
Expressive Power of Weighted Propositional

Formulas for Cardinal Preference Modelling

Extended Abstract∗

Yann Chevaleyre1, Ulle Endriss2, and Jérôme Lang3

1 LAMSADE, Université Paris-Dauphine, France
Email: chevaley@lamsade.dauphine.fr

2 ILLC, University of Amsterdam, The Netherlands
Email: ulle@illc.uva.nl

3 IRIT, Université Paul Sabatier, France
Email: lang@irit.fr

Abstract

As proposed in various places, a set of propositional formulas, each associated with a nu-
merical weight, can be used to model the preferences of an agent in combinatorial domains.
If the range of possible choices can be represented by the set of possible assignments of
propositional symbols to truth values, then the utility of an assignment is given by the
sum of the weights of the formulas it satisfies. Our aim in this paper is to establish cor-
respondences between certain types of weighted formulas and well-known classes of utility
functions (such as monotonic, concave or k-additive functions). We also briefly comment
on the comparative succinctness of different types of weighted formulas for representing
the same class of utility functions.

1 Introduction

Many individual or multiagent decision making problems have in their input the preferences
of the agent(s) over a set of possible alternatives. Such problems include decision making
and planning under uncertainty, multi-criteria decision making and decision support systems,
automated group decision making (including auctions, fair division, vote), and distributed
decision making (including negotiation).

Saying that the input of a problem contains the preference structure of the agent(s) over
the set of alternatives does not imply anything about how these structures are specified in
the input. Clearly, if the set of alternatives is small, this question is not relevant, since the
size of the explicit representation of the preference structure is small as well. This is no
longer the case when the set of alternatives is a combinatorial domain: in this case, the set
of alternatives is the set of all assignments of each of a given finite set of variables to a value
of the corresponding finite domain. Examples are numerous: in combinatorial auctions and

∗A full version of this paper appears in the Proceedings of the 10th International Conference on Principles
of Knowledge Representation and Reasoning (KR-2006).



negotiation over resources [9, 12], an alternative is an assignment of each good to an agent; in
multiple issue referenda [7], an alternative consists of a truth value (yes or no) for each issue.

For this purpose, many languages have been developed so as to express preference
structures as succinctly as possible. These languages differ significantly, depending on whether
the preference structure to be expressed is ordinal or cardinal (numerical). Languages
for the succinct representation of ordinal preferences include languages of ceteris paribus
statements, which range from very expressive languages [13] to syntactical restrictions such
as CP-nets [4]. They also include languages based on conditional logics, prioritised logics,
and prioritised constraint satisfaction problems (see e.g. [21] for an overview). Languages for
the succinct representation of utility functions include graphical models [1, 3, 16, 19], decision
trees [5], valued constraint satisfaction problems [2], and bidding languages for combinatorial
auctions [6, 22, 24]. Many different issues concerning preference representation languages are
worth investigating:

• Elicitation: design algorithms to elicit preferences from an agent so as to get an output
expressed in a given language.

• Cognitive relevance: assess the cognitive relevance of a language by measuring its prox-
imity to the way human agents “know” their preferences and express them in natural
language.

• Expressive power: identify the set of preference relations or utility functions that can be
expressed in a given language.

• Complexity: for a given language, determine the computational complexity of tasks such
as finding a non-dominated alternative, checking whether an alternative is preferred to
another one, whether an alternative is non-dominated, or whether all non-dominated
alternatives satisfy a given property.

• Comparative succinctness: given two languages L and L′, check whether every preference
structure expressible in L can also be expressed in L′ without a significant (i.e. supra-
polynomial) increase in size (in which case L′ is said to be at least as succinct as L).

Elicitation and complexity have been the subject of much previous work that we will not
recall here. Cognitive relevance is somewhat harder to assess, due to its non-technical nature,
and to our knowledge it has been rarely studied (see [22] for a short discussion). The last two
issues, expressive power and comparative succinctness, have been investigated to a lesser extent.
Coste-Marquis et al. [11] give a systematic analysis of both issues for ordinal preferences, while
several other authors [6, 9, 22, 24] investigate these issues for bidding languages for auctions
and negotiation (which express valuation functions for bundles of goods).

In this paper we investigate expressive power for on one of the simplest languages for
utility representation, where goals are specified as propositional logic formulas, and each goal
is associated with a numerical weight. The utility of an alternative is then obtained by summing
up the weights of the goals it satisfies. This language has been considered in many places, as
have several of its variations (see e.g. [14, 18, 20, 23]). After covering some preliminaries
and introducing the problems addressed in this paper in more formal detail in Section 2, we
establish a range of correspondence results, between well-known classes of utility functions and
different restrictions on the language of weighted propositional formulas, in Section 3. We then
discuss, in less detail, succinctness issues in Section 4. Lastly, Section 5 discusses related work
and further research directions.

2



2 Modelling Preferences

Let PS be a finite set of propositional symbols and let n = |PS |. LPS is the propositional
language built from PS using the operations of negation, conjunction and disjunction. For any
formula ϕ ∈ LPS , Var(ϕ) denotes the set of propositional symbols occurring in ϕ. PS (k) is the
set of all subsets of PS with at most k symbols (in particular, PS (1) and PS (n) are isomorphic
to PS and 2PS , respectively). Elements M of 2PS could be bundles of indivisible goods,
agreements in the context of multi-criteria decision making or, more generally, propositional
worlds (assigning true to every symbol appearing in M and false to all other symbols).

2.1 Utility Functions

We now introduce the concept of a utility function over propositional worlds and recall the
definitions of several well-known classes of utility functions.

Definition 1 A utility function is a mapping u : 2PS → R.
• u is normalised iff u({ }) = 0.

• u is non-negative iff u(X) ≥ 0 for all X.

• u is monotonic iff u(X) ≤ u(Y ) whenever X ⊆ Y .

• u is modular iff u(X ∪ Y ) = u(X)+u(Y )−u(X ∩ Y ) for all X and Y .

• u is concave iff u(X ∪ Y )− u(Y ) ≤ u(X ∪ Z)− u(Z) whenever Y ⊇ Z.

• u is convex iff u(X ∪ Y )− u(Y ) ≥ u(X ∪ Z)− u(Z) whenever Y ⊇ Z.

• u is k-additive iff there exists a mapping u′ : PS (k) → R such that:

u(X) =
∑

{u′(Y ) | Y ⊆ X and Y ∈ PS (k)}

Intuitively, concavity means that marginal utility (of obtaining X) decreases as we move to
a better starting position (namely from Z to Y ). Observe hat u is convex iff −u is concave.
Utility functions that are both monotonic and normalised are also known as capacities.

The class of k-additive functions, the definition of which is inspired by work in fuzzy mea-
sure theory [17] and which recently also have found application in combinatorial auctions [10]
and distributed negotiation [9], is probably less well-known than the other classes of functions
mentioned in Definition 1. This class is useful in domains where synergies between different
items are restricted to bundles of at most k elements. Observe that for k = n, any utility func-
tion is k-additive: u′({ }) = u({ }) and u′(X) can be defined recursively as u(X)−

∑
Y⊂X u′(Y )

for all X 6= { }. Also, observe that the class of modular functions coincides with the class of
1-additive functions.

2.2 Weighted Formulas

An alternative approach to representing preferences uses weighted propositional formulas [20].
A weighted formula is a pair (ϕ, α), where ϕ is a propositional formula in the language LPS

and α is a numerical weight. Intuitively, the degree of satisfaction derived from a particular
propositional world (bundle of goods, agreement) may be computed as the sum of the weights
of the formulas satisfied by that world.

3



Definition 2 A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a satisfiable
formula ϕi ∈ LPS and a real number αi. The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all M ∈ 2PS . G is called the generator of uG.

We shall be interested in the following question:

Are there simple restrictions on goal bases such that the utility functions they gen-
erate enjoy simple structural properties?

Interesting candidates for restrictions on formulas include restrictions on the length of formulas
as well as the range of propositional connectives appearing in a formula.

Definition 3 Let H ⊆ LPS be a restriction on the set of propositional formulas and let
H ′ ⊆ R be a restriction on the weights allowed in the specification of goals. Regarding
formulas, we consider the following restrictions:

• A positive formula is a formula with no occurrence of ¬; a strictly positive formula is a
positive formula that is not a tautology.

• A clause is a (possibly empty) disjunction of literals; a k-clause is a clause of length ≤ k.

• A cube is a (possibly empty) conjunction of literals; a k-cube is a cube of length ≤ k.

• A k-formula is a formula ϕ with |Var(ϕ)| ≤ k.

Regarding weights, we consider only the restriction to positive real numbers. Given two restric-
tions H and H ′, let U(H,H’) be the class of utility functions that can be generated from goal
bases conforming to restrictions H and H ′.

Restrictions on formulas can also be combined (e.g. positive clauses are disjunctions of
positive literals). We write “all” in case no specific restriction applies. For example,
U(positive k-cubes, all) is the class of utility functions generated by goal bases made up from
positive k-cubes and where weights are not subject to any restrictions.

Two goal basesG andG′ are said to be equivalent (G ≡ G′) iff they generate the same utility
functions, i.e. iff uG = uG′ . For instance, we have {(ψ ∨ χ, α)} ≡ {(ψ, α), (χ, α), (ψ ∧ χ,−α)}.

3 Correspondence Results

This section provides a whole range of answers to our earlier question regarding the existence of
suitable restrictions on goal bases generating utility functions with simple structural properties.

3.1 Basic Results

It turns out that k-additivity plays a central role in characterising the utility functions corre-
sponding to certain types of goal bases. This connection is at its most apparent in the case of
positive k-cubes. A k-additive function can be represented by a mapping u′ : PS (k) → R (see

4



Definition 1). We can define a bijective function f from such mappings u′ onto goal bases G
with only positive k-cubes:

f : u′ 7→ {(p1 ∧ · · · ∧ pk, α) | u′({p1, . . . , pk}) = α}

Clearly, the utility functions generated by u′ and the goal base f(u′) are identical. Then, using
equivalence-preserving transformations between goal bases, similar to that indicated at the end
of Section 2, we can also establish the correspondence of k-additive functions to several other
types of restriction. These results are summarised in the following proposition:

Proposition 1 U(positive k-cubes, all), U(k-cubes, all), U(k-clauses, all),
U(positive k-formulas, all), and U(k-formulas, all) are all equal to the class of k-additive
utility functions.

The positive k-clauses do not generate the full set of k-additive utility functions, because (due
to the fact that > is not a clause) positive k-clauses do not allow us to assign a non-zero utility
to { }:

Proposition 2 U(positive k-clauses, all) is equal to the class of normalised k-additive utility
functions.

Recall that any utility function is k-additive for a sufficiently high value of k. Hence, the
following correspondence results are easy consequences of the propositions above:

Proposition 3 U(positive cubes, all), U(positive, all), U(cubes, all), U(clauses, all), and
U(all, all) are all equal to the class of all utility functions. U(positive clauses, all) and
U(strictly positive, all) are equal to the class of normalised utility functions.

The central argument in the proof of the next proposition is that the class of modular functions
is equal to the class of 1-additive functions.

Proposition 4 U(literals, all) is equal to the class of modular utility functions; and
U(atoms, all) is equal to the class of normalised modular utility functions.

3.2 Positive Weights

Next we study the classes of utility functions generated by positively weighted formulas. Un-
surprisingly, such functions will be non-negative.

Proposition 5 U(all, positive) and U(cubes, positive) are both equal to the class of non-
negative utility functions.

Again, clauses are less expressive than cubes:

Proposition 6 U(clauses, positive) is a proper subset of the class of non-negative utility func-
tions.

5



Proof. Inclusion of U(clauses, positive) in the set of non-negative functions follows from Proposi-
tion 5. To show that the inclusion is strict, consider the following non-negative utility function:

u({p, q}) = 1; u({p}) = 0; u({q}) = 0; u({ }) = 0

Suppose there exists a generator G of u using only positively weighted clauses. Let wc be the
weight associated with clause c. We obtain the following list of constraints:

(1) wp + wq + wp∨q + w¬p∨q + wp∨¬q + w> = 1
(2) wp + w¬q + wp∨q + wp∨¬q + w¬p∨¬q + w> = 0
(3) w¬p + wq + wp∨q + w¬p∨q + w¬p∨¬q + w> = 0
(4) w¬p + w¬q + w¬p∨q + wp∨¬q + w¬p∨¬q + w> = 0
(5) wc ≥ 0 for all clauses c

Constraints (2), (3), (4) and (5) give wc = 0 for any clause c, which contradicts (1). 2

3.3 Monotonic Functions

The next result characterises the class of normalised monotonic utility functions, also known
as capacities.

Proposition 7 U(strictly positive, positive) is equal to the class of normalised monotonic util-
ity functions.

Proof. For lack of space we can only give a brief sketch here. Clearly, any utility func-
tion generated by positive formulas with positive weights must be monotonic; and by Propo-
sition 3, any function generated by strictly positive formulas is normalised. Hence, every
u ∈ U(strictly positive, positive) must be a capacity. For the converse, we sketch how to con-
struct a goal base of positively weighted strictly positive formulas for any given capacity u.
Consider the utility functions uk (for k = 1, . . . , n) defined as follows:

uk(X) = max
{x1..xk}⊆X,x1 6=x2.. 6=xk

u({x1, . . . , xk})

For instance, u1(X) = maxx∈X u({x}). We are going to show how to construct generators for
u1, u2 − u1, u3 − u2 and so forth; the union of these will then be a generator for u.
(Step 1) To construct a generator G1 for u1, order the elements pi of PS such that u({p1}) ≤
· · · ≤ u({pn}).

G1 = { (p1 ∨ · · · ,∨pn, u({p1})),
(p2 ∨ · · · ∨ pn, u({p2})− u({p1})), . . . ,
(pn, u({pn})− u({pn−1}) }

(Step 2) To construct a generator for u2−1 = u2−u1, let {X1, . . . , X(n
2)
} be the set of all 2-ary

subsets of PS , ordered in such a way that u2−1(Xi) ≤ u2−1(Xj) whenever i < j. Observe that
u2−1(Xi) is non-negative (due to the monotonicity of u). Now define:

G2 = { (
∧
X1 ∨ · · · ∨

∧
X(n

2), u
2−1(X1)),

(
∧
X2 ∨ · · · ∨

∧
X(n

2), u
2−1(X2)− u2−1(X1)), . . . ,

(
∧
X(n

2), u
2−1(X(n

2))− u2−1(X(n
2)−1)) }

6



G2 is a generator for u2−u1. If we continue using the same method, we can construct generators
G3, . . . , Gn for u3 − u2 up to un − un−1. 2

To exemplify our construction, consider the capacity u with u({p1}) = 2, u({p2}) = 5 and
u({p1, p2}) = 6. We obtain the following goal base:

G = {(p1 ∨ p2, 2), (p2, 3), (p1 ∧ p2, 1)}

Also observe that we can model the full set of monotonic utilities by allowing a single goal (>, α)
with (possibly negative) weight α in a goal base that otherwise consists only of strictly positive
formulas with positive weights. U(positive, positive) is the set of non-negative monotonic utility
functions.

3.4 Concave Functions

As a final correspondence result, we establish a connection between restrictions on goal bases
and concave utility functions.

Proposition 8 U(positive clauses, positive) is a subset of the class of normalised concave
monotonic utility functions.

Proof. The fact that any function in U(positive clauses, positive) is a capacity follows from
Proposition 7. So the interesting part is to show that positive clauses with positive weights
generate concave utility functions.

Let u be generated by a goal base G of positive clauses with positive weights and let X, Y
and Z be propositional worlds such that Y ⊇ Z. For positive clauses ϕ, X ∪ Y |= ϕ together
with Y 6|= ϕ implies X |= ϕ, and M |= ϕ implies M ′ |= ϕ whenever M ⊆M ′. Hence:

{(ϕ, α) ∈ G | X ∪ Y |= ϕ and Y 6|= ϕ} ⊆
{(ϕ, α) ∈ G | X ∪ Z |= ϕ and Z 6|= ϕ}

Because all weights α are positive, we immediately obtain the inequation characterising con-
cavity: u(X ∪ Y )− u(Y ) ≤ u(X ∪ Z)− u(Z). 2

Proposition 8 implies that positive clauses with negative weights generate only convex utility
functions (albeit only negative ones).

4 Comparative Succinctness

Different restrictions on goal bases constitute different languages for describing utility func-
tions. In this section, we make a first step towards analysing the comparative succinctness of
such languages.

4.1 Defining Succinctness

A language L′ for expressing utility functions is said to be at least as succinct as another
language L iff there exists a polysize reduction for any utility function expressed in L to the
same utility function expressed in L′ (see also [8, 11]). In our case, languages are restrictions
U(H,H’).

7



Definition 4 Let L and L′ be two sets of goal bases. We say that L′ is at least as succinct as
L, denoted by L � L′, iff there exist a mapping f : L → L′ and a polynomial function p such
that:

• G ≡ f(G) for all G ∈ L; and

• size(f(G)) ≤ p(size(G)) for all G ∈ L.

Here the size of a goal base is the sum of the lengths of the formulas in that goal base. If
L � L′ and L′ � L, then L and L′ are as succinct as each other: they express the same sets of
utilities in the same order of size. It may also be the case that two languages are incomparable,
that is, neither L � L′ nor L′ � L holds. The strict order associated with � is denoted by ≺.

We are interested in comparing the succinctness of different languages that have the same
expressive power. Note that, if H,H ′ ⊆ LPS and H ′′ ⊆ R with U(H,H”) ≡ U(H’,H”), then
H ⊆ H ′ implies U(H,H”) � U(H’,H”). In this case the polysize reduction is simply the
identity function.

4.2 An Incomparability Result

The most basic way of representing a utility function would be to explicitly list all propositional
worlds with a non-zero utility. This directly corresponds to goal bases consisting solely of cubes,
each of which contains either p or ¬p as a conjunct for every propositional symbol p ∈ PS (let
us refer to such cubes as n-cubes). Clearly, U(n-cubes, all) is equal to the class of all utility
functions. An alternative form of representation is based on the notion of k-additivity and
uses the auxiliary function u′ to define utility functions [9, 17]. This directly corresponds to
goal bases consisting only of positive cubes.

As shown elsewhere [9], these two forms of representation are incomparable. Hence,
U(n-cubes, all) and U(positive cubes, all) are also incomparable. The following two utility
functions can be used to prove the mutual lack of a polysize reduction:

• The function u1(M) = |M | can be generated by a goal base of just n positive cubes of
length 1, but we require 2n−1 n-cubes to generate u1.

• The function u2, with u2(M) = 1 for |M | = 1 and u2(M) = 0 otherwise, can be generated
by a goal base of n n-cubes, but we require 2n−1 positive cubes to generate u2.

4.3 The Efficiency of Negation

Recall that both U(positive cubes, all) and U(cubes, all) are equal to the class of all utility
functions (Proposition 3). However, as the next proposition states, the representation of utility
functions based on cubes is strictly more succinct than the representation based on positive
cubes alone:

Proposition 9 U(positive cubes, all) ≺ U(cubes, all).

Proof. Clearly, U(positive cube, all) � U(cubes, all), because every positive cube is also a cube.
To show that the representation based on general cubes is strictly more succinct, we consider
the utility function u with u({ }) = 1 and u(M) = 0 for all M 6= { }. If PS = {p1, . . . , pn},
then u is generated by the goal base G = {(¬p1 ∧ · · · ∧ ¬pn, 1)}. That is, using general cubes,

8



u can be generated from a goal base with a single weighted formula of length n. Now, consider
the following goal base using positive cubes alone:

G′ = {(
∧
X, (−1)|X|) | X ⊆ PS}

That is, every cube of length k gets the weight (−1)k. Observe that G′ generates u, i.e. u = uG′ :

uG′(M) =
∑

X⊆M

(−1)|X| =
|M |∑
k=0

(
|M |
k

)
(−1)k = 0|M |

Next, we are going to show that the goal base generating u is in fact uniquely determined if
only positive cubes are available:1 The only positive cube satisfied by { } is >. Hence, we must
have (>, 1) ∈ G′. But then we must have (p,−1) ∈ G′ for every propositional symbol p ∈ PS to
ensure u({p}) = 0. This in turn fully determines the weights of cubes with two conjuncts, and
so forth. Thus, because the size of G′ is exponential in the number of propositional symbols
in PS and because no other goal base using positive cubes can generate u, the language based
on cubes is indeed strictly more succinct than the language based on positive cubes. 2

This result shows that the inclusion of negation into a representation language for cardinal
preferences can make that language strictly more succinct.

5 Conclusion

We have further analysed the language of weighted propositional formulas previously studied
by several authors. Most of our results concern the expressive power of this language; we have
established several correspondences between certain types of weighted formulas and well-known
classes of utility functions. We have then studied the comparative succinctness of languages
based on different types of weighted formulas that can represent the same class of utility
functions.

In this paper, we have focussed exclusively on the additive interpretation of weighted propo-
sitional formulas. Other aggregation functions can be considered, such as maximum or more
general functions (e.g. [2] in the CSP framework). Weighted formulas together with maximum
as the aggregation function have been considered in various places, including the so-called
XOR language for combinatorial auctions [24], which furthermore restricts formulas to posi-
tive cubes. Comparing the simple (but yet expressive) framework of weighted goals with the
various languages designed for combinatorial auctions (a synthesis of which is given in [22]) is
an issue for further research.

While this paper establishes a number of interesting results on the expressive power and
comparative succinctness of weighted formulas for cardinal preference modelling, it also raises
a multitude of further questions. As concerns expressive power, further correspondence results
are needed to fully understand the relationship between restrictions on goal bases and different
classes of utility functions. As concerns succinctness, our observation that the inclusion of
negation into a language significantly improves succinctness in the case of cubes immediately
raises the question whether this remains true for more general formulas: Is U(all, all) strictly

1Without loss of generality, we assume that no goal base contains two or more logically equivalent formulas.

9



more succinct than U(positive, all)? We conjecture: yes. Another interesting question would
be whether U(all, all) is strictly more succinct than U(cubes, all). Again, we conjecture: yes.

A further important area for future research concerns the complexity of working with dif-
ferent languages of weighted formulas. For instance, let Max-Utility(H,H’) be the following
decision problem: given a goal base G ∈ U(H,H’) and an integer K, check whether there
exists a world M ∈ 2PS such that uG(M) ≥ K. Obviously, Max-Utility is in NP for the
full language of weighted formulas, since uG(M) ≥ K can be checked in polynomial time.
Clearly as well, the general problem is NP-complete, due to its straightforward reduction from
Sat [15]. More interestingly, for sublanguages such as U(k-clauses, positive), Max-Utility is
also NP-complete, even for k = 2. This can be shown via a reduction from Max2Sat [15].
Simpler languages such as U(literals, all), on the other hand, give rise to polynomial decision
problems: assuming that G contains every literal exactly once (possibly with weight 0), making
a propositional symbol p true iff the weight of p is greater than the weight of ¬p results in an
alternative with maximal utility. Max-Utility(positive, positive) is also in P, because making
all propositional symbols true will result in maximal utility. We shall leave a full analysis of
these issues to a future occasion.

References

[1] F. Bacchus and A. J. Grove. Utility independence in a qualitative decision theory. In Proc.
5th International Conference on Principles of Knowledge Representation and Reasoning
(KR-1996). Morgan Kaufmann Publishers, 1996.

[2] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-
based CSPs and valued CSPs: Frameworks, properties and comparison. Constraints,
4(3):199–240, 1999.

[3] C. Boutilier, F. Bacchus, and R. Brafman. UCP-networks: A directed graphical repre-
sentation of conditional utilities. In Proc. 17th Conference on Uncertainty in Artificial
Intelligence (UAI-2001). Morgan Kaufmann Publishers, 2001.

[4] C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning with conditional ceteris
paribus preference statements. In Proc. 15th Conference on Uncertainty in Artificial In-
telligence (UAI-1999). Morgan Kaufmann Publishers, 1999.

[5] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy construc-
tion. In Proc. 14th International Joint Conference on Artificial Intelligence (IJCAI-1995).
Morgan Kaufmann Publishers, 1995.

[6] C. Boutilier and H. Hoos. Bidding languages for combinatorial auctions. In Proc. 17th
International Joint Conference on Artificial Intelligence (IJCAI-2001). Morgan Kaufmann
Publishers, 2001.

[7] S. J. Brams, D. M. Kilgour, and W. S. Zwicker. The paradox of multiple elections. Social
Choice and Welfare, 15(2):211–236, 1998.

[8] M. Cadoli, F. Donini, P. Liberatore, and M. Schaerf. Comparing space efficiency of
propositional knowledge representation formalisms. In Proc. 5th International Conference
on Principles of Knowledge Representation and Reasoning (KR-1996). Morgan Kaufmann
Publishers, 1996.

10



[9] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource allocation
with k-additive utility functions. In Proc. DIMACS-LAMSADE Workshop on Computer
Science and Decision Theory, Annales du LAMSADE 3, 2004.

[10] V. Conitzer, T. W. Sandholm, and P. Santi. Combinatorial auctions with k-wise dependent
valuations. In Proc. 20th National Conference on Artificial Intelligence (AAAI-05). AAAI
Press, 2005.

[11] S. Coste-Marquis, J. Lang, P. Liberatore, and P. Marquis. Expressive power and succinct-
ness of propositional languages for preference representation. In Proc. 9th International
Conference on Principles of Knowledge Representation and Reasoning (KR-2004). AAAI
Press, 2004.

[12] P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT Press,
2006.

[13] J. Doyle and M. P. Wellman. Preferential semantics for goals. In Proc. 9th National
Conference on Artificial Intelligence (AAAI-1991). AAAI Press, 1991.

[14] F. Dupin de Saint-Cyr, J. Lang, and T. Schiex. Penalty logic and its link with Dempster-
Shafer theory. In Proc. 10th Conference on Uncertainty in Artificial Intelligence (UAI-
1994). Morgan Kaufmann Publishers, 1994.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Co., 1979.

[16] C. Gonzales and P. Perny. GAI networks for utility elicitation. In Proc. 9th International
Conference on Principles of Knowledge Representation and Reasoning (KR-2004). AAAI
Press, 2004.

[17] M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy
Sets and Systems, 92:167–189, 1997.

[18] P. Haddawy and S. Hanks. Representations for decision-theoretic planning: Utility func-
tions for deadline goals. In Proc. 4th International Conference on Principles of Knowledge
Representation and Reasoning (KR-1994). Morgan Kaufmann Publishers, 1992.

[19] P. La Mura and Y. Shoham. Expected utility networks. In Proc. 15th Conference on
Uncertainty in Artificial Intelligence (UAI-1999). Morgan Kaufmann Publishers, 1999.

[20] C. Lafage and J. Lang. Logical representation of preferences for group decision making.
In Proc. 7th International Conference on Principles of Knowledge Representation and
Reasoning (KR-2000). Morgan Kaufmann Publishers, 2000.

[21] J. Lang. Logical preference representation and combinatorial vote. Annals of Mathematics
and Artificial Intelligence, 42(1–3):37–71, 2004.

[22] N. Nisan. Bidding languages for combinatorial auctions. In P. Cramton, Y. Shoham, and
R. Steinberg, editors, Combinatorial Auctions. MIT Press, 2006.

[23] G. Pinkas. Propositional nonmonotonic reasoning and inconsistency in symmetric neural
networks. In Proc. 12th International Joint Conference on Artificial Intelligence (IJCAI-
1991). Morgan-Kaufmann Publishers, 1991.

[24] T. W. Sandholm. Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135:1–54, 2002.

11


