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1 Introduction

The problem of judgement aggregation consists in aggregating individual
judgments on an agenda of logically interconnected propositions into a col-
lective set of judgments on these propositions. This relatively new literature
(see List and Puppe (2007) for a survey) is centred on problems like the
discursive dilemma which are structurally similar to paradoxes and prob-
lems in social choice theory like the Condorcet paradox and Arrow’s general
possibility theorem. Saari (1995) has successfully introduced a geometric ap-
proach to the analysis of such paradoxes the extension of which to judgment
aggregation seems promising.

A major difference of judgement aggregation to social choice theory lies in
the representation of the information involved. While binary relations over a
set of alternatives are a natural representation of preferences, judgments are
typically represented by sets of propositions or by vectors of their valuations,
where the logical interconnections between these propositions determine the
set of feasible valuations. E.g. the agenda (p, q, p∧ q) is associated the set of
feasible valuations {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)} .

In this paper we want to use Saari’s tools to analyse results in judge-
ment aggregation. In particular we will first use Saari’s representation cubes
to provide a geometric presentation of profiles and majority rule outcomes.
Applying Saari’s idea of a profile decomposition we will show what can go
wrong in certain domains of judgment aggregation and how problems can be
avoided with the help of domain restrictions. Moreover, we will show that
usual qualified majorities can not resolve such paradoxical situations.
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2 Formal Framework

Let J be the set of propositions on which judgements have to be made. Most
problems in the literature on judgment aggregation can be formulated with
the help of vectors of binary valuations x = (x1, x2, ..., x|J |) ∈ X ⊆ {0, 1}|J |,
where xj = 1 means that proposition j is believed and X denotes the set of
all feasible (typically: logically consistent) valuations.

A profile of individual judgments is represented by a vector p = (p1, p2, ..., p|X|)
which associates with every binary valuation xk ∈ X the fraction pk of indi-
viduals with this valuation. This is an anonymous representation of voters’
preferences as only the distribution but not the actual number of preferences
is required.

A judgment aggregation rule is a mapping f that associates with every
profile p = (p1, p2, ..., p|X|) a valuation f(p) ∈ {0, 1}|J |. If f(p) ∈ X for all p
we will call f consistent.

Saari (1995) analysed preference aggregation using a geometric approach.
For the simplest setting consider three alternatives a, b, c. This gives rise to
three pairwise comparisons, namely between a and b, b and c and c and a.
A ”1” for the first issue (i.e. the comparison between a and b) means that
a is preferred to b, written a ≻ b. On the other hand, a ”0” indicates the

opposite preference, i.e. b ≻ a. By using xj =
∑

i∈N xi
j

n
a preference profile

maps into a point x ∈ [0, 1]m in the hypercube with dimension 3 (the number
of pairwise comparisons). See figure 1.

Figure 1: Saari’s representation cube

In figure 1, the vertex (0, 0, 1) thus represents the preference where b ≻ a,
c ≻ b and c ≻ a or - for simplicity - the ranking cba. As there are eight
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vertices but only six rational rankings of the three alternatives, there are two
vertices representing irrational voters with cyclic preferences, namely (0, 0, 0)
and (1, 1, 1). If we exclude those vertices, we see that the convex hull of the
remaining six vertices is the representation polytope, i.e. every preference
profile maps into a point in this polytope.

3 Majority (In)consistency and Domain Re-

strictions

The same 3-dimensional hypercube can be used for a simple judgement aggre-
gation problem with 3 propositions (issues), i.e. |J | = 3. For simple majority
voting on the issues, every profile of individual judgements on J is mapped
into a point in the hypercube. Its Euclidean distance to the respective ver-
tices determines the majority outcome. This means that the hypercube can
be partitioned into 8 equally sized subcubes each determining the majority
outcome for profiles mapped into those subcubes. E.g. in figure 2 the shaded
subcube, determined by the diagonal

[

(1

2
, 1

2
, 1

2
), (1, 0, 1)

]

consists of all points
x(p that are of closest Euclidean distance to the vertex (1, 0, 1) and hence
lead to a majority outcome of (1, 0, 1). For dE(x, y) denoting the Euclidean
distance between x, y ∈ {0, 1}|J |, we can also think of the majority valuation
xM as the

argminx∈{0,1}|J|

|X|
∑

k=1

pkdE(xk, x)

.
Consider the following set of propositions P = {p, q, p∧q} with associated

domain of feasible individual valuations X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.
The four feasible vertices in the hypercube determine the representation poly-
tope as seen in figure 3.

Given X, consider the profile p = (0, 1

3
, 1

3
, 1

3
), i.e. no voter has valuation

(0, 0, 0), one third of the voters has valuation (1, 0, 0), and so on. As this
maps into the point x = (2

3
, 2

3
, 1

3
) - a point whose closest vertex is (1, 1, 0) - the

representation polytope obviously passes through one subcube representing a
majority outcome not in the domain. That such an incsonsistency can occur
in general can also be seen from the following lemma:

Lemma 1 Given any vertex x ∈ {0, 1}|J |, there exist 3 vertices a, b, c such

that for some linear combinations of those vertices there is a point in the

x-subcube.
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Figure 2: Majority subcube

For |J | = 3, these 3 vertices necessarily need to be the neigbors of that
vertex, i.e. they are only allowed to differ from it in one issue. Given that, we
can now provide a simple result for the occurrence of majority consistency,
i.e. what X needs to look like to guarantee that the majority outcomes are
themselves in X.

Proposition 1 For |J | = 3, the set of valuations X is majority consistent

iff for any triple of vertices in the domain with a common neighbor, this

common neighbor is also contained in the domain.

To analyse those paradoxical outcomes and suggest restrictions to over-
come those, we will use a tool developed by Saari (1995). Consider two
indviduals with the respective valations (1, 0, 0) and (0, 1, 1). They are exact
opposites, so from a majority rule point of view those two valuations cancel
out. Hence this implies that for any two opposite feasible valuations in X,
we can cancel the valuation held by the smaller number of individuals. This
leads to a reduced profile, the majority outcome of which is identical to the
majority outcome of the original profile.

E.g. given X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}, let (p1, p2, p3, p4) be
the shares of individuals holding each of the respective valuations where
∑

i pi = 1. As (0, 0, 0) and (1, 1, 1) are exact opposites, the reduced pro-
file will have a share of 0 for the valuation held by the smaller number of
individuals. In the case of p1 > p4 such a reduced profile will be p′ =
( p1−p4

p1+p2+p3−p4

, p2

p1+p2+p3−p4

, p3

p1+p2+p3−p4

, 0). Hence the reduced profile maps into
one of the following two planes represented in figure 4.

Now we want to determine whether there are consistency conditions, i.e.
what sort of profiles do guarantee majority consistency in the sense of a
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Figure 3: representation polytope

Figure 4: planes

majority outcome in X. Let ai = pi
∑

4

i=2
pi

, for i = 2, 3, 4. Then α = (a2 +

a4, a3 + a4, a4) ∈ T . By definition, p = (1 − p1)(0, a2, a3, a4) + p1(1, 0, 0, 0).
By linearity, x(p) = (1− p1)α + p1(0, 0, 0) = (1− p1)α, where x(p) ∈ [0, 1]|J |

is the vector of average values over all individual valuations on each issue.
So, geometrically any profile can be plotted via a point in T , its connection

to the (0, 0, 0) vertex and a weight p1. The following figure 5 shows plane
T , the shaded area of which represents the troublesome points, i.e. the cut
with the (1, 1, 0)-subcube and hence those points where a profile leads to an
inconsistent majority outcome.

Now it is easy to see what form of (domain) restrictions can avoid such
inconsistent majority outcomes. Either p1 ≤ p4, because then reduced pro-
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Figure 5: plane T

files are mapped into the plane indicated on the left of figure 4. Otherwise, if
p4 > p1, we need to find all profiles that map into points outside the shaded
area. More precisely those restrictions are the following:

• p2
∑

4

i=2
pi

> 1

2

• p3
∑

4

i=2
pi

> 1

2

• p4
∑

4

i=2
pi

> 1

2

One interesting feature of those restrictions is that they are based on
the space of profiles which is more general than restrictions on the space of
valuations which is usually used in classical domain restrictions.

Moreover, this framework also opens the analysis of various paradoxical
situations as stated in the following proposition:

Proposition 2 There exist profiles such that there is almost unanimous

agreement on one issue and still an inconsistent majority outcome is ob-

tained.

Intuitively this can be seen by looking at figure 5 and considering points
right at the corner of the shaded triangle. Those represent profiles that
lead to an incosistent majority outcome but still provide almost unanimous
agreement on one proposition.
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4 Codomain Restrictions and Distance-Based

Aggregation

Besides restrictions on the space of profiles, there is an alternative way to
guarantee collective rationality, namely via restricting the set of outcomes
to collectively rational outcomes. One possibility to do this is by using
distance-based aggregation rules. In analogy to a well-known procedure in
social choice theory (Kemeny [1], Pigozzi ([4]) introduced such an approach
to judgment aggregation. In principle a distance-based aggregation rule de-
termines the social valuation as the valuation that minimizes the sum of
distances to the individual valuations. Formally, given the profile of indi-
vidual valuations (x1, x2, ..., xn), the social valuation is the consistent and
complete valuation x that minimizes the sum of distances to the individual
valuations, i.e.

f(p) = argminx∈X

n
∑

i=1

d(x, xi)

.
The most commonly used distance function is the Hamming distance,

which counts the number of issues on which two valuations disagree, i.e. for
x = (1, 0, 0) and x′ = (1, 1, 1), d(x, x′) = 2.

Now given our geometric approach, there is a simple geometric expla-
nation of this distance-based aggregation rule. As could be seen in 5, all
problematic profiles lead to a point in the shaded triangle. However, one
option is to divide the triangle into three sub-triangles as in 6.

Figure 6: Distances
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The point in the middle is exactly the barycenter point of the triangle
(1

3
, 1

3
, 1

3
). Using these additional lines, we now have divided the triangle into

three areas, points in which are characterized by being of smallest Euclidean
distance to the vertex of the proper triangle w.r.t. the points within the
shaded triangle. So points in the south-western part of the shaded triangle
will be closest to the (1, 0, 0) vertex. This, however, is identical to saying
that for any point in the shaded triangle, switch the majority valuation on
the issue which is closest to the 50-50 threshold (see Merlin and Saari [3]).

Example 1 Let X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)} and p = (0.1, 0.35, 0.3, 0.25).
This leads to x(p) = (0.6, 0.55, 0.25) and hence an inconsistent majority out-

come (1, 1, 0). Looking at picture 5 we see that α ∈ T lies in the south-western

shaded triangle. Thus, according to our distance-based aggregation rule, the

outcome will be the consistent valuation (1, 0, 0 as α is closest to the (1, 0, 0)
vertex. However, this can also be seen as swithching the valuation on the

issue which is closest to the 50-50 threshold, which - in x(p) - is obviously

issue 2.

5 Likelihood of Inconsistency

After having studied various possibilites to avoid inconsistent majority out-
comes, we now want to use the geometric framework to anaylize the fre-
quency of occurence of such inconsistencies. Given that only 4 vertices
are feasible individual valuations, any majority outcome in the represen-
tation cube is determined by a unique profile. Consider again the situation
X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}. Then for any vector of shares of
individual valuations p = (p1, p2, p3, p4) we get the following: x1 = p2 + p4,
x2 = p3 + p4, x3 = p4, 1 = p1 + p2 + p3 + p4. As those are 4 equations with
4 unknowns there exists a unique solution. The volume of certain subspaces
now indiciates the likelyhood of occurrence of certain outcomes. Consider
first the volume of the representation cube, V : V = 1

2
· 1 · 1

3
= 1

6
. On the

other hand, points leading to inconsistent majority outcomes are located in
the tetraeder determined by the points

[

(1

2
, 1

2
, 0), (1, 1

2
, 1

2
), (1

2
, 1, 1

2
), (1

2
, 1

2
, 1

2
)
]

.
The volume of this tetraeder is 1

24
(see figure 7).

So its volume relative to the volume of the whole representation polytope
is 1

4
and hence we can say that - under the assumption of equal probabilities

of individuals holding each feasible valuation - the probabily of an outcome
being inconsistent is 25 percent.

Of course, different domains allow for different probabilities. E.g. consider
X = {(0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}. Then x1 = p2 + p4, x2 = p3 + p4,
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Figure 7: Distances

x3 = p1 + p4 and p1 + p2 + p3 + p4 = 1. Again we get a unique solution.
Making the same calculations as before, we get a probability of inconsistent
outcomes of 50 percent.
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