent). In order to avoid visiting the same +irre-
dundant choices several times in turn from each member single choice, we keep a history

11

On enumerating the kernels in a
bipolar-valued outranking digraph

of visited +irredundant choices, and only proceed recursively with the next choice Yi+1 in
case it has not been visited already before.

The same algorithm delivers again the minimal outranked choices when replacing the
outranked with the outranking neighbourhoods. This way, we only walk on -irredundant
choices and collect all minimal outranked choices instead.

2.2 Complexity and performance

The problem of finding a minimal outranking or outranked choice of a certain cardinality
k, is known to be NP-complete, so that there is little hope to find efficient algorithms
for enumerating all minimal outranking or outranked choices in general digraphs of high
orders.

Indeed, the complexity is directly linked to the size of the P -choice graphs. In case
a digraph GL is empty, only the greedy choice will actually be a outranking choice. The
outranking choice graph reduces here to a single node and algorithm 1 will deliver imme-
diately this unique possible solution. As every possible choice in P(X) will be irredun-
dant, the corresponding ±-irredundant choice graph will be of order 2n − 1 (where n is
the order of G) and of size (2n−1)2− (2n−1). Algorithm 2 therefore rapidly gets totally
inefficient.

Similarly, in case GL is complete, i.e. G is a complete graph Kn, the irredundant
choice graph reduces to n isolated single choices. This time, algorithm 2 delivers imme-
diatley the n solutions, whereas the corresponding outranking choice graph is again of
order 2n − 1 and so of huge size (2n − 1)2 − (2n − 1). Similarly, algorithm 1 this time is
totally inefficient.

A stated before we are in fact solely interested in connected digraphs where the second
algorithm is more efficient in general, except for very low fill rates (see figure (1). We have
implemented both algorithms in the Python language (version 2.4) using the optimized
inbuilt set class, which delivers constant time access to members of sets (independent
of the cardinalities), and which offers optimized set operators like union, intersection,
and difference with linear time in the cardinality of the operands. In figure (1) we have
illustrated run time statistics for random digraphs of order 15 with fill rates varying from
10 to 90%.

It is obvious that the MaxIrredOutrankingChoices algorithm is doing much
better except for very low fill rate below 15 %.

Let us now consider a special kind of outranking and outranked choices, namely those
where the chosen ations are incomparable with repect to the S relation.

12

Annales du LAMSADE n3

Figure 1: Run time statistics for randomly filled connected digraphs of order 15

2.3 Choice graph traversal algorithms for kernel enumerating

We have seen in the first section, that the independence property is computed from the L-
false part of S̃. In order to implement path algorithms in the corresponding independent
choice graph, we cannot, as usual rely on the false by failure principle, i.e. the comple-
ment of the neighbourhoods, for representing independence. We need to introduce the
logically positive concept of disconnects.

Definition 10 (Disconnects).
Let GL be an L-irreflexive digraph. We call disconnect of a node x, denoted D(x) =
{y ∈ X : (S̃(y, x) < 0) ∨ (S̃(x, y) < 0)}, the set of nodes disconnected from x. We
call disconnect of a choice Y , the intersection of disconnects of the members of Y :

D(Y) =
⋂

x∈Y

D(x).

Proposition 6. A choice Y in GL is an outranking (respectively outranked) kernel if and
only if: Y ⊆ D(Y) (independent)

∀x 6∈ Y : N−(x) ∩ Y 6= ∅ (outranking)

(resp. ∀x 6∈ Y : N+(x) ∩ Y 6= ∅ (resp. outranked))

Proof. It is readily seen that a choice Y is indeed independent if and only if the discon-
nects of the choice members contain the otherwise chosen actions. Similarly, a choice
Y is outranking (resp. outranked) if and only if all not members of the choice are in the
respective choice neighbourhood.

13

On enumerating the kernels in a
bipolar-valued outranking digraph

2.3.1 Reducing outranking choices

Algorithm 3 (Enumerating outranking choices 2).

Y0 ← X # start with the greedy choice
K+ ←MinOutrankingKernels (Y0)

def MinOutrankingKernels (In: Y outranking; Out: K+)
if Y ⊆ D(Y):

K+ ← Y # Y is independent
else:

K+ ← ∅
for [x ∈ Y : N+

Y [x] = ∅]: # Retract in turn all redundant nodes
Y1 ← Y − {x} # Y 1 remains outranking !
K+ ← K+ ∪MinOutrankingKernels (Y1)

return K+

Proof. Similar in its design to algorithm 1, this algorithm starts again with the greedy
choice Y = X which is always outranking by convention and an empty set of mini-
mal outranking kernels. The procedure MinOutrankingKernels collects all independent
outranking choices that may be reached from this initial outranking choice Y .

The call invariants of iteration i are that the choice Yi is outranking and K+
i is a set of

outranking kernels collected so far.

If Yi is outranking, then Yi+1 = Yi−{x} is constructed only if N+
Yi

[x] = ∅, i.e. when x
is a +irredundant action, so that Yi+1 remains outranking. If no more +irredundant actions
may be found, the procedure stops the walk. As Y0 = X is outranking, the algorithm only
walks on paths of the outranking choice graph.

Let us suppose that at iteration i, K+
i contains only outranking kernels. Two situations

may happen. Either the current choice Yi is independent or all redundant actions have been
removed in turn. In the first case, we are in the presence of an outranking kernel which
is added to to the current set K+

i . In the second case, all outranking kernels potentially
reached when reducing the current choice are first added up in a local result K+ to be at
the end added up to K+

i . This way, K+
i+1 can only contain outranking kernels. As we start

with an empty initial collection K+
0 , it is verified that in the end K+ may only contain

minimal outranking choices.

Finally, that we algorithm collects all existing independent outranking choices in GL

follows from the fact that the outranking chice graph is strongly connected and that there-
fore, starting from the greedy choice X , the algorithm walks necessarily through all out-
ranking choices in GL.

14

Annales du LAMSADE n3

2.3.2 Extending independent choices

Algorithm 4 (Extending independent choices: variant 1).

K+ ← ∅ # initialise the result
for x ∈ X:

Y ← {x} # each singleton is independent
K+ ← K+ ∪ MaxIndOutrankingKernels (Y, K+)

def MaxIndOutrankingKernels(In: Y independent, K+
0 ; Out: K+):

if N+(Y) − (Y −X) = ∅:
K+ ← K+

0 ∪ Y # Y is outranking
else: # try adding all independent singletons

K+ ← K+
0 # initialise the result

for [x ∈ X − Y : Y − {x} ⊆ D(x)]:
Y1 ← Y ∪ {x} # Y1 remains independent !
K+ ← K+ ∪MaxIndOutrankingKernels (Y1, K

+)
return K+

Before going to prove algorithm 4, we may notice that the independence property
in the recursive call invariant here, contrary to the ±-irredundancy properties, is a non
oriented concept. This allows to enumerate in the same run, both the outranking and the
outranked kernels.

2.3.3 Dominant and outranked kernels in the same run

Algorithm 5 (Extending independent choices: variant 2).

global Hist
Hist ← ∅ # initialise the history
K+ ← ∅ # initialise the outranking result
K− ← ∅ # initialise the outranked result
for x ∈ X:

Y ← {x}
(K+, K−)← (K+, K−) ∪ AllKernels (Y , (K+, K−))

def AllKernels (In: Y independent, (K+
0 , K−

0); Out: (K+, K−)):
if N+(Y) − (Y −X) = ∅:

K+ ← K+
0 ∪ Y # Y is outranking

if N−(Y) − (Y −X) = ∅:

15

On enumerating the kernels in a
bipolar-valued outranking digraph

K− ← K−
0 ∪ Y # Y is outranked

try adding all independent singletons
(K+, K−)← (K+

0 , K−
0)

for [x ∈ D(Y)]:
Y1 ← Y ∪ {x}
if Y1 6∈ Hist:

(K+, K−)← (K+, K−)∪ AllKernels (Y1, (K
+, K−))

Hist ← Hist ∪ Y1

return (K+, K−)

Proof. The algorithm starts with an empty history and empty sets of outranking and out-
ranked kernels. The procedure AllKernels then collects all outranking and outranked
kernels that may be reached in turn from each initial single choice Y0 = {x}, ∀x ∈ X .

The call invariants of procedure AllKernels are that the current choice Yi is indepen-
dent, and that the current set K+

i (resp. K−
i) of results contains the outranking (respec-

tively outranked) kernels collected so far.

If Yi is independent, then Yi+1 = Yi∪{x} is constructed only if x ∈ D(Yi), i.e. in case
Yi+1 remains independent. As each Y0 is in turn independent by convention, the algorithm
walks only on paths of the independent choice graph.

Let us suppose that at recursive call i, K+
i and K−

i are either empty or contain only
outranking or outranked kernels. Three situations may happen. First, the current choice
Yi is outranking and we have found a new outranking kernel that we add to the current set
K+

i . In the second case, the current choice Yi is outranked and we have found a new out-
ranked kernel that we add again to the current set K−

i . Thirdly, we gather all outranking
and outranked kernels from the union of the current choice Yi with all possible actions
x contained in its disconnect. This way, K+

i+1 and K−
i+1 can only contain outranking, re-

spectively outranked kernels or stay empty. As we start with empty initial collections K+
0

and K−
0 , it is verified that in the end K+, respectively K−, if not empty, may only contain

outranking, respectively outranked, kernels.

Finally, that the algorithm collects all existing outranking and outranked kernels in
GL follows from the fact that the independent hypergraph is strongly connected. Starting
in turn from each single choice, the algorithm walks necessarily through all independent
choices existing in GL. In order to avoid visiting the same independent choices several
times in turn from each member single choice, we keep a history of visited independent
choices, and only proceed recursively with the next choice Yi+1 in case it has not been
visited before.

16

Annales du LAMSADE n3

Figure 2: Run time statistics for AllKernels procedure (Algorithm 5)

2.4 Complexity and computational performance

In figure 2 we show run times statistics for kernel extractions from randomly filled di-
graphs of order 30. Similar to the previous statistics, we find that the extraction of kernels
is computationally easy (run times less than a second) when the fill rate is 20% and more.
The performance is again directly related to the order of the independent choice graph.
Indeed, the higher the fill rate, the lower is the order of this choice graph. With a fill rate
of 50% for instance, we observe an average of only 200 independent choices. We may
collect on this low order independent choice graph the outranking and outranked kernels
in an average of 15 milliseconds on a standard desktop PC.

This run time performance is even better supported in general (see figure 3) when
considering that almost all digraphs of order n contain only kernels such that Cn − 1.43
≤ |K| ≤ Cn + 2.11 where Cn = ln(n) − ln(ln(n)) (Tomescu [20]). For a ramdomly
filled digraph of order 900 and 50% fill rate, we may thus observe kernels of average car-
dinalities of 7. Thus we are able to extract in less than a minute all kernels from digraphs
of orders up to 900 and a fill rate of 50% and more, under the condition of disposing of
a sufficiently large CPU memory. This general performance is most satisfactory, as the
particular outranking graphs we are interested in generally represent more or less tran-
sitive weak orderings. As empiric studies of random outranking digraphs is confirming,
the corresponding digraphs show fill rates always superior to 50%. Nevertheless some
digraphs, even of modest order (less than 30), may represent difficult instances. Indeed,
as shown in figure 3, where we have articially limited the run time to 10 seconds, a brutal

17

On enumerating the kernels in a
bipolar-valued outranking digraph

Figure 3: General performance of Algorithm 5

combinatorial explosion appears with digraphs of very low fill rate. Here we may eas-
ily observe independent choice graphs of huge exponential size coupled with kernels of
cardinalities up to n/2. This definitely limits the practical performance for extracting all
kernels from these kinds of digraphs.

But the independent choice graph traversal approach is not the only possible strategy
for computing kernels in a digraph. Very recently, Alain Hertz0 has proposed a pivoting
algorithm which, starting from an arbitrary initial maximal independent choice, visits
directly all other existing maximal indpendent sets in the digraph. This algorithm belongs
to the famaily of reverse searching algorithms such as the simplex algorithm in linear
algebra. The pivoting from one maximal independent choice to the other is done in a
polynomial O(n) step, so that performances in fact only depend on the actual number
of kernels existing in the digraph. Even if this last algorithm is not as efficient as the
Allkernels algorithm for dense digraps of large orders, it however delivers all kernels for
difficult digraphs such as cordless n-circuits, and n-paths.

All the preceding discussion only concerns the computation of kernels in the associ-
ated median cut crips digraph. In the next section we propose an algebraic approach to the
same problem via L-valued membership characterisations of choices, which will deliver
the necessary algorithms for solving the general L-valued case.

0Private communication, April 2006

18

Annales du LAMSADE n3

3 Algebraic approach

3.1 L-characterisation of choice classes

In the previous sections we have worked with different kinds of choices, namely outrank-
ing, outranked, independent, ±-irredundant ones. Similarly to the L-characterisation of
the digraph, we may now define a L-valued characterisation of these kinds or classes on
the power set P(X) of all possible choices we may define in GL.

As these classes are all defined with logical conditions applied on L-valued binary
outranking statements, we first need to extend the L evaluation domain to well formed
logical expressions.

Definition 11 (Well formed logical expressions).
Let G denote a set of ground atomic logical statements. We define inductively the set E of
well formed logical expressions in the following way:

1. ∀p ∈ G we have p ∈ E ;

2. ∀x, y ∈ E we have (x ∨ y) ∈ E , (x ∧ y) ∈ E , and ¬x ∈ E

3. all p ∈ E result of finite construction.

In order to avoid any problem with precedence of operators, we shall always use
brackets to delimit the scope of the logical operators max, min and ¬ in an expression.
Here our ground atomic logical expressions are the binary outranking assertions x S y
of the given digrah GL(X, S̃). Our well formed logical expressions concern formulas
involving these binary outranking assertions.

Now, every well formed expression may be evaluted in the L-valued credibility do-
main as follows:

Definition 12 (L-valued logical expressions).
Let E denote a set of well formed logical expressions. Ẽ : E → L gives the L-valued
credidility of each well formed logical expression as follows:

1. ∀p ∈ G, its credibility Ẽ(p) ∈ L is given.

2. ∀x ∈ E we have Ẽ(¬x) = −Ẽ(x)

3. ∀x,∈ E we have Ẽ(x ∨ y) = max
(

Ẽ(x), Ẽ(y)
)

4. ∀x,∈ E we have Ẽ(x ∧ y) = min
(

Ẽ(x), Ẽ(y)
)

19

On enumerating the kernels in a
bipolar-valued outranking digraph

As the atomic outranking assertions are evaluated in the given digraph GL(X, S̃), we
are now able to evaluate any well formed logical expression involving these evaluations
S̃(x, y). We start by defining the degree of irredundance of a choice in GL.

Definition 13 (L-±-irredundance of choices).
Let GL(X, S̃) be a L-valued digraph where L = {−m, . . . , 0, . . . , m}. The degree of
+-irredundance of action x with respect to choice Y in GL is given by:

∆+irr
Y (x) =

{

m if Y = {x},

max(z,y)∈X×Y −{x} min
(

S̃(x, z),−S̃(y, z)
)

otherwise.
(3)

Similarly, the degree of −-outranked irredundance of action x with respect to choice Y
in GL is given by:

∆-irr
Y (x) =

{

m if Y = {x},

max(z,y)∈X×Y −{x} min
(

S̃(z, x),−S̃(z, y)
)

otherwise.
(4)

The degree of +irredundance of choice Y in GL is given by:

∆+irr(Y) = min
x∈Y

∆+irr
Y (x) (5)

The degree of -irredundance of choice Y in GL is given by:

∆-irr(Y) = min
x∈Y

∆-irr
Y (x) (6)

Proposition 7.
Y in GL is a +irredundant outranking (resp. -irredundant) choice if and only if ∆+irr(Y) >
0 (resp. ∆-irr(Y) > 0).

Proof.
(⇒) Suppose ∆+irr(Y) < 0. Then ∃x ∈ Y such that ∆+irr

Y (x) < 0. This implies that
Y ⊂ X and ∀(z, y) ∈ X × Y − {x} we have min

(

S̃(x, z),−S̃(y, z)
)

< 0. In other
terms: ∀z ∈ N+[x] : ∃y ∈ Y − {x} such that z ∈ N+[y]. Hence x is redundant and Y
cannot be +irredundant.

(⇐) Let us suppose the otherway round that x in choice Y is redundant. This implies
that NY + [x] = ∅. In other terms: N [x] − N+[Y − {x}] = ∅. This is exactly the case
when for all z ∈ X such that S̃(x, z) > 0, we find a y ∈ Y − {x} such that S̃(y, z) > 0.
In this case max(z,y)∈X×Y −{x}(S̃(z, x),−S̃(z, y)) < 0 and ∆+irr

Y (x) < 0.

A same development applies for the outranked case.

20

Annales du LAMSADE n3

Definition 14 (L-Qualification of choices).
Let GL(X, S̃) be a L-valued digraph where L = {−m, . . . , 0, . . . , m}. The degree of
outrankingness of a choice Y in GL is given by:

∆dom(Y) =

{

m if Y = X,

minx6∈Y maxy∈Y

(

S̃(y, x)
)

otherwise.
(7)

The degree of outrankedness of a choice Y in GL is given by:

∆abs(Y) =

{

m if Y = X,

minx6∈Y maxy∈Y

(

S̃(x, y)
)

otherwise.
(8)

The degree of independence of a choice Y in GL is given :

∆ind(Y) =

{

m if Y = {x},

miny 6=x
y∈Y minx∈Y

(

− S̃(x, y)
)

otherwise.
(9)

Proposition 8.
Let GL(X, S̃) be an L-valued outranking graph.

1. Y in GL is an independent choice if and only if ∆ind(Y) > 0.

2. Y in GL is a outranking (resp. outranked) choice if and only if ∆dom(Y) > 0 (resp.
∆abs(Y) > 0).

Proof. (1) Immediate from definition (7) which states that a choice Y is indeed indepen-
dent if and only if S̃(x, y) < 0 for all x, y ∈ Y .

(2) similarly, follows immediately from definition (1), as a choice Y is outranking
(resp. outranked) if and only if ∀x ∈ Y : ∃y ∈ Y such that S̃(y, x) > 0 (resp. S̃(y, x) >
0.

Corollary 1. Let GL(X, S̃) be an L-valued outranking graph and G(X, S) its associated
strict median cut crisp digraph. The minimal outranking (resp. outranked) choices of GL

correspond to the minimal outranking (resp. outranked) choices of G.

Proof. Y in GL is a minimal outranking (resp. outranked) choice if and only if ∆+irr(Y) >
0 and ∆dom(Y) > 0 (resp. ∆-irr(Y) > 0 and ∆abs(Y) > 0).

This important result from an operational point of view allows to determine the L-
valued minimal outranking (resp. outranked) choices in a L-valued digraph GL by – first,
computing the minimal outranking (resp. outranked) crisp choices in the associated strict
median cut digraph G, and – secondly, computing their respective L-qualifications.

21

On enumerating the kernels in a
bipolar-valued outranking digraph

Corollary 2 (Kitainik 1993). The outranking (resp. outranked) kernels of GL correspond
to the outranking (resp. outranked) kernels of G.

Proof. Let GL(X, S̃) be an L-valued outranking graph. Y in GL is a outranking (resp.
outranked) kernel if and only if ∆ind(Y) > 0 and ∆dom(Y) > 0 (resp. ∆abs(Y) > 0).

Again, this result allows us to determine all outranking or outranked kernels in a L-
valued digraph GL by – first, extracting all crisp kernels from the associated median cut
crisp graph G and, – secondly, directly computing their corresponding L-qualifications.

3.2 The kernel equation system

Definition 15 (L-characterisation of choices).
We characterise Y with the help of a L-valued function Ỹ : X → L where x ∈ Y ⇔
Ỹ (x) > 0, ∀x ∈ X .

In example (1), Ỹ (a) = −6, Ỹ (b) = 6, Ỹ (c) = −6, Ỹ (d) = 10, Ỹ (e) = 9 charac-
terises the choice Y = {b, d, e}, whereas Ỹ (a) = 6, Ỹ (b) = −6, Ỹ (c) = 6, Ỹ (d) = −10,
Ỹ (e) = −9 characterises the choice Y = {a, c}.

Definition 16 (The kernel equation system).
We call outranking kernel equation system the following set of equations:

(Ỹ ◦ S̃)(x) =
y 6=x
max
y∈X

min
(

Ỹ (y), S̃(y, x)
)

= −Ỹ (x), ∀x ∈ X. (10)

We call outranked kernel equation system the following set of equations:

(Ỹ ◦ S̃)(x) =
y 6=x
max
y∈X

min
(

Ỹ (y), S̃(x, y)
)

= −Ỹ (x), ∀x ∈ X. (11)

The name given to both theseL-valued equation systems is motivated by the following
result we observe in the crisp Booelan setting.

Theorem 1 (Berge 1958).
Let GL(X, S̃) be evaluated in a bi-valued domain L = {−1, 1}. A choice Y in GL is a
outranking (resp. outranked) kernel if and only if its associated {−1, 1}-valued charac-
teristic vector Ỹ is a solution of kernel equation system (10) (resp. (11)).

Proof. (⇒) Let us suppose that Ỹ characterises a outranking kernel in GL. By inde-
pendence of Y we have Ỹ (y) = 1 ⇒ y ∈ Y ⇒ minx6=y∈Y S̃(y, x) = −1. And, by the
outrankingness quality of Y , we have Ỹ (y) = −1 ⇒ y 6∈ Y ⇒ maxx∈Y S̃(y, x) = 1.
Combining both cases we see that Ỹ indeed verifies equation system (10).

22

Annales du LAMSADE n3

(⇐) If Ỹ is a solution of kernel equation system (10),
y ∈ Y ⇒ Ỹ = 1 ⇒ minx6=y∈Y S̃(x, y) = −1 and Y is independent. Similarly, y 6∈ Y
⇒ Ỹ (y) = −1 ⇒ maxx6=y∈Y S̃(y, x) = 1 and Y is indeed a outranking choice. If we
combine both cases, Y is certainly a outranking kernel.

A same argument applies canonically for outranked kernels.

In the general L-valued case, the correspondence between the solutions of the kernel
equation systems and L-valued kernels is not so immediate.

Indeed, we have to be careful with potential L-undeterminedness. In fact the only
L-characterisations we may accept are those that determine a complete choice.

Definition 17 (L-determined choices).
Let Ỹ represent a L-characterisation of a choice Y in GL. We call Ỹ L-determined if
Ỹ (x) 6= 0 for all x ∈ X .

Furthermore, certain L-characterisations, despite being different in values, charac-
terise in fact a same choice. To cope with this phenomena, we have to introduce the
following congruence relation on Y , the set of possible L-characterisations of choices in
GL.

Definition 18 (Congruence classes of L-characterisations).
We say that two L-characterisations Ỹ1 and Ỹ1 of kernels in GL are non contradictory, de-
noted Ỹ1

∼= Ỹ2 if and only if Ỹ1(x) > 0⇔ Ỹ2(x) > 0 and Ỹ1(x) > 0⇔ Ỹ2(x) > 0. Every
choice Y in GL determines a congruence class of non contradictory L-characterisations
denoted Y/∼=Y .

Definition 19 (Sharpness of L-characterisations).
Let Ỹ1, Ỹ2 ∈ Y/∼=Y characterise a choice Y in GL. We say that Ỹ1 is sharper than Ỹ2,
denoted Ỹ1 < Ỹ2 if and only if for all x ∈ X , either Ỹ1(x) ≤ Ỹ2(x) ≤ 0, or 0 ≤ Ỹ2(x) ≤
Ỹ1(x).

The sharpness relation < determines a partial order on Y , the set of possible L-
characterisations of choices in GL (see [5]). The all median valued vector Ỹ0(x) =
0, ∀x ∈ X acts as bottom, the least sharpest characterisation and all 2n crisp, i.e. {−m, m}-
valued choice characterisations give the sharpest possible characterisations.

Theorem 2 (Bisdorff, Pirlot, Roubens, 2005). A choice Y is a outranking (resp. out-
ranked) kernel in GL if and only if there exists a corresponding L-valued characteristic
vector Ỹ that is a maximal sharpL-determined solution of the kernel equation system (10)
(resp. (11)).

23

On enumerating the kernels in a
bipolar-valued outranking digraph

Proof. (⇐) If Ỹ is a maximal sharp and L-determined solution of equation system (10),
then the so characterised choice Y will be independent and outranking as a corollary of
theorem (1).

(⇒) If Y is a outranking kernel in GL we show that there exists a unique solution
Ỹ ∈ Y/∼=Y of the fixpoint equation :

T (Ỹ) = −(Ỹ ◦ S̃) = Ỹ (12)

that is a maximal sharp and L-determined solution of equation system (10).

Indeed, it is readily seen that the fixpoints of equation (12) verify in fact the kernel
equation system (10).

Transformation T gives furthermore a non-contradictory transformation of kernel
characterisations, i.e. Ỹ ∈ Y/∼=Y ⇒ T (Ỹ) ∈ Y/∼=Y . Indeed, y ∈ Y ⇒ S̃(y, x) < 0

so that ∀x ∈ Y , min(Ỹ (x), S̃(x, y)) = S̃(x, y) < 0, and, ∀x 6∈ Y , min(Ỹ (x), S̃(x, y)) ≤
Ỹ (x) < 0. The combination of both cases shows that T (Ỹ)(y) > 0. Similarly, x 6∈ Y ⇒
∃y ∈ Y : S̃(y, x) > 0. For such an y, min(Ỹ (x), S̃(x, y)) > 0 and hence T (Ỹ) < 0.

We may also show that the transformation T is isotone with respect to the sharpness
ordering <, i.e. if Ỹ1, Ỹ2 ∈ Y/∼=Y are such that Ỹ1 < Ỹ2 then T (Ỹ1) < T (Ỹ2). Indeed,
y ∈ Y ⇒ Ỹ1(y) > Ỹ2(y) ⇒ T (Ỹ1)(y) > T (Ỹ2)(y), and y 6∈ Y ⇒ Ỹ1(y) < Ỹ2(y) ⇒
T (Ỹ1)(y) < T (Ỹ2)(y) since the functions max and min are non decreasing.

If we start now the resolution of the fixpoint equation with Ỹ0(x) = m when x ∈ Y ,
and Ỹ0(x) = −m when x 6∈ Y , i.e. the maximal possible sharp characterisation, we
necessarily get Ỹi < T (Ỹi−1) for i = 1, 2, As m is a finite integer, there exists a finite
number n ≤ n(m− 1) such that Ỹn = T (Ỹn).

This fixpoint solution Ỹn is unique, L-determined and maximal sharp.

The outranked case is canonically obtained by simply reversing the S̃ relation.

The last theorem gives us the possibility to find a L-characterisation of a outranking
(resp. outranked) kernel under the condition that we already know the associated strict
median cut choice. Let us now turn our attention to direct solving techniques for the
kernel equation systems.

3.3 Solving the kernel equation systems

3.3.1 Smart enumeration with a finite domain solver

It is possible to directly enumerate all maximal sharp solutions from the L-valued kernel
equations systems with the help of a finite domain solver as provided by some Prolog pro-

24

Annales du LAMSADE n3

Figure 4: Average performance using the GNU-Prolog FD solver

gramming environments such as GNU-Prolog [10; 11] or the commercial Prolog software
CHIP. Implementation details of such a solving approach may be found in Bisdorff [4].

In Figure 4, we show average performance using the GNU-Prolog FD solver. Contrary
to our AllKernels Python implementation, better performances are obtained here with
smaller fill rates. This is due to the size of the arc-constraints graph which is indeed
proportional to the actual size of treated outranking digraph. The sparser the graph, the
smaller the constraints graph, the quicker the propagation algorithm on the arc-constraint
will help enumerating all kernels in the graph.

However, direct enumeration in a bipolar-valued characteristic domain is very inef-
ficient. It quickly appeared that fixpoint approaches are much more efficient (see Bis-
dorff [5]).

3.3.2 Fixpoint approaches

Before tackling the general L-valued case, we may consider the following early result.

Theorem 3.
Let GL(X, S̃) be a bipolar-valued outranking digraph such that their exists a unique kernel
K in GL with the associated maximal sharp and L-determined K̃ characterisation. Let
T 2 : Y → Y be the following dual transformation of L-valued kernel characterisations:

T 2(Ỹ) = −
(

− (Ỹ ◦ S̃) ◦ S̃
)

. (13)

25

On enumerating the kernels in a
bipolar-valued outranking digraph

With Ỹ0(x) = −1 for all x ∈ X , the iteration Ỹi = T 2(Ỹi−1) for i = 1, 2, . . . converges to
the fixpoint K̃ = T 2(K̃).

A classic B-valued restriction of this theorem is attributed to von Neumann (1944). In
the present general L-valued form, though operationnaly used in all bipolar-valued kernel
computations from 1996 on, this result has not been thoroughly proved and published yet.

Based on this theorem, the following algorithm tackles the extension to the general
case:

Algorithm 6 (Bisdorff 1997).
Let GL(X, S̃) be a bipolar-valued outranking digraph.

1. Extract all outranking and outranked kernels K1, K2, . . . , Kj from the associated
median cut graph G(X, S).

2. Associate to each Kj a partially defined graph GL
Kj

(X, S̃/Kj
) supporting exactly the

unique kernel Kj .

3. Use the v. Neummann dual fixpoint iteration T 2 for computing in turn K̃j in each
partial graph GL

Kj
.

A detailed description of this algorithm, with a partial proof of the correctness of the
algorithm, may be found in Bisdorff [5].

A similar fixpoint based, but slightly more restricted, alogorithm for computing the
L-determined kernels may be deduced from the constructive proof of Theorem 2.

Algorithm 7 (Pirlot 2004).
Let GL(X, S̃) be a bipolar-valued outranking digraph.

1. Extract all outranking and outranked kernels K1, K2, . . . , Kj from the associated
median cut graph G(X, S).

2. For each Kj: With Ỹ0(x) = m for all x ∈ Kj and Ỹ0(x) = −m for all x 6∈ Kj ,
the iteration Ỹi = T (Ỹi−1) for i = 1, 2, . . . converges to a fixpoint which is K̃j =
T (K̃j).

3.4 Complexity

Except the first algorithm, which only applies to acyclic digraphs, both the Bisdorff and
Pirlot algorithm rely on a first step which enumerates the kernels in the assocaited median
cut crisp digraph.

26

Annales du LAMSADE n3

For each crisp kernel solution, both fixpoint based algorithms compute the corre-
sponding maximal sharp L-valued result in at most n × |L| steps, where each each step
mainly involves two Boolean products of dimension n × 1 and equality tests. Thus they
operate in polynomial O(n × |L|) time, once the crisp kernels of the associated median
cut digraph are available.

Main complexity remains thus definitely in the first step, i.e. enumerating all kernels
in a crisp digraph.

References

[1] Berge, C., The theory of graphs. Dover Publications Inc. 2001. First published in
English by Methuen & Co Ltd., London 1962. Translated from a French edition
by Dunod, Paris 1958.

[2] Berge, C., Graphes et hypergraphes. Dunod, Paris, 1970

[3] Bisdorff, R. and Roubens, M., On defining fuzzy kernels from L-valued simple
graphs. In: Proceedings Information Processing and Management of Uncertainty,
IPMU’96, Granada, July 1996, 593–599.

[4] Bisdorff, R. and Roubens, M., On defining and computing fuzzy kernels from
L-valued simple graphs. In: Da Ruan et al., eds., Intelligent Systems and Soft
Computing for Nuclear Science and Industry, FLINS’96 workshop. World Scien-
tific Publishers, Singapore, 1996, 113–123.

[5] Bisdorff, R., On computing kernels from L-valued simple graphs. In: Proceed-
ings 5th European Congress on Intelligent Techniques and Soft Computing EU-
FIT’97, (Aachen, September 1997),vol. 1, 97–103.

[6] Bisdorff, R., Logical foundation of fuzzy preferential systems with application to
the Electre decision aid methods, Computers & Operations Research, 27, 2000,
673–687.

[7] Bisdorff, R., Logical Foundation of Multicriteria Preference Aggregation. Essay
in Aiding Decisions with Multiple Criteria, D. Bouyssou et al. (editors). Kluwer
Academic Publishers, 2002, 379-403.

[8] Bisdorff, R., Pirlot, M., and Roubens, M., Choices and kernels in bipolar valued
digraphs. European Journal of Operational Research, to appear.

[9] Bisdorff, Meyer P., and Roubens, M., Ruby, Foundation of the RuBy methodology
for solving the best choice problematics. bf SMA working paper, University of
Luxembourg, 2005. http://sma.uni.lu/bisdorff/Hyperkernels.pdf

27

On enumerating the kernels in a
bipolar-valued outranking digraph

[10] Codognet, P. and Diaz, D., Compiling Constraint in clp(FD). Journal of Logic
Programming, Vol. 27, No. 3, June 1996.

[11] Diaz, D. GNU-Prolog: A native Prolog Compiler with Constraint Solving over
Finite Domains. Edition 1.6 for GNU-Prolog version 1.2.13, 2002, http://gnu-
prolog.inria.fr.

[12] Fernandez De la Vega, F., Kernels in random graphs. Discrete Math. 82 (1990),
213–217.

[13] Ghoshal, J., Laskar, R. and Pillone, D., Topics on domination in directed graphs.
In Haynes, T.W., Hedetniemi, St. T., and Slater, P.J., Domination in graphs: Ad-
vanced topics. Marcel Dekker Inc. New-York – Basel, 1998, 401 – 437

[14] Haynes, T.W., Hedetniemi, St. T., and Slater, P.J., Fundamentals of domination
in graphs. Marcel Dekker Inc., New-York – Basel, 1998.

[15] König, D., Theorie de Endlichen und Unendlichen Graphen. Chelsea, New York,
1950.

[16] Richardson, M. Solutions of irreflexive relations. Ann. Math. 58 (1953), 573 –
580.

[17] Roy, B. and Bouyssou, D., Aide multicritère à la décision: Méhodes et cas. Eco-
nomica, Paris, 1993.

[18] Schmidt, G. and Ströhlein, Th., On kernels of graphs and solutions of games: a
synopsis based on relations and fixpoints. SIAM, J. Algebraic Discrete Methods,
6, 1985, 54–65.

[19] Schmidt, G. and Ströhlein, Th., Relationen und Graphen. Springer-Verlag,
Berlin, 1989.

[20] Tomescu, I., Almost all digraphs have a kernel, Discrete Math., 2, 84 (1990),
181–192.

[21] von Neumann, J. and Morgenstern, O., Theory of games and economic behaviour.
Princeton University Press, Princeton 1944.

28

