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Abstract

An important aspect of mechanism design in social choice protocols and mul-
tiagent systems is to discourage insincere behaviour. Manipulative behaviour has
received increased attention since the famous Gibbard-Satterthwaite theorem. We
examine the computational complexity of manipulation in weighted voting games
which are ubiquitous mathematical models used in economics, political science, neu-
roscience, threshold logic, reliability theory and distributed systems. It is a natural
question to check how changes in weighted voting game may affect the overall game.
Tolerance and amplitude of a weighted voting game signify the possible variations
in a weighted voting game which still keep the game unchanged. We characterize
the complexity of computing the tolerance and amplitude of weighted voting games.
Tighter bounds and results for the tolerance and amplitude of key weighted voting
games are also provided. Moreover, we examine the complexity of manipulation and
show limits to how much the Banzhaf index of a player increases or decreases if it
splits up into sub-players. It is shown that the limits are similar to the previously
examined limits for the Shapley-Shubik index. A pseudo-polynomial algorithm to
find the optimal split is also provided.

Key words : weighted voting games, voting power, cooperative game theory, algo-
rithms and complexity

1 Introduction

1.1 Motivation

Weighted voting games (WVGs) are mathematical models whichare used to analyze vot-
ing bodies in which the voters have different number of votes. In WVGs, each voter is

∗Computer Science Department, University of Warwick, Coventry, CV4 7AL.
{haris.aziz,mike.paterson}@.warwick.ac.uk

1



Complexity of some aspects of control and manipulation in weighted voting games

assigned a non-negative weight and makes a vote in favour of or against a bill. The bill is
passed if and only if the total weight of those voting in favour of the bill is greater than or
equal to some fixed quota. Power indices such as the Banzhaf index measure the ability
of a player in a WVG to determine the outcome of the vote. WVGs have been applied
in various political and economic organizations [21, 20, 1]. Voting power is used in joint
stock companies where each shareholder gets votes in proportion to the ownership of a
stock [13].

WVGs have received increased interest in the artificial intelligence and agents com-
munity due to their ability to model various coalition formation scenarios [10, 11]. Such
games have also been examined from the point of view of susceptibility to manipulations
[3, 31]. WVGs are also encountered in threshold logic, reliability theory, neuroscience
and logical computing devices [28, 29]. There are many parallels between reliability the-
ory and voting theory [27]. Parhami [26] points out that voting has a long history in
reliability systems dating back to von Neumann [30]. Nordmann et al. [24] deal with re-
liability and cost evaluation of weighted dynamic-threshold voting-systems. Systems of
this type are used in various areas such as target and patternrecognition, safety monitoring
and human organization systems.

Elkind et al. [9] note that since WVGs have only two possible outcomes, they do not
fall prey to manipulation of the type characterized by Gibbard-Satterthwaite [15]. How-
ever, there are various ways WVGs can be manipulated and controlled. We examine
some of the aspects. Tolerance and amplitude of WVGs signifythe possible variances
in a WVG which still keep the game unchanged. They are significant in mathematical
models of reliability systems and shareholdings. For reliability systems, the weights of a
WVG can represent the significance of the components, whereas the quota can represent
the threshold for the overall system to fail. It is then a natural requirement to provide a
framework which can help identify similar reliability systems. In shareholding scenar-
ios [2], there is a need to check the maximum changes in shareswhich still maintain the
status quo. In political settings, the amplitude of a WVG signifies the maximum percent-
age change in various votes without changing the voting powers of the voters. In this
paper, the computational aspects of amplitude and tolerance of WVGs are examined.

Moreover, splitting of a player into sub-players can be seenas a false-name manipu-
lation by an agent where it splits itself into more agents so that the sum of the utilities of
the split-up players is more than the utility of the originalplayer. Elkind et al. [4] exam-
ined this manipulation from the point of view of Shapley-Shubik indices and asked the
question of how the analysis of false-name manipulation will look in the case of Banzhaf
indices. We examine situations when a player splitting up into smaller players may be ad-
vantageous or disadvantageous in the context of WVGs and Banzhaf indices. This gives
a better idea of how to devise WVGs in which manipulation can be deterred.
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1.2 Outline

In Section 2, some basic definitions of simple games, weighted voting games and compu-
tational complexity are provided.

Section 3 provides a background of tolerance and amplitude.In Section 4, compu-
tational aspects of tolerance and amplitude are examined. It is seen that computing the
amplitude and tolerance of a WVG is NP-hard. We give tighter bounds and results for the
tolerance and amplitude of key WVGs such as uniform (symmetric) WVGs and unanimity
WVGs.

In Section 5, the case of players splitting up into sub-players in a WVG to increase
their Banzhaf index is analysed. We check the limits to how much the Banzhaf index of a
player can increase or decrease if it splits up into sub-players.

From a computational perspective, it is #P-hard for a manipulator to find the ideal
splitting to maximize his payoff. A prospective manipulator could still be interested in
enabling a beneficial split even if the improvement in payoffis not high. In Section 6,
we prove that it is NP-hard even to decide whether a split is beneficial or not. In the
end a pseudo-polynomial algorithm is proposed which returns ‘no’ if no beneficial split
is available and returns the optimal split otherwise.

The final section presents conclusions and ideas for future work.

2 Preliminaries

In this section we give definitions and notations of key terms. The set of voters isN =
{1, ..., n}.

Definitions 1. A simple voting gameis a pair (N, v) where the valuation functionv :
2N → {0, 1} has the properties thatv(∅) = 0, v(N) = 1 and v(S) ≤ v(T ) whenever
S ⊆ T . AcoalitionS ⊆ N is winning if v(S) = 1 andlosingif v(S) = 0. A simple voting
game can alternatively be defined as(N, W ) whereW is the set of winning coalitions.

Definitions 2. The simple voting game(N, W ) where
W = {X ⊆ N,

∑

x∈X wx ≥ q} is called aweighted voting game(WVG). A WVG is
denoted by[q; w1, w2, ..., wn] wherewi ≥ 0 is the voting weight of playeri. By convention,
we takewi ≥ wj if i < j.

Usually,q > 1
2

∑

1≤i≤n wi so that there are no two mutually exclusive winning coali-
tions at the same time. WVGs with this property are termedproper. Proper WVGs are
also desirable because they satisfy the criterion of the majority getting preference. If the
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valuation function of a WVGv is same as another WVGv′, thenv′ is called arepresenta-
tion of v. If the quotaq′ of v′ is such that for allS ⊆ N ,

∑

i∈S wi
′ 6= q′, thenv′ is called

astrict representationof v.

Definitions 3. A playeri is critical in a winning coalitionS whenS ∈ W andS \ {i} /∈
W . For eachi ∈ N , we denote the number of coalitions in whichi is critical in gamev
by ηi(v). TheBanzhaf indexof playeri in WVGv is βi = ηi(v)

P

i∈Nηi(v)
. Theprobabilistic

Banzhaf index, β
′

i of playeri in gamev is equal toηi(v)/2n−1.

The following are non-technical definitions of some basic complexity classes.

Definition 4. A problem is in complexity classP if it can be solved in time which is
polynomial in the size of the input. A problem is in the complexity classNP if its solution
can be verified in time which is polynomial in the size of the input of the problem. A
problem is in complexity classco-NP if and only if its complement is in NP. A problem
is in the complexity classNP-hardif any problem inNP is polynomial time reducible to
that problem.NP-hardproblems are as hard as the hardest problems inNP. A #P -hard
problem is a counting problem which is as hard as the countingversion of any NP-hard
problem.

3 Tolerance & Amplitude: background

3.1 Background

The question we are interested in is to find the maximum possible variations in the weights
and quotas of a WVG which still do not change the game. The two key references which
address this question are [16] and [12]. Hu [16] worked within the theory of switch-
ing functions. He set forth the idea oflinearly separable switching functionswhich are
equivalent to each other. Freixas and Puente [12] extended the theory by framing it in
the context of strict representations of WVGs, which are equivalent to linearly separable
switching functions.

3.2 Tolerance

The setting of the problem is that we look at a transformation, f(λ1,...,λn),Λ which maps a
WVG, v = [q; w1, . . . , wn] to v′ = [q′; w1

′, . . . , wn
′] such thatwi

′ = (1 + λi)wi andq′ =
(1+Λ)q. LetA be the maximum ofw(S) for all {S|v(S) = 0}. and letB be the minimum
of w(S) for all {S|v(S) = 1}. ThenA < q ≤ B (andq < B if the representation is strict).
Moreover, letm = Min(q−A, B − q) andM = q +w(N). Hu [16] and then Freixas and
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Puente [12] showed that if for all1 ≤ i ≤ n, |λi| < m/M and|Λ| < m/M , thenv′ is just
another representation ofv. They definedτ [q; w1, . . . , wn] = m/M as thetoleranceof
the system. Freixas and Puente [12] also showed that the tolerance is less than or equal to
1/3 for strict representations of a WVG and less than or equal to1/5 for a not necessarily
monotonic0 WVG.

3.3 Amplitude

Freixas and Puente defined theamplitudeas the maximumµ such thatf(λ1,...,λn),Λ is a
representation ofv wheneverMax(|λ1|, . . . , |λn|, |Λ|) < µ(v). For a strict representation
of a WVG [q; w1, . . . , wn], for each coalitionS ⊆ N , let a(S) = |w(S) − q| andb(S) =
q + w(S).

Freixas and Puente [12] showed that the amplitude of a WVG isµ(v) = Inf
S⊆N

a(S)
b(S)

.
Although both tolerance and amplitude have been used in the WVG literature to signify
the maximum possible variation in the weights and the quota without changing the game,
the amplitude is a more precise and accurate indicator of themaximum possible variation
than tolerance.

4 Tolerance & Amplitude: some results

4.1 Complexity

In all the complexity proofs in this section, we assume that the weights in a WVG are
positive integers. We let WVG-STRICT be the problem of checking whether a WVG
v = [q; w1, . . . , wn] is strict or not, i.e., WVG-STRICT ={v: v is strict}. Then we have
the following proposition:

Proposition 5. WVG-STRICT is co-NP-complete.

Proof. Let WVG-NOT-STRICT ={v: v is not strict}. WVG-NOT-STRICT is in NP
since a certificate of weights can be added in linear time to confirm that they sum up
to q. Moreoverv is not strict if and only if there is a subset of weights which sum up
to q. Therefore the NP-complete problem SUBSET-SUM (see Garey and Johnson [14])
reduces to WVG-NOT-STRICT. Hence WVG-NOT-STRICT is NP-complete and WVG-
STRICT is co-NP-complete.

Corollary 6. The problem of checking whether the amplitude of a strict WVGis zero is
NP-hard.

0Freixas and Puente also consider WVGs where players’ weights can be negative.
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Proposition 7. The problem of computing the amplitude of a WVGv is NP-hard.

Proof. Let us assume that weights inv are even integers whereas the quotaq is an odd
integer2k − 1. Then the minimum possible difference betweenq andA, the weight of
the maximal losing coalition, orq andB, the weight of minimal winning coalition is1.
SoA ≤ 2k − 2 andB ≥ 2k. We see thatµ(v) ≤ 1/(4k − 1) if and only if there exists
a coalitionC such thatw(C) = 2k. Thus the problem of computingµ(v) for a WVG is
NP-hard by a reduction from the SUBSET-SUM problem.

A similar proof can be used to prove the following proposition:

Proposition 8. The problem of computing the tolerance of a strict WVG is NP-hard.

4.2 Uniform and unanimity WVGs

We show that the bound for the maximum possible tolerance canbe improved when we
restrict to strict representations of special cases of WVGs. We first look at uniform
WVGs which are an important subclass of WVGs which model manymulti-agent sce-
narios where each agent has the same voting power.

Proposition 9. For a strict representation of a proper uniform WVGv = [q; w, . . . , w
︸ ︷︷ ︸

n

],

τ(v) ≤ 1
3n

.

Proof. Since q−A
q+w(N)

= 1− w(N)+A
q+w(N)

is an increasing function ofq and B−q
q+w(N)

is a decreas-
ing function ofq, the tolerance reaches its maximum whenq −A = B − q, i.e. whenq is
the arithmetic meanA+B

2
. We let the size of the maximal losing coalition ber and the size

of the minimal winning coalition ber + 1. Then the weight of a maximal losing coalition
is rw and the weight of the minimal winning coalition is(r + 1)w andm = w/2. Since
v is proper,q ≥ 1

2
(nw), andM = q + w(N) ≥ 3nw

2
. Then,

τ(v) = m/M ≤ 1

3n
.

Proposition 10. For a uniform WVGv = [q; w, . . . , w
︸ ︷︷ ︸

n

], we haveB = w⌈ q
w
⌉ and A =

B − w. Then,

µ(v) =

{
q−A
A+q

, if q ≤
√

AB
B−q
B+q

, otherwise.
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Proof. It is clear thatB, the weight of the minimal winning coalition isw⌈ q
w
⌉ andA, the

weight of the maximal losing coalition isB − w. Note that,q−A
q+A

≤ B−q
q+B

if and only if

q ≤
√

AB. For losing coalitions with weightw, q−w
q+w

is a decreasing function forw. For

winning coalitions with weightw, w−q
q+w

= 1 − 2q
q+w

is an increasing function forw. Thus

if q ≤
√

AB, µ(v) = q−A
A+q

. Otherwise,µ(v) = B−q
B+q

.

Corollary 11. The amplitudeµ(v) of a uniform WVGv can be found inO(1), i.e., con-
stant, time.

Proof. The corollary immediately follows from the previous theorem.

We now look at unanimity WVGs, which are another important subclass of WVGs in
which a coalition is winning if and only if it is the grand coalition N .

Proposition 12. For a unanimity WVGv = [q; w1, . . . , wn], τ(v) ≤ wn

4w(N)−wn
≤ 1

4n−1
.

Proof. We know thatB = w(N) andA = w(N) − wn which means thatw(N) − wn <
q ≤ w(N). For maximum tolerance,q = A+B

2
= w(N) − wn

2
. Thereforem = wn/2 and

M = w(N) − wn

2
+ w(N). Then the tolerance ofv satisfies:

τ(v) ≤ m

M
=

wn

4w(N) − wn
≤ 1

4n − 1
,

sincewn ≤ w(N)/n.

A multiple weighted voting game is composed of more than one weighted voting game
and a coalition wins if and only if it is winning in each of the weighted voting games:

Definition 13. An m-multiple weighted voting game, (N, v1 ∧ ... ∧ vm) is the simple
game(N, v), where the games(N, vt) are the weighted voting games[qt; wt

1, ...w
t
n] for

1 ≤ t ≤ m. Thenv = v1 ∧ ... ∧ vm is defined as:v(S) = 1 ⇐⇒ vt(S) = 1 for
1 ≤ t ≤ m. The gamev is called themeetof thevis.

Note that we do not insist thatwt
i ≥ w)jt for all i < j and 1 ≤ t ≤ m. Let

(N, v) = (N, v1 ∧ ... ∧ vm) be a multiple weighted voting game. Then we can see that
µ(v) ≥ Inf(µ(v1), . . . , µ(vm)). The reason is that forv to change, at least one constituent
game has to change. However it is not necessary that a change in any one gamevi changes
v. As a simple example, supposev1 = [2; 2, 1] andv2 = [2; 1, 2]. Thenµ(v1 ∧ v)2) =
√

3/2−1, as witnessed by the coalition{1, 2}. However,µ(vi) = 0, as witnessed by{i},
for i = 1, 2.
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5 Manipulation via splitting

5.1 Background

In the real world, WVGs may be dynamic. Players might have incentive to split up into
smaller players or merge into voting blocks.Imputationsof the players are acceptable
distributions of the payoff of the grand coalition. Imputations of players in a coalitional
games setting can be based on fairness, i.e., power indices,or they can be based on the
notion of stability which includes many cooperative game theoretic solutions such as core,
nucleolus etc. We examine the situation when the Banzhaf indices of agents can be used as
imputations in a cooperative game theoretic situation. Falsenthal and Machover [22] refer
to this notion of voting power as P-power since the motivation of agents is prize-seeking
as opposed to influence-seeking. Banzhaf indices have been considered as possible pay-
ments in cooperative settings [7, 4] since they satisfy useful axioms [8]. Splitting of a
player can be seen as a false-name manipulation by an agent inwhich it splits itself into
more agents so that the sum of the utilities of the split-up players is more than the utility
of the original player.

Splitting is not always beneficial. We give examples where, if we use Banzhaf indices
as payoffs of players in a WVG, splitting can be advantageous, neutral or disadvanta-
geous.

Example 14. Splitting can be advantageous, neutral or disadvantageous:

• Disadvantageous splitting. We take the WVG[5; 2, 2, 2] in which each player has a
Banzhaf index of1/3. If the last player splits up into two players, the new game is
[5; 2, 2, 1, 1]. In that case, the split-up players have a Banzhaf index of1/8 each.

• Neutral splitting. We take the WVG[4; 2, 2, 2] in which each player has a Banzhaf
index of1/3. If the last player splits up into two players, the new game is[4; 2, 2, 1, 1].
In that case, the split-up players have a Banzhaf index of1/6 each.

• Advantageous splitting. We take the WVG[6; 2, 2, 2] in which each player has a
Banzhaf index of1/3. If the last player splits up into two players, the new game is
[6; 2, 2, 1, 1]. In that case, the split-up players have a Banzhaf index of1/4 each.

We analyse the splitting of players in the unaninimity WVG.

Proposition 15. In a unanimity WVG withq = w(N), if Banzhaf or Shapley-Shubik
indices are used as imputations of agents in a WVG, then it is beneficial for an agent to
split up into several agents.
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Proof. In a WVG with q = w(N), the Banzhaf index of each player is1/n. Let playeri
split up intom + 1 players. In that case there is a total ofn + m players and the Banzhaf
index of each player is1/(n + m). In that case the total Banzhaf index of the split up
players ism+1

n+m
, and forn > 1, m+1

n+m
> 1

n
. An exactly similar analysis holds for the

Shapley-Shubik index.

However there is the same motivation for all agents to split up into smaller players,
which returns us to the status quo.

5.2 General case

We recall that a player is critical in a winning coalition if the player’s exclusion makes the
coalition losing. We will also say that a player iscritical for a losing coalitionC if the
player’s inclusion results in the coalition winning.

Proposition 16. Let WVGv be [q; w1, . . . , wn]. If v transforms tov′ by the splitting of
playeri into i′ andi′′, thenβi′(v

′) + βi′′(v
′) ≤ 2βi(v).

Proof. We assume that a playeri splits up intoi′ andi′′ and thatwi′ ≤ wi′′ . We consider
a losing coalitionC for which i is critical in v. Thenw(C) < q ≤ w(C) + wi =
w(C) + wi′ + wi′′ .

• If q − w(C) ≤ wi′, theni′ andi′′ are critical forC in v′.

• If wi′ < q − w(C) ≤ wi′′ , theni′ is critical for C ∪ {i′′} andi′′ is critical for C in
v′.

• If q−w(C) > wi′′, theni′ is critical forC ∪{i′′} andi′′ is critical forC ∪{i′} in v′.

Therefore we haveηi′(v
′) + ηi′′(v

′) = 2ηi(v) in each case.

Now we consider a playerx in v which is other than playeri. If x is critical for a
coalitionC in v thenx is also critical for the corresponding coalitionC ′ in v′ where we
replace{i} by {i′, i′′}. Henceηx(v) ≤ ηx(v

′). Of coursex may also be critical for some
coalitions inv′ which contain just one ofi′ and i′′, so the above inequality will not in
general be an equality.

9
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Moreover,

βi′(v
′) + βi′′(v

′) =
2ηi(v)

2ηi(v) +
∑

x∈N(v′)\{i′,i′′} ηx(v′)

≤ 2ηi(v)

2ηi(v) +
∑

x∈N(v)\{i} ηx(v)

≤ 2ηi(v)

ηi(v) +
∑

x∈N(v)\{i} ηx(v)
= 2βi(v)

We can give an example which shows that the upper bound of the improvement in
payoff by splitting into two players is tight:

Example 17. Advantageous splitting. We take a WVG[n; 2, 1, . . . , 1] with n + 1 players.
We find thatη1 = n +

(
n
2

)
and for all otherx, ηx = 1 +

(
n−1

2

)
. Therefore

β1 =
n +

(
n
2

)

n +
(

n
2

)
+ n(1 +

(
n−1

2

)
)

=
n + 1

(n − 2)2
∼ 1/n.

In case player1 splits up into1′ and 1′′ with weights1 each, then for all playersj,
βj = 1

n+2
. Thus for largen, β1′ + β1′′ = 2

n+2
∼ 2β1.

Moreover, we show that splitting into two players can decrease the Banzhaf index
payoff by as much as a factor of almost

√
π
2n

:

Example 18. Disadvantageous splitting. We take a WVGv on n players wherev =
[3n/2; 2n, 1, . . . , 1]. For the sake of simplicity, we assume thatn is even. It is easy to see
that player1 is a dictator. Now we consider the case wherev changes intov′ with player
1, splitting up into1′ and1′′ with weightn each. For player1′ to be critical for a losing
coalition in v′, the coalition much exclude1′′ and have fromn/2 to n − 1 players with
weight1 or it must include1′′ and have from0 to (n/2) − 1 players with weight 1. So
η1′(v

′) = η1′′(v
′) =

∑n
i=0

(
n−1

i

)
= 2n−1. Moreover, for a smaller playerx with weight

1 to be critical for a coalition inv′, the coalition must include only one of1′ or 1′′ and
(n − 2)/2 of then − 2 other smaller players. So,ηx(v

′) = 2
(

n−2
(n−2)/2

)
. By using Stirling’s

formula, we can approximateηx(v
′) by

√
2

π(n−2)
2n−1. We see that:

10
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βi′(v
′) = βi′′(v

′)

≈ 2n−1

2n−1 + 2n−1 + (n − 1)
√

2
π(n−2)

2n−1

=
1

2 + (n−1)√
n−2

√
2
π

∼
√

π

2n
.

Remark 19. We notice that the bounds on the effect of splitting on the Banzhaf index are
quite similar to those in the Shapley-Shubik case.

6 Complexity of finding a beneficial split

From a computational perspective, it is #P-hard for a manipulator to find the ideal split-
ting to maximize his payoff. An easier question is to check whether a beneficial splitting
exists or not. We define a Banzhaf version of the BENEFICIAL SPLIT problem defined
in [4].

Name: BENEFICIAL-BANZHAF-SPLIT
Instance: (v, i) wherev is the WVGv = [q; w1, . . . , wn] and playeri ∈ {1, . . . , n}.
Question: Is there a way for playeri to split his weightwi between sub-playersi1, . . . , im
so that, in the new gamev′,

∑k
j=1 βik(v

′) > βi(v)?

Proposition 20. BENEFICIAL-BANZHAF-SPLIT is NP-hard, and remains NP-hardeven
if the player can only split into two players with equal weights.

Proof. We prove this by a reduction from an instance of the classicalNP-hard PARTI-
TION problem to BENEFICIAL-BANZHAF-SPLIT.

Name: PARTITION
Instance: A set ofk integer weightsA = {a1, . . . , ak}.
Question: Is it possible to partitionA, into two subsetsP1 ⊆ A, P2 ⊆ A so that
P1 ∩ P2 = ∅ andP1 ∪ P2 = A and

∑

ai∈A1
ai =

∑

ai∈A2
ai?

Given an instance of PARTITION{a1, . . . , ak}, we can transform it to a WVGv =
[q; w1, . . . , wn] with n = k + 2 wherewi = 8ai for i = 1 to n− 2, wn−1 = 2, wn = 1 and
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q = 4
∑k

i=1 ai+3. After that we want to see whether it can be beneficial for player(n−1)
with weight2 to split into two sub-players(n − 1)1 and(n − 1)2 each with weight1 to
form a new WVGv′ = [q; w1, . . . , wn−2, w(n−1)

1
, w(n−1)

2
, 1]. Note that, since the weights

are integral, it is certainly not beneficial to split up a weight of 2 other than into1 and1.

If A is a ‘no’ instance of PARTITION, then we see that a subset of the weights
{w1, . . . , wn−2} cannot sum to4

∑

i ai. This implies that player(n − 1) is a dummy.
We see that even if player(n − 1) splits into sub-players, the sub-players are also dum-
mies. Therefore(v, n − 1) is a ‘no’ instance of BENEFICIAL-BANZHAF-SPLIT.

Now let us assume thatA is a ‘yes’ instance of PARTITION. In that case, let the
number of subsets of weights{w1, . . . wn−2} summing to4

∑

i ai bex. Thenηn−1(v) =
ηn(v) = x. If player (n − 1) splits into two players(n − 1)1, (n − 1)2 with weights
1 and1, thenη(n−1)1(v) = η(n−1)2(v) = ηn(v) = x. We see thatηi(v) = ηi(v

′) for
i = 1 to n − 2. Suppose that

∑n−2
i=1 ηi(v) = S. Then for the split to be beneficial

βn−11
(v′) + βn−12

(v′) > βn−1(v), i.e., x
S+3x

+ x
S+3x

> x
S+2x

. Sincex > 0, this is
equivalent toS + x > 0. SinceS + x ≥ x > 0, a ‘yes’ instance of PARTITION implies
a ‘yes’ instance of BENEFICIAL-BANZHAF-SPLIT.

In terms of minimizing chances of manipulation, we see that computational complex-
ity comes to our rescue. This idea of using computational complexity to model bounded
rationality is well explained by Papadimitriou and Yannakakis [25]. In the context of com-
plexity of voting, it was a series of groundbreaking papers by Bartholdi, Orlin, Tovey, and
Trick [5, 17, 18, 19] that showed how important computational complexity consideration
is in terms of ease of computing winners and difficulty of manipulating elections.

6.1 Pseudopolynomial algorithm

It is well known that although, computing Banzhaf indices ofplayers in a WVG is NP-
hard, there are polynomial time algorithm using dynamic programming [23] or generating
functions [6] to compute Banzhaf indices if the weights of players are polynomial inn.
Let this pseudo-polynomial algorithm beBanzhafIndex(v, i) which takes a WVGv and
an indexi as input and returnsβi(v), the Banzhaf index of playeri in v. We use a similar
argument to that in [4] to show that a polynomial algorithm exists to find a beneficial split
if the weights of players are polynomial inn and the playeri in question can split into
up to a constantk number of sub-players. Whenever game playeri in WVG v splits up
according to a splits, we denote the new game byvi,s.

12
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Algorithm 1 BeneficialSplitInWVG
Input: (v, i) wherev = [q; w1, . . . , wn] and i is the player which wants to split into a
maximum ofk sub-players.
Output: Returns NO if there is no beneficial split. Otherwise returnsthe optimal split
(wi1 , . . . , wik′

) wherek′ ≤ k, and
∑k′

j=1 wij = wi.

1: BeneficialSplitExists = false
2: BestSplit = ∅
3: BestSplitValue = −∞
4: βi = BanzhafIndex(v, i)
5: for j = 2 to k do
6: for Each possible splits wherewi = wi1 + . . . + wij do
7: SplitValue =

∑j
a=1 BanzhafIndex(vi,s, ia)

8: if SplitValue > βi then
9: BeneficialSplitExists = true

10: if SplitValue > BestSplitValue then
11: BestSplit = s
12: BestSplitValue = SplitValue

13: end if
14: end if
15: end for
16: end for
17: if BeneficialSplitExists = false then
18: return false
19: else
20: return BestSplit

21: end if

We see that the total number of disjoint splits for playeri is equal toq(wi, k) where
q(n, k) is the partition function which gives the number of partitions ofn with k or fewer
addends. It is clear that for a constantk, the number of splits of playeri is less than(wi)

k

which is a polynomial inn. Since the computational complexity for each split is also a
polynomial inn, Algorithm 1 is polynomial inn if weights are polynomial inn.

7 Conclusion and future work

We have examined the computational complexity of computingthe tolerance and ampli-
tude of WVGs. The tolerance and amplitude of uniform and unanimity games is also
analysed. There is a need to devise approximation algorithms for computing the ampli-
tude of a WVG. The analysis of amplitude and tolerance motivates the formulation of an

13
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overall framework to check the ‘sensitivity’ of voting games under fluctuations and sus-
ceptibility to control. It will be interesting to explore the limit of changes in WVGs in
alternative representations of simple games.

We have also investigated the impact on the Banzhaf index distribution due to a player
splitting into smaller players in a weighted voting game. Itis seen that manipulation by
splitting into sub-players may be discouraged by keeping toweights which are large or
reals. There is more scope to analyse such situations with respect to other cooperative
game theoretic solutions.
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