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Abstract

Whether made explicit or implicit, knowledge theoretic properties
such as common knowledge of rationality are important in understand-
ing and modeling game-theoretic, or strategic, situations. There is a
large literature devoted to exploring these and other issues related to
the epistemic foundations of game theory. Much of the literature fo-
cuses on what the agents need to know about the other agents’ strate-
gies, rationality or knowledge in order to guarantee that a particular
solution concept, such as the Nash equilibrium, is realized.

This paper, which is based on two recent papers1 [7] and [16], de-
velops a framework that looks at similar issues relevant to the field of
voting theory. Our analysis suggests that an agent must possess infor-
mation about the other agents’ preferences in order for the agent to de-
cide to vote strategically. In a sense, our claim is that the agents need a
certain amount of information in order for the Gibbard-Satterthwaite
theorem to be “effective”.

1 Introduction

A comprehensive theory of multi-agent interactions must pay attention to
results in social choice theory such as the Arrow and Gibbard-Satterthwaite
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theorems [1, 13, 18]. These impossibility results constrain the existence of
rational collective decision making procedures. In this paper we turn our
attention to another aspect of social aggregation scenarios: the role played
by the states of knowledge of the agents. The study of strategic interactions
in game theory reflects the importance of states of knowledge of the players.
In this paper, we bring these three issues—states of knowledge, strategic
interaction and social aggregation operations—together.

The Gibbard-Satterthwaite theorem is best explained as follows. Let S be
a social choice function whose domain is an n-tuple of preferences P1 . . . Pn,
where {1, ..., n} are the voters, O is the set of choices or candidates and
each Pi is a linear order over O. S takes P1 . . . Pn as input and produces
some element of O - the winner. Then the theorem says that there must
be situations where it ‘profits’ a voter to vote strategically. Specifically, if
P denotes the actual preference ordering of voter i, Y denotes the profile
consisting of the preference orderings of all the other voters then the theorem
says that there must exist P, Y, P ′ such that S(P ′, Y ) >P S(P, Y ). Here >P

indicates: better according to P . Thus in the situation where the voter’s
actual ordering is P and all the orderings of the other voters (together) are
Y then voter i is better off saying its ordering is P ′ rather than what it
actually is, namely P . In particular, if the vote consists of voting for the
highest element of the preference ordering, it should vote for the different
highest element of P ′ rather than of P .

Of course, the agent might be forced to express a different preference. For
example, if an agent, whose preferences are B > C > A, is only presented
C, A as choices, then the agent will pick C. This ‘vote’ differs from the
agent’s true preference, but should not be understood as ‘strategizing’ in the
true sense.

A real-life example of strategizing was noticed in the 2000 US elections
when some supporters of Ralph Nader voted for their second preference,
Gore,2 in a vain attempt to prevent the election of George W. Bush. Similar
examples of strategizing have occurred in other electoral systems over the
years ([4] may be consulted for further details on the application of game-
theoretic concepts to voting scenarios). The Gibbard-Satterthwaite theorem
points out that situations like the one pointed out above must arise.

2Surveys show that had Nader not run, 46% of those who voted for him would have
voted for Gore, 23% for Bush and 31% would have abstained. Hereafter, when we refer to
Nader voters we shall mean those Nader voters who did or would have voted for Gore.
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What interests us are the knowledge-theoretic properties of the situation
described above. We note that unless the voter with preference P knows
that it should vote strategically, and how, i.e., knows that the other voters’
preference is Y and that it should vote according to P ′ 6= P , the theorem is
not ‘effective’. That is, the theorem only applies in those situations where
a certain level of knowledge exists amongst voters. Voters completely or
partially ignorant about other voters’ preferences would have little incentive
to change their actual preference at election time. In the 2000 US elections,
many Nader voters changed their votes because opinion polls had made it
clear that Nader stood no chance of winning, and that Gore could lose as a
result of their votes going to Nader.

The goal of this paper is to propose a formal model in which the effect
of poll information on an agent’s choice of a vote can be studied. The need
for such a model was suggested by Brams and Fishburn in Chapter 7 of
[3]. In particular, we are interested in formally showing how voters use
poll information during an election. There is a large literature which studies
strategic voting in the presence of poll information. As much of the literature
is geared towards a political science audience, we only discuss the papers
which are related to the goals of this paper. For a discussion of formal voting
theory see [4, 5]. The discussion found in Chapter 7 of [3] has much in
common with this paper and so will be discussed in more detail below. For a
overview of models of strategic voting in complete information environments,
see [17, 14, 15]. Taking a more “computer science” approach, [9, 10, 8]
provides a series of results concerning how “hard”3 it is to take advantage of
poll information. The articles [6] and [12], which compare sequential voting
to simultaneous voting, both discuss issues relevant to this work. Finally,
the reader is referred to [11] for a discussion of a voting procedure, called
declared-strategy voting, which attempts to curtail the effects of strategic
voting on an election.

2 A Formal Voting Model

There is a wealth of literature on formal voting theory. This section draws
upon discussions in [4, 5]. The reader is urged to consult these for further
details.

3Here “hard” is being used technically: the results are complexity theoretic.
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Let O = {o1, . . . , om} be a set of candidates, A = {1, . . . , n} be a set
of agents or voters. We assume that each voter has a preference over the
elements of O, i.e., a reflexive, transitive and connected relation on O. For
simplicity we assume that each voter’s preference is strict. A voter i’s strict
preference relation on O will be denoted by Pi. We assume that each Pi is a
complete, reflexive, transitive and anti-symmetric binary relation on O. For
two candidate o, v ∈ O, we will write o >Pi

v iff (o, v) ∈ Pi and say that i
strictly prefers o to v. Henceforth, for ease of readability we will use Pref
to denote preferences over O. A preference profile is an element of (Pref)n.

In voting scenarios such as elections, agents are not expected to announce
their actual preference relation, but rather to select a vote that ‘represents’
their preference. Each voter chooses a vote v, an aggregation function tallies
the votes of each candidate and selects a winner (or winners if electing more
than one candidate). There are two components to any voting procedure.
First, the type of votes that voters can cast. For example, in plurality voting
voters can only vote for a single candidate so votes v are simply singleton
subsets of O, whereas in approval voting voters select a set of candidates so
votes v are any subset of O. Following [5], given a set of O of candidates,
let B(O) be the set of feasible votes, or ballots. The second component of
any voting procedure is the way in which the votes are tallied to produce a
winner (or winners if electing more than one candidate). We assume that the
voting aggregation function will select exactly one winner, so ties are always
broken4. Note that elements of the set B(O)n represent votes cast by the
agents. An element ~v ∈ B(O)n is called a vote profile. A tallying function
S : B(O)n → O maps vote profiles to candidates.

Definition 2.1 Let A be a set of n agents and O a set of m candidates. A
voting procedure is a pair V = 〈B(O), S〉, where B(O) is a set of ballots
and S : B(O)n → O is a tallying function, or a scoring function.

The following are examples of some well-known voting procedures. Let A be
a set of n agents and O a set of m candidates.

Plurality Voting: The voting procedure VP = 〈B(O), S〉 is called plurality
voting if B(O) = {{o} | o ∈ O} and S selects the candidate with the largest
number of votes. For simplicity, in the case of ties, we assume that S ran-
domly selects among the candidates with the most votes. We assume this

4[2] shows that the Gibbard-Satterthwaite theorem holds when ties are permitted.
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throughout the paper.

Approval Voting: The voting procedure VA = 〈B(O), S〉 is called approval
voting if B(O) = 2O and S selects a candidate with the largest number of
approvals.

Borda Count: The voting procedure VB = 〈B(O), S〉 is called Borda count
if B(O) = Pref , i.e., ballots are linear orderings of O. The scoring function S
is slightly more complicated then above. Each candidate ranked highest by a
voter receives the most points, the next-highest receives the next-most points,
and so on. Then S selects the candidate with the largest point total. When
there are m candidates, then the usual Borda points are m− 1, m− 2, . . . , 0
for the first choice, second choice, . . ., last choice.

Hare System: The voting procedure VH = 〈B(O), S〉 is called the Hare
system, or single transferable vote, if B(O) = Pref and S works as follows.
If no candidate receives a majority of first-place votes, then the candidate
with the fewest first-place votes is dropped and his second place votes are
given to the remaining candidates. This elimination process continues until
one candidate receives a simple majority.

Given a voting procedure V and an agent i’s preference Pi, we can ask
if a vote v ∈ B(O) is a “sincere” representation of Pi. For some voting
procedures there is an objective answer to this question. For example, if we
assume that the voting procedure is VP , then a vote v is sincere with respect
to preference P iff v is the maximal5 element of P . However, for some voting
procedures, such as approval voting, more information is needed to determine
whether or not a vote is a sincere reflection of a preference P . In approval
voting, whether a vote v (which is a subset of O) is sincere depends on both
a preference P and where the agent places its cut-off point between approved
and ‘dis-approved’ candidates.

In order to capture the above notion of a “sincere vote”, we assume for
each agent i a function Si, called the sincere vote function, between the set
of preferences Pref and the set of subsets of ballots. I.e., Si : Pref → 2B(O).
Typically, we will assume that for each P ∈ Pref , Si(P ) is a singleton, but
this is not necessary. If i’s preference is Pi and v ∈ Si(Pi), then v is said

5Recall that we are assuming preferences are linear orders.
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to be a sincere vote corresponding to Pi. The voter i is said to strategize
with respect to a preference P if i selects a vote v that is not in the set Si(P ).
See [5] for a definition of a “sincere vote” in a variety of context and [16] for
a discussion of similar issues.

Assume that the agents’ true preferences are ~P∗ = (P ∗
1 , . . . , P ∗

n) and fixed
for the remaining discussion. Given a vote profile ~v of actual votes, we ask
whether agent i will change its vote if given another chance to vote. Let
~v−i be the vector of all other agents’ votes. Then given ~v−i and i’s true
preference P ∗

i , there will be a (nonempty) set Xi of votes that are i’s best
response to ~v−i. Of course, whether v is a best response for agent i to ~v−i

will depend on the voting procedure. We will be more specific below about
what constitutes a best response to a vector ~v−i for agent i.

Suppose that for each i ∈ A, fi selects selects one such best response
from Xi. We assume that agent’s will only strategize if necessary. That is, if
v ∈ Si(P

∗
i ) and v ∈ Xi, then fi will select v(if more than one such v exists,

then let fi select one of these votes). Let f(~v) = (f1(~v−1), . . . , fn(~v−n)). We
call f a strategizing function. If ~v is a fixed point of f (i.e., f(~v) = ~v),
then ~v is a stable outcome. We define fn recursively by f 1(~v) = f(~v),
fn = f(fn−1(~v)), and say that f is stable at level n if fn(~v)) = fn−1(~v).
It is clear that if f is stable at level n, then f is stable at all levels m where
m ≥ n. Also, if the initial votes of the ~v are a fixed point of f then all levels
are stable.

The following two examples demonstrate the type of situations that we
have in mind. The first example is taken from [3].

Example 2.2 (Brams and Fishburn [3]) Suppose that there are four can-
didates O = {o1, o2, o3} and nine voters divided into three groups: A, B and
C. Suppose that the sizes of the groups are given as follows: |A| = 4, |B| = 3,
and |C| = 2. We assume that all the agents in each group have the same
true preference and that they all vote the same way. Suppose that the voting
procedure is plurality voting (VP ). Hence for each i ∈ A, v ∈ Si(Pi) iff v is
the maximal element of Pi. The agents’ true preferences are as follows:

P ∗
A = o1 >P ∗

A
o3 >P ∗

A
o2

P ∗
B = o2 >P ∗

B
o3 >P ∗

B
o1

P ∗
C = o3 >P ∗

C
o1 >P ∗

C
o2
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Since we assume that in the absence of additional information, the voters
will vote sincerely6, candidate o1 will win an initial election with a total of 4
votes. Now, Brams and Fishburn make the following assumption about the
effect of poll information on a candidates choice of vote: “After the poll,
voters will adjust their voting strategies to differentiate between the top two
candidates, as indicated by the poll, if they prefer one of these candidates to
the other one of these choices. Given that they are not indifferent between
the top two candidates in the poll, they will vote after the poll for the one of
these two they prefer” [3]. Following this protocol, only the voters in group
C will change their votes. Given that they prefer o1 to o2, group C will give
their votes to candidate o1. Thus strengthening the lead of o1. However, note
that it is candidate o3 who is the Condorcet candidate, i.e., a candidate who
defeats every other candidate in a pairwise contest.

Brams and Fishburn go on to generalize this example and show that if
the agents follow the protocol described above, then under plurality voting,
if the Condorcet candidate is not one of the top two candidates identified
by the poll, then that Condorcet candidate will always lose. In the above
example, the protocol is set up so that the second round of votes is a fixed
point, i.e., the voters will not change their votes a second time. The next
example describes a situation in which a fixed point does not occur until
round IV. The following example was first presented in [7].

Example 2.3 Suppose that there are four candidates O = {o1, o2, o3, o4} and
five groups of voters: A, B, C,D and E. Suppose that the sizes of the groups
are given as follows: |A| = 40, |B| = 30, |C| = 15, |D| = 8 and |E| = 7. We
assume that all the agents in each group have the same true preference and
that they all vote the same way. Suppose that the voting procedure is plurality
voting (VP ). Hence for each i ∈ A, v ∈ Si(Pi) iff v is the maximal element
of Pi. The agents’ true preferences are as follows:

6See [16] for a proof of the fact that voting honestly is the only protocol which dominates
not voting under plurality voting.
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P ∗
A = o1 >P ∗

A
o4 >P ∗

A
o2 >P ∗

A
o3

P ∗
B = o2 >P ∗

B
o1 >P ∗

B
o3 >P ∗

B
o4

P ∗
C = o3 >P ∗

C
o2 >P ∗

C
o4 >P ∗

C
o1

P ∗
D = o4 >P ∗

D
o1 >P ∗

D
o2 >P ∗

D
o3

P ∗
E = o3 >P ∗

E
o1 >P ∗

E
o2 >P ∗

E
o4

We assume that the agents all use the following protocol. If the current
winner is o, then agent i will switch its vote to some candidate o′ provided:

1. i prefers o′ to o, formally o′ >Pi
o, and

2. the current total for o′ plus agent i’s group’s votes for o′ is greater than
the current total for o.

By this protocol an agent (thinking only one step ahead) will only switch its
vote to a candidate which is currently not the winner. Initially, we assume
that the agents all report their (unique) sincere vote. The following table
describes what happens if the agents use this protocol. The candidates in bold
are the winner of the current election round.

Size Group I II III IV
40 A o1 o1 o4 o1

30 B o2 o2 o2 o2

15 C o3 o2 o2 o2

8 D o4 o4 o1 o4

7 E o3 o3 o1 o1

In round I, everyone reports their top choice and o1 is the winner. C likes o2

better than o1 and its own total plus B’s votes for o2 exceed the current votes
for o1. Hence by the protocol, C will change its vote to o2. A will not change
its vote in round II since its top choice is the winner. D and E also remain
fixed since they do not have an alternative like o′ required by the protocol. In
round III, group A changes its vote to o4 since it is preferred to the current
winner (o2) and its own votes plus D’s current votes for o4 exceed the current
votes for o2. B and C do not change their votes. For B’s top choice o2 is the
current winner and as for C, they have no o′ better than o2 which satisfies
condition 2). Ironically, Group D and E change their votes to o1 since it is
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preferred to the current winner is o2 and group A is currently voting for o1.
Finally, in round IV, group A notices that E is voting for o1 which A prefers
to o4 and so changes its votes back to o1. The situation stabilizes with o1

which, as it happens, is also the Condorcet winner. I.e., it is easy to check
that by following the above protocol, f((o1, o2, o2, o4, o1)) = (o1, o2, o2, o4, o1).
Thus f stabilizes at stage 4.

We are now in a position to be more specific about what constitutes a
best response for an agent. In the above examples, the agents’ decisions to
strategize were based on a predefined protocol. Note that in both examples,
the agents behaved myopically, that is the protocol only took into account
information from the current round. This restriction can be relaxed to allow
the agents to make decisions based on, for example, all previous rounds. The
important point from both examples is that the agents’ voting strategies were
explained by assuming that the agents are all following a particular protocol.
In general, the agents may not necessarily all follow the same protocol as
we have assumed in the above example. We will now discuss some issues
relevant to formalizing this notion notion of a protocol.

In general there may be a lot of reasons why an agent may decide to
change its vote. Of course an agent may change its vote because its preferences
have changed. However, this is not the phenomenon we are trying to capture
in this paper. We are interested in situations in which each agent’s preference
is fixed and the agent is trying to decide which vote best reflects its preference
given the current situation. We assume that an agent’s decision to change
its vote will be based on three pieces of information. The first is the agent’s
actual preference. The second is information about the current vote profile,
called poll information. The third is information about the number of agents
that have the same preference.

In the above example, we assumed that during each round the agents were
told the total number of votes each candidate received. In general, the form
of the polling information will depend on the voting protocol that is being
used. For example, knowing the total number of votes each agent received
will be relevant for any voting procedure that selects the winner based solely
on the total number of votes the candidates receive; however, this information
will be less useful when the voting method is Borda count. In the interest of
concreteness, we will restrict attention to voting methods, such as approval
voting or plurality voting, that select the winner based solely on the total
number of votes that the candidate receives. Thus we can model the poll
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information as a function π : B(O) → N, where π(v) = n is interpreted as
n voters have selected voter v. Let Π be the set of all such functions, i.e.,
the set of polls. For each poll π, let W (π) be the candidate that would win
(according to S) the election if the agents vote according7 to π. Finally, we
note that each voting profile induces a poll. That is if ~v is a voting profile,
then we can define a poll π~v as follows, for each v ∈ B(O), π~v(v) =

∑
vi=v 1.

The second piece of information that an agent i uses to decide whether
or not to change its vote is the size of the group of agents that share i’s
true preference. Typically, a single agent changing its votes will not affect
the outcome of an election. However, as in the above example, agents will
change their vote in part because they assume that they are part of a group
which has enough weight to swing an election. In the above example, this
number was constant for each agent. That is we assumed that each agent
knew the exact size of the set of agents that share its actual preference.
However in general, this information may not be known to an agent or the
agent may only have partial information about the size of the number of
agents that share its actual preference. This will be modeled by a group
size function γi from a finite sequence of polls to the natural numbers. That
is γi : Π∗ → N where γi(π1 · · ·πk) = l means that after the series of polls
π1, . . . , πn agent i believes that there are l agents that have the same actual
preference as itself. Let Γi be the set of all possible such functions.

We are now in a position to formally define a protocol for an agent i. By
an election we mean a sequence of polls, i.e., an element of Π∗. A protocol
for agent i is a function ∆i : Pref × Π∗ × Γi → B(O). Thus if σ ∈ Π∗ is
an election and γi ∈ Γi is a group function, then ∆i(P, σ, γi) = v′ means
that agent i will use ballot v′ in the next poll. Notice that we are assuming
that the agent’s use the entire election when making its decision to change
its vote. This is assumed in the interest of generality. In other words, we
assume that all agents have access to the election information, but whether
or not they use all of that information is another issue all together. Call the
vector ~∆ a group protocol. We assume that in the absence of information,
agents will vote according to their actual preferences. That is if σ is the
empty string, then for each i ∈ A, ∆i(P

∗
i , σ, γi) = v ∈ Si(P

∗
i ).

Given a group protocol, we say that a strategizing function f is generated

7Of course, a poll does not list which agent voted for which candidate; however a
winner can still be determined provided we assume that the S function is invariant under
permutation of voters. This certainly true of many voting procedures.
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by ~∆, written f~∆ if f~∆ is defined as follows. Suppose that σ = π1 · · ·πk is the
current poll information and ~v is the current vote profile. Then we define

f~∆(~v) = (∆1(P
∗
1 , σ, γn(σ)), . . . , ∆n(P ∗

n , σ, γn(σ)))

Returning to our example. We will now demonstrate how to formalize our
second example using the above machinery. First of all we assume that the
agents all knew the exact number of agents that share their actual prefer-
ences. Thus for each i ∈ A, γi is the constant function described in the
example above. For example, for each election σ, γi(σ) = 40 iff i ∈ A. The
∆i functions can be described as follows. In order to ease exposition, we will
identify singleton subsets with their element. In other words, we are assum-
ing that B(O) = O. Let W2(π) denote the candidate that receives the second
highest number of votes. The protocol that each agent follows in the first
example can be described as follows. First of all we need some notation: for
each pair of candidate o, o′ ∈ O, let CPi

(o, o′) choose that candidate preferred
according to Pi.

∆1
i (P

∗
i , σ, γi) =

{
o′ (v 6= W (π) or v 6= W2(π)) and o′ = CP ∗

i
(W (π), W2(π))

v otherwise

where v is the current vote (similarly for the next example). The second
example can be formalized as follows:

∆2
i (P

∗
i , σ, γi) =

{
o′ P ∗

i (o′, W (last(σ))) and γi(σ) + last(σ)(o′) > last(σ)π(o)

v otherwise

Notice that in ∆1
i , the group function is not used in the definition. In other

words, in Example 2.2, the agents need not have any information about the
size of the group that share their preferences in order to follow the protocol.
Whereas, in the second example, the size of the group plays a key role in the
agent’s decision to change its current vote. Putting everything together, we
can now define a voting model.

Definition 2.4 (Voting Model) Given a set of n agents A and m candi-

dates O, a voting model is a tuple 〈V , ~P∗, {Si}i∈A, f〉 where V is a voting
procedure, each Si is a sincere vote function for agent i; and f is a strategizing
function. We say f is generated by a group protocol ~∆ if f = f~∆.

11
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Since our candidate and agent sets are finite, if f does not stabilize then
f cycles. We say that f has a cycle of length n if there are n different votes
~P1, . . . ~Pn such that f( ~Pi) = ~Pi+1 for all 1 ≤ i ≤ n− 1 and f( ~Pn) = ~P1. The
following is an example of a situation in which the associated strategizing
function never stabilizes:

Example 2.5 Consider three candidates {o1, o2, o3} and 100 agents. Sup-
pose that their are three groups of agents A, B and C. The size of each
group is |A| = 40, |B| = 30 and |C| = 30. The actual preferences are given
as follows:

P ∗
A = o1 >P ∗

A
o2 >P ∗

A
o3

P ∗
B = o2 >P ∗

B
o3 >P ∗

B
o1

P ∗
C = o3 >P ∗

C
o1 >P ∗

C
o2

Assume that the agents use the following protocol. An agent i will switch its
vote for o to o′ provided (assume w is the current winner)

1. o′ is i’s second choice and the current winner is i’s last choice, or

2. o′ is i’s top choice and the current winner is i’s top choice.

Assuming that the voting protocol is plurality voting and that all agents follow
the above protocol generates the following table.

Size Group I II III IV V VI VII VIII IX · · ·
40 A o1 o1 o2 o2 o2 o1 o1 o2 o1 · · ·
30 B o2 o3 o3 o2 o2 o2 o3 o3 o3 · · ·
30 C o3 o3 o3 o3 o1 o1 o1 o3 o3 · · ·

After reporting their initial preferences, candidate o1 will be the winner with
40 votes. The members of group B dislike o1 the most, and will strategize in
the next election by reporting o3 as their preference. So, in the second round,
o3 will win. But now, members of group A will report o2 as their preference,
in an attempt to draw support away from their lowest ranked candidate. o3

will still win the third election, but by changing their preferences (and making
them public) group A sends a signal to group B that it should report its true
preference - this will enable group A to have its second preferred candidate
o2 come out winner. This cycling will continue indefinitely; o2 will win for
two rounds, then o1 for two rounds, then o3 for two, etc.
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3 Conclusion and Further Work

We have explored some properties of strategic voting and noted that the
Gibbard-Satterthwaite theorem only applies in those situations where agents
can obtain the appropriate knowledge. In example 5.2.2 the Condorcet win-
ner - the winner in pairwise head-to-head contests - was picked via strate-
gizing. Since our framework makes it possible to view opinion polls as the
n − 1 stages of an n-stage election, it implies that communication of vot-
ers’ preferences and the results of opinion polls can play an important role in
ensuring rational outcomes to elections. Put another way, while the Gibbard-
Satterthwaite theorem implies that we are stuck with voting mechanisms sus-
ceptible to strategizing, our work indicates ways for voters to avoid irrational
outcomes using such mechanisms.

References

[1] K. J. Arrow. Social choice and individual values (2nd edition). Wiley,
New York, 1963.

[2] Jean-Pierre Benoit. Strategic manipulation in games when lotteries and
ties are permitted. Journal of Economic Theory, 102:421–436, 2002.

[3] Steven Brams and Peter Fishburn. Approval Voting. Birkhauser, Boston,
1983.

[4] Steven J. Brams. Voting Procedures. In Handbook of Game Theory,
volume 2, pages 1055–1089. Elsevier, 1994.

[5] Steven J. Brams and Peter C. Fishburn. Voting Procedures. In Handbook
of Social Choice and Welfare. North-Holland, 1994.

[6] S. Callander. Bandwagons and momentum in se-
quential voting. Working Paper: available at
http://www.kellogg.northwestern.edu/faculty/callander/, 2003.

[7] Samir Chopra, Eric Pacuit, and Rohit Parikh. Knowledge-theoretic
properties of strategic voting. In Jose Julio Alferes and Joao Leite, edi-
tors, Proceedings of JELIA 2004, Lecture Notes in Artificial Intelligence,
pages 18–30. Springer, 2004.

13



June 13, 2006 Some Comments on Strategic Voting

[8] V. Conitzer, J. Lang, and T. Sandholm. How many candidates are
needed to make elections hard to manipulate? In Proceedings of the Con-
ference on Theoretical Aspects of Rationality and Knowledge (TARK),
2003.

[9] V. Conitzer and T. Sandholm. Vote elicitation: Complexity and
strategy-proofness. In Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI), 2002.

[10] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make
manipulation hard. In Proceedings of the International Joint Conference
on Artificial Intelligences (IJCAI). 2003.

[11] Lorrie Faith Cranor. Declared-Strategy Voting: An Instrument for Group
Decision-Making. PhD thesis, Washington University Sever Institute of
Technonology, 1996.

[12] E. Dekel and M. Piccione. Sequential voting procedures in symmetric
binary elections. Jouranl of Political Economy, 2000.

[13] Allan Gibbard. Manipulation of Voting Schemes: A General Result.
Econometrica, 41(4):587–601, 1973.

[14] Palfrey and Rosenthal. A strategic calculus of voting. Public Choice,
41:7 – 53, 1983.

[15] Palfrey and Rosenthal. Voter participation and strategic uncertainty.
American Political Science Review, 41:62 – 78, 1985.

[16] Rohit Parikh and Eric Pacuit. Safe votes, sincere votes, and strategizing.
Working Paper, available at staff.science.uva.nl/∼epacuit.

[17] W. Riker and P. Ordeshook. A theory of the calculus of voting. American
Political Science Review, 62:25 – 42, 1968.

[18] Mark Satterthwaite. The Existence of a Strategy Proof Voting Procedure:
a Topic in Social Choice Theory. PhD thesis, University of Wisconson,
1973.

14


