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Abstract

The comparison of partitions is a central topic in clustering, as well for compar-
ing partitioning algorithms as for classifying nominal variables. In this paper, we
deal with the transfer distance between partitions, defined as the minimum number
of transfers of one element from its class to another (eventually empty) necessary to
turn one partition into the other one. We study the distribution of partitions accord-
ing to their transfer distances to some reference partitions. Then we design criteria
to define when two partitions can be considered as far or as close. Last, we look for
the features of the partitions which can be considered as central, i.e. partitions such
that the other partitions are relatively close to them.
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1 Introduction

Establishing classes and partitions of elements in large sets is a main methodological issue
in decision making and has important applications in several domains as classification
[1], molecular biology [8, 14], social networks [2, 15], electronic circuits [7], and so on.
Indeed, the structure of partition is involved for instance when we want to decide how to
gather entities (which can be objects, persons, projects, ...) in such a way that the entities
belonging to a same cluster look globally similar according to some given criteria while
the clusters of the partition look dissimilar according to the same criteria.
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The design of such a partition often requires the use of distances between partitions.
The literature abounds in indices designed by multiple authors to compare two partitions
P and Q defined on the same set X . Some of the most used indices are based on the pairs
of elements of X . Two elements x and y can be gathered or separated in P and Q. The
two partitions agree on (x, y) if these elements are simultaneously gathered or separated
in P and Q. On the other hand there is a disagreement if x and y are gathered in P and
separated in Q or conversely. Among these distance indices, we can mention for instance:
the Rand index [18], the Rand index corrected for chance by Hubert and Arabie [9], the
Jaccard index [10], the Wallace index [22], and the normalized index of Lerman [12].
Other authors proposed distances based on the partition lattice by considering the number
of pairs of elements in the same class or the number of classes in the join P ∨ Q or the
meet P ∧ Q of P and Q [3].

Some other distances are defined as the minimum number of modifications of the
classes (augmentation, removal, mergence or division) to transform P into Q, or con-
versely. These distances are called Minimum Length Sequence Metrics [6]. The simplest
of these distances is defined as the minimum number of augmentations and removals of
single elements to transform P into Q. These two operations correspond to a transfer
of one element from its class to another, which can be empty, and this distance will be
denoted in the following as the transfer distance. This distance was first proposed in 1965
by S. Régnier [19] to study partitions. In [6], W. Day specifies that the transfer distance
is a minimum cost flow metric “since its computation is equivalent to the solution of a
minimum cost flow problem on a suitably defined graph” and concludes that this metric is
computable in O(max(|P |, |Q|)3) (where |P | and |Q| denote respectively the number of
classes of the partitions P and Q). Some results about the maximum values of the transfer
distance between partitions can be found in [4, 5, 8].

We begin this work in Section 2 by recalling some definitions and notation about the
transfer distance, and explaining how it can be computed. The methodology used for
the experimental studies done in this paper is presented in Section 3. In Section 4, we
study the distributions of partitions defined on the same set with respect to the transfer
distance to a given partition. Then, from the light of this study, we propose in Section 5
some criteria assessing the closeness between partitions. Finally, we study in Section 6
the centrality of partitions according to the transfer distance (a partition will be qualified
as central if the other partitions on the same set are relatively close to it).

2 Notation and definitions

Let X be a finite set of n elements. Let us recall that a partition P on X is a set of p
non-empty disjoint classes Xi, 1 � i � p, such that:

⋃p
i=1 Xi = X .

Let P and P ′ be two partitions on X of respectively p and p′ classes. The classes of P
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will be noted Ci, 1 � i � p, and the classes of P ′ will be noted C ′
j , 1 � j � p′. Without

loss of generality, let us assume that p � p′.

Let M be the set of mappings defined from {1, ..., p} to {1, ..., p′}. We define the
concordance between P and P ′ by:

c(P, P ′) = max
σ∈M

p∑
i=1

| Ci ∩ C ′
σ(i) | .

The value c(P, P ′) represents the maximum number of elements that are in a class of P
and in its corresponding class in P ′ over the mappings of M. In other words, it is the
maximum number of well-classified elements.

The transfer distance, noted t, is the complementary notion of the concordance:

t(P, P ′) = min
σ∈M

(n −
p∑

i=1

| Ci ∩ C ′
σ(i) |) = n − c(P, P ′).

The value t(P, P ′) represents the minimum number of transfers of one element from its
class to another (eventually empty) necessary to turn P into P ′, or conversely P ′ into P .

According to the transfer distance definition, its computation comes down to deter-
mining a mapping maximizing the number of well-classified elements.

Let Υ be the function from {1, ..., p} × {1, ..., p′} to N defined by:

Υ(i, j) =| Ci ∩ C ′
j | .

Let Kp,p′ be the complete bipartite graph having the classes of P and P ′ as vertices. We
recall that a matching M in a graph G = (V, E) is a subset of E such that two elements
of M (i.e. two edges of G) are disjoint: ∀{x, y} ∈ M, ∀{z, t} ∈ M with {x, y} �= {z, t},
we must have x �= z, x �= t, y �= z, y �= t.

W. Day proved in [6] that a matching σ maximizes the number of well-classified
elements (

∑p
i=1 | Ci ∩ C ′

σ(i) |) if and only if σ defines a maximum matching in Kp,p′

weighted by Υ; the weight of this matching is c(P, P ′).

So, computing t(P, P ′) is the same as solving the weighted matching problem on
Kp,p′, also known as the assignment problem in Operations Research. This problem can
be solved by the Hungarian algorithm [11], whose complexity is in O(p ′3). The interested
reader will find details in [13].

3 Methodology

In order to study the transfer distance between partitions on a set X of n elements, two
strategies may be considered.
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The exhaustive enumeration of Pn can be done for n � 12 following the process
NexEqu described in [16]. Each partition is coded by a vector containing for each element
the index of its class. The first considered partition is the one class partition. Then the
algorithm builds iteratively the following partitions according to the lexicographic order
of this code, until reaching the partition with n classes.

For n > 12, it becomes intractable to enumerate all the partitions of Pn. In order to
sample the set Pn, we need to draw partitions with a uniform distribution. Such a uniform
drawing has been proposed in [17]. It is based on the following well-known relation [20]:

Bn =

n−1∑
k=0

(
n − 1

k

)
.Bk

where Bn denotes the nth Bell number, that is the number of partitions in Pn.

Following this process, we are able to draw a sample E of partitions of Pn. If we want
to estimate a proportion Π of partitions having a certain property, according to the central
limit theorem we have (see for instance [21]):

Prob

(
f −N(0,1)(ρ)

√
Π(1 − Π)

|E| � Π � f + N(0,1)(ρ)

√
Π(1 − Π)

|E|

)
= ρ

where N(0,1) denotes the standard normal distribution, |E| is the size of the sample and f
is the observed frequency of the property in E.

For instance if we want a confidence interval for Π with confidence level ρ equal to
95% (which corresponds to N(0,1)(ρ) = 1, 96) and such that 0.99f � Π � 1.01f , we need
to draw less than 10000 partitions (Π(1−Π) has been upper-bounded by 1

4
), which is quite

feasible. Thus, in the following experiments, we are going to draw 10000 partitions of
Pn in order to study some characteristics of the partitions. Let us notice that this number
does not depend on the value of n.

4 Distribution of the partitions with respect to the trans-
fer distance

In order to evaluate the distance between two partitions we can compute the transfer dis-
tance, but how to interpret this value? To what extent does it correspond to close partitions
or far partitions? We try to deal with this difficult issue by studying experimentally the
transfer distance.

Let us focus on two cases: n = 12 and n = 100. These values have been chosen as
the maximum values allowing respectively an enumeration of Pn and a random drawing
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defined on Pn (due to computing limitations). For each case, we consider some reference
partitions and we study the distributions of the partitions of Pn according to their transfer
distances to the reference partitions. In other words, considering a partition of reference
P defined on the set X , we try to evaluate, for any t ∈ [0; tmax(P )], the values of |τt(P )|,
τt(P ) being defined as the set of partitions of Pn at exactly t transfers from P .

Table 1: Characteristics of the ten reference partitions
n = 12 P1 P2 P3 P4 P5 average

numb. of classes 7 6 6 5 4 5.55
Cardinalities 3|2|2|2|1|1|1 4|3|2|1|1|1 2|2|2|2|2|2 4|3|2|2|1 3|3|3|3 -

n = 100 R1 R2 R3 R4 R5 average
numb. of classes 35 31 28 27 25 28.6
av. cardinalities 2.9 3.2 3.6 3.7 4 3.5

For n = 12, there are |P12| = 4213597 partitions that can be enumerated in a reason-
able time. For n = 100 we draw randomly 10 000 partitions of P100 (let us recall that
P100 = B100 ≈ 10115) using the drawing presented in Section 3. For each value of n, we
chose to study the case of five partitions of reference (labelled P1, ..., P5 for n = 12 and
R1, ..., R5 for n = 100) that have been determined beforehand (P1, P2 and P4 have been
drawn randomly, P3 and P5 have been chosen for their regularities; R1, ..., R5 have all
been drawn randomly). The reference partitions are described in Table 1.

Figure 1: Distributions of the transfer distance to five reference partitions and average
distribution on P12

Figures 1 and 2 represent the distributions of the partitions according to their transfer
distances to the reference partitions for n = 12 and n = 100. The x-axis represents
the number of transfers t, and the y-axis the cumulated percentages of the distributions.
We have also displayed the average distribution when considering 10000 pairs of random
partitions.
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Figure 2: Distributions of the transfer distance to five reference partitions and average
distribution on P100

We notice that the six graphs represented on both Figures 1 and 2 are very similar.
For both values of n, the five distributions according to the reference partitions are almost
identical, and very close to the average distribution. The percentages remain near zero
until a relatively high number of transfers, then increase quickly and regularly. It is quite
surprising that almost all partitions are located at a large number of transfers from the
reference partitions, close to the maximum values of the transfer distance (between 3 and 8
for n = 12 and between 60 and 75 for n = 100 while the maximum values are respectively
around 9 and around 92). For n = 100, partitions from less than 60 transfers from the
reference partitions are non-existent in proportion in P100, although those partitions are
very numerous.

This study allows to observe that the partitions are concentrated on a narrow transfer
interval (the values of the transfer distance are very close to the average transfer distance).
We remark moreover that this interval corresponds to large values of transfer, close to the
maximum values. This specific behaviour of the distributions of the partitions according
to the transfer distance leads us to define some criteria to evaluate the closeness between
two partitions.

5 Close partitions in terms of transfers

The previous study permits to define some threshold values specifying the closeness or
the remoteness between two partitions.

We define, given a partition P and a threshold α ∈ [0; 1], two critical values denoted
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t−α and t+α by:

|{Q ∈ Pn, t(P, Q) � t−α}|
|Pn| � α and

|{Q ∈ Pn, t(P, Q) � t−α + 1}|
|Pn| > α

|{Q ∈ Pn, t(P, Q) � t+α}|
|Pn| � α and

|{Q ∈ Pn, t(P, Q) � t+α − 1}|
|Pn| > α.

In other words, t−α (resp. t+α ) is the largest (resp. the smallest) number of transfers such
that the proportion of partitions inPn being at less than t−α (resp. at more than t+α ) transfers
from P is lower than α.

Definition 1 Let P and Q be two partitions of the set X of n elements. Let t−α and t+α be
the critical values at threshold α computed following the previous definitions. We will say
that Q is close to P at threshold α if t(P, Q) � t−α , and conversely that Q is far from P
at threshold α if t(P, Q) � t+

α .

Example 1 Let us consider again the case n = 100 and let us assume that one wants to
compare the partition R5 (see Table 1 for the description of this partition) with another
partition Q. We choose the value α = 5% as threshold.

We compute by sampling the distributions of the partitions of P100 according to the
transfer distance to R5. We obtain respectively the following cumulated percentages
for each value of t ∈ [63; 76]: 0.01%, 0.07%, 0.26%, 0.99%, 3.72%, 11.07%, 25.31%,
47.15%, 71.34%, 88.53%, 97.24%, 99.54%, 99.98%, 100.00%. In this case, we have then
t−5% = 67 since the proportion of partitions being at less than 67 transfers from R5 is
equal to 3.72% � 5% whereas the proportion of partitions being at less than 68 transfers
from R5 is equal to 11.07% > 5%. Similarly, we deduce that t+

5% = 73. According to
Definition 1, we will consider that R5 and Q are close at threshold 5% if t(R5, Q) � 67,
and that R5 and Q are far at threshold 5% if t(R5, Q) � 73.

Since the interval [t−α ; t+α ] is narrow with respect to [0, tmax] (for instance, for n = 100
and α = 5%, it is equal to [67 ; 73]), there are few transfer values for which we are not able
to give an interpretation. According to these observations, the transfer distance proved to
be a well discriminant distance to compare partitions. Indeed, two pairs of partitions
being respectively at 67 and 73 transfers will be treated very differently following the
proposed criteria since the first value corresponds to close partitions whereas the second
one corresponds to far partitions. This distinction would not have been possible without
the distributions study since the transfer values 67 and 73 are both high and close to each
other, and therefore do not let suspect a significant difference.

As a drawback, to the contrary, the proposed criteria cannot distinguish between two
partitions being at few transfers one from each other and two partitions being at a great
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number of transfers, as long as these two values remain lower than t−α (for instance, for
n = 100, the number of transfers t = 1 and t = 60). Indeed, those two values of
the transfer distance represent an insignificant proportion of the partitions, and cannot be
discriminated from each other although they are very different. Thus in order to complete
the information given by the criteria, it may be necessary to consider also the numerical
values of the transfer distance especially if one wants to compare close partitions.

6 Centrality of a partition

In the previous section, we have presented the distributions of the partitions according to
their transfer distances to some reference partitions. Although all the computed distribu-
tions seemed to be very similar, we can nevertheless notice some small fluctuations. If we
focus for instance on the case n = 100, the average transfer distance t̄ observed for the
five reference partitions are respectively 68.48, 68.25, 68.90, 69.27 and 70.55.

These values reflect the centrality of the considered partition P in P100, which we
define herein according to the distribution of partitions with respect to their transfer dis-
tances to P . We have observed in Section 4 that a large majority of the partitions of Pn are
concentrated in a narrow interval [t−α ; t+α ] of transfers from P , centered around the average
value t̄. The closer to P the partitions of Pn are located (the values [t−α ; t+α ] are small), the
more central P can be considered, and conversely the farther from P the partitions of Pn

are located (the values [t−α ; t+α ] are large), the more eccentric P can be considered.

From a practical point of view, the centrality is expressed by the position of the distri-
bution graph according to the y-axis (the closer to the axis, the more central the considered
partition). We can say for instance that R2 is more central than R1, which is more central
than R3, which is more central than R4, and that R5 is the most eccentric partition among
those five (see Figure 2).

In the following, we are going to study this notion of centrality more deeply, by an-
swering the question: what types of partitions are central or eccentric? We will see that
this property depends on two main parameters : the number of classes in the partition and
the balance of the classes.

6.1 Impact of the number of classes

In this subsection, we study the impact of the number of classes on the centrality of a
partition. In this aim, we consider seven partitions of P100 with several numbers of classes
(1, 5, 10, 20, 30, 50, and 100), but all with well-balanced classes (we try as far as possible
to spread uniformly the 100 elements over the classes). We estimate the distributions
of partitions according to the transfer distance to these seven reference partitions. The
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distributions are represented in Figure 3 in cumulated percentages, as well as the average
distribution when considering 10000 pairs of partitions of P100.

Figure 3: Distributions of the transfer distance to seven well-balanced partitions

We notice on this figure that the graphs vary a lot following the number of classes
in the reference partitions. The average transfer values are respectively equal to 92.5,
86.3, 81.1, 74.3, 68.4, 69.8 and 71.2 for the partition with 1, 5, 10, 20, 30, 50, and 100
classes. We observe that the distribution for the partition with one class is very far from
the average distribution as its non-zero values belong to [88; 95]. When the number of
classes increases from 1 to 30, the partitions become more central. The partition with
30 classes is the only one which corresponds to transfer values a little smaller than those
of the average distribution. Actually, we did not succeed in finding any partition more
central than the well-balanced partition with 30 classes. Then beyond 30 classes the
graphs become again less close to the average graph, the partition being less central.

This study shows that the number of classes has a great impact on the centrality of a
partition. The centrality seems to be unimodal according to this criterion: partitions with
small number of classes are very eccentric, that is very far in average from other partitions
of P100; partitions having a number of classes near the average are the most central (the
average number of classes for a partition of P100 is 28.6, see Table 1), and partitions with
larger number of classes are a little less central.
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6.2 Impact of the balance of classes

Let us now study the effect of the balance of the classes on the centrality of a partition. We
consider again the case n = 100 and five reference partitions having 30 classes, but with
the balance of the classes varying: from the most balanced partition (each class contains
the same number of elements) to the most unbalanced partition (one class contains almost
all the elements, the other classes contain only one element). The estimated distributions
are represented in Figure 4. The reference partitions are labelled by the value of the
standard deviation of the classes cardinalities, which reflects the balance of the classes.

Figure 4: Distributions of the transfer distances to partitions with more or less well-
balanced classes

We can observe that the partitions are more central if the standard deviations are
smaller. The better-balanced the classes of the reference partitions, and the more cen-
tral the partition. The variation of the distributions with respect to the standard deviation
is a little less considerable than with respect to the number of classes but remains quite
sizeable: the average transfer distance for the five reference partitions with 30 classes are
respectively equal to 68.38, 69.13, 71.03, 73.83 and 75.84 when the standard deviation
increases.

6.3 Conclusion

In this section, we proposed to study the centrality of the partitions of Pn according to the
transfer distance distributions. We showed on some examples that the centrality seems to
be unimodal with the number of classes in the considered partition (increasing until some
threshold value then decreasing) and increasing with the balance of the classes.
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The experiments have been done with other values of n and other reference patitions,
and the same results have been obtained. We found no partition being much more central
than the average distribution, whereas some partitions turned out to be very eccentric.
We observed that the characteristics of central partitions are very close to the average
ones, and correspond to very numerous partitions. To the contrary, very few partitions
are located very far from the other partitions, which makes those eccentric partitions very
special. Although we could not characterize precisely which partition is the most central,
we may conjecture that the partition with one class is the most eccentric partition of Pn.
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