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Abstract

A common way of dealing with the paradoxes of preference aggregation con-
sists in restricting the domain of admissible preferences.The most well-known such
restriction issingle-peakedness. In this paper we focus on the problem of determin-
ing whether a given profile is single-peaked with respect to some axis, and on the
computation of such an axis. This problem has already been considered in [2]; we
give here a more efficient algorithm and address some relatedissues, such as the
number of orders that may be compatible with a given profile, or the communication
complexity of preference aggregation under the single-peakedness assumption.
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1 Introduction

Aggregating preferences for finding a consensus between several agents is an important
topic at the boarder between social choice and artificial intelligence. Given the prefer-
ences of a set of agents (or voters) over a set of alternatives(or candidates), preference
aggregation aims at determining a collective preference relation representing as much as
possible the individual preferences, whereas voting rulesconsists in finding a socially
preferred candidate.

Among the paradoxes and impossibility theorems of preference agregation, the most
famous may be the following three (in all three cases we assume that there are at least 3
alternatives):
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Single-peaked consistency and its complexity

• theCondorcet paradox [3]: a Condorcet cycle is a sequence of candidatesx1, . . . , xk

such that for alli ≤ k − 1, a majority of voters prefersxi to xi+1, and a majority of
voters prefersxk to x1. Such cycles make it impossible to build a collective prefer-
ence relation compatible with pairwise majority comparisons between candidates.

• Arrow’s theorem [1]: any unanimous aggregation function for which the pairwise
comparison between two alternatives is independent or irrelevant alternatives is dic-
tatorial;

• Gibbard and Satterthwaite’s theorem[7, 8]: any surjective and nondictatorial voting
rule is manipulable.

A profile consists of a collection of preference relations over the candidates (one per
voter). In the above results, any profile is admissible. However, in some contexts, voters’
preferences may have a special structure restricting the domain of admissible profiles.
The most well known such restriction issingle-peakedness. It assumes that there is a
natural linear axis, independent of the voters, on which alternatives are positioned: one
may for instance think of a left-right axis as in politics, ora numerical axis (when the
voters have to decide for instance about an amount of money tospend). A voter has a
single-peaked preferences with respect to such an axis if, on each side of the “peak” (that
is, the preferred candidate), his preference grows with theproximity to the peak. It is well-
known that Condorcet cycles cannot occur when preferences are single-peaked; therefore,
one escapes from the Condorcet paradox as well as Arrow’s andGibbard-Satterthwaite’s
theorem.

However, this way of escaping the paradoxes and impossibility theorems assumes that
the axis on which the candidates are positioned is known in advance. In contexts where
it is partially or fully unknown, one should identify it before any aggregation process is
started. Therefore, we consider the problem of determiningwhether, given the preferences
of some agents on a set of alternatives, these preferences are single-peaked with respect
to some axis (which we refer to assingle-peaked consistency), and if so, how one of the
possible axes can be determined. This problem has been considered in [2] (as well as
the problem of determining whether a profile is single peakedw.r.t. a tree [9], which is
weaker than single peakedness w.r.t. an axis). They give an algorithm inO(m.n2) where
n (resp. m) is the number of candidates (resp. voters), based on matrixrepresentation.
We give here a different algorithm, both more intuitive and efficient since it works in
time O(m.n). While the difference betweenO(m.n) andO(m.n2) is pratically not very
significant for standard political elections wheren is typically small, this is no longer the
case when the set of alternatives (or “candidates ”) has a combinatorial structure, which is
often the case in AI applications. A related problem is addressed by Conitzer [4]: without
the prior knowledge of the axis, but knowing the preference relation of one agent (which
gives some incomplete information about the axis), how can we elicit as efficiently as
possible the preferences of a second agent?
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Single peaked consistency is important in at least two contexts. First, some domains
tend to have a single-peaked structure, but for some reason we may not know the axis : In
this case, from a few votes (for instance obtained from a sample of votes), we may learn
this axis. Second, in some domains it is unclear whether it isreasonable to assume single-
peakedness: then, checking the single-peaked consistencyof the preference relations of a
few voters gives a good hint as to whether single-peakednessis reasonable.3

In Section 2, we define single-peaked consistency and give a constructive algorithm
that checks whether a profile is single-peaked consistent, and if so, returns a compati-
ble axis. This algorithm works in timeO(n.m), wheren is the number of agents and
m the number of alternatives. In Section 4 we study a few combinatorial aspects of
single-peaked preferences; in particular, we give a resulton the number of axes that are
compatible with a tuple of single-peaked preferences. In Section 5 we give a simple addi-
tional result on the communication complexity of preference aggregation of single-peaked
preferences. Finally we point to interesting extensions ofour work.

2 Single-peaked preferences

Let V = {1, . . . , m} be a finite set of voters andX = {x1, . . . , xn} a finite a set of
candidates (or alternatives), withn ≥ 3.

Definition 1 A preference relation≻ onX is a linear order onX. Thepeakof a prefer-
ence relation≻ is the candidatex∗ = peak(≻) such thatx∗ ≻ x for all x ∈ X \ {x∗}. A
profile is am-upleP = 〈≻1, . . . ,≻m〉 of preference relations onX.

Definition 2 An axis O (noted by>) is a linear order onX. Given two candidates
xi, xj ∈ X, a preference relation≻ on X whose peak isx∗, and an axisO, we say
thatxi andxj are on the same side of the peak of≻ iff one of the following 2 conditions
is satisfied: (1)xi > x∗ andxj > x∗; (2) x∗ > xi andx∗ > xj .

A preference relation≻ is single-peakedwith respect to an axisO if and only if for all
xi, xj ∈ X such thatxi andxj are on the same side of the peakx∗ of ≻, one hasxi ≻ xj

if and only ifxi is closer to the peak thanxj , that is, ifx∗ > xi > xj or xj > xi > x∗.

For simplicity, we sometimes note (as in Example 1)x1x2 . . . xn instead ofx1 ≻ x2 ≻
· · · ≻ xn or of x1 > x2 > · · · > xn.

3This is for instance of particular interest when alternatives are evaluated on several criteria; here, the
hidden axis may be some (a priori unknown) combination of the different criteria (projection from a multi-
dimensional to a monodimentional representation).
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Example 1 Let X = {x1, x2, x3, x4, x5, x6} andO = (x1 > x2 > x3 > x4 > x5 > x6).
The preferencesx2x3x4x1x5x6; x4x3x2x5x6x1; andx6x5x4x3x2x1 are single-peaked with
respect toO but notx4x3x5x1x6x2. Indeed,x1 andx2 are on the same side of the peak
(x4) butx2 is not preferred tox1 while it is closer to the peak thanx1.

An interesting question is the existence of acommonaxis to all voters, such that the
preferences of these voters are single-peaked with respectto this common axis.

Definition 3 A profile〈≻1, . . . , ≻m〉 is single-peaked with respect toO iff for each voter
i, ≻i is single-peaked with respect toO.

Whether single-peakedness seems justified or not strongly depends on the nature of
X. It is often deemed reasonable if the axis represents an objective left-right political axis
such that voters’ preferences are determined only from the position of the candidates on
the axis, or else, ifX is a set of numerical values or more generally a set equipped with a
natural ordering.

Conitzer [4] considers theelicitation of single-peaked preferences. The elicitation
process is all the more efficient as the amount of communication required by the process
is low. This amount of communication can be measured in termsof the number ofele-
mentary queriesof the form “between the candidatesx andy, which one do you prefer?”

3 Single-peaked consistency

A very natural question is the following: given ap-voter profile, is it single-peaked with
respect to some (unknown) axis? This is defined formally as follows:

Definition 4 (single-peaked consistency)A preference profileP = 〈≻1, . . . ,≻m〉 onX
is single-peaked consistentif there exists an axisO such that for alli, ≻i is single-peaked
with respect toO.

WhenP is single-peaked with respect to the axisO, we say thatO is compatible with
P . For every axisO, we denote bySP (O) the set of preference relations onX that are
single-peaked with respect toO. For instance, ifn = 3 andO = x1 > x2 > x3, then
SP (O) = {x1x2x3, x2x1x3, x2x3x1, x3x2x1}.

The main problem associated with this definition is to determine if a given profile is
single-peaked consistent. We now present the main result ofthis article,i.e. the resolu-
tion of this problem. More precisely, we propose an algorithm working in timeO(mn)
which, given a profile, outputs an axis compatible with this profile if it exists, and find a
contradiction otherwise. The axis is built recursively, starting from the candidates ranked
in last position by one or more voters. Indeed, we have the following easy lemma.
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Lemma 1 Let x be a candidate ranked in last position by a voteri. If the axisO is
compatible with≻i, thenx is either in the leftmost or in the rightmost position inO.

Proof. If x is neither in the leftmost nor in the rightmost position, then there exist a
candidatey on the left ofx and a candidatez on the right ofx (in O). But y ≻i x and
z ≻i x, contradiction with the fact that≻i is single-peaked with respect toO.

As a consequence of Lemma 1: in a single-peaked consistent profile, at most two
candidates are ranked last by at least one voter.

Before giving the algorithm, we first explain in detail the first (and easiest) iteration.
Let L be the set of all candidates ranked last by at least one voter.We consider the three
(exhaustive) possible cases:

• |L| ≥ 3: thenP is not single-peaked consistent, due to Lemma 1.

• L = {x}: we place indifferentlyx either in the leftmost or in the rightmost posi-
tion of the axis; this choice does not create any constraint in the remainder of the
construction of the axis. Indeed, the problem is equivalentto first finding an axis
compatible with the profiles restricted to the other candidates, and then addingx.

• L = {x1, x2}: we placex1 andx2 in the leftmost and the rightmost position of the
axis.P is compatible with an orderO if and only if it is compatible with the inverse
of O; as a consequence, the choice (x1 in leftmost or rightmost position) does not
matter.

Then, the candidates ofL being positioned, we iterate the process considering the
restriction of the preference relations to the other candidates. Of course, this first iteration
is simple because no other candidate is already positioned in the axis.

More generally, at each step of the algorithm, we have a setT of candidates al-
ready positioned at the extremal positions of the axis. Without loss of generality, let
T = {x1, x2, . . . , xi, xj, xj+1, . . . , xn} the candidates already positioned in the axis under
construction: we havex1 > x2 > . . . > xi in the leftmost positions of the axisO, and
xj > xj+1 > . . . > xn in the rightmost positions. The other candidates inT = X \T will
be positioned betweenxi andxj positioned in the leftmost/rightmost position). Then, at
this iteration:

• either we find a full compatible axis andP is single-peaked consistent;

• or we find a contradiction andP is not single-peaked consistent;

• or we position one or two new candidates to the right ofi and/or to the left ofj.
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The soundness of the algorithm will follow from the recursive proof of the follow-
ing hypothesis. At each iteration, the axis under construction verifies the two following
properties:

• There exists a compatible axis forP if and only if there exists a compatible axis
which extends the axis under construction.

• For any voterk, x1 ≺k x2 ≺k . . . ≺k xi andxj ≻k xj+1 ≻k . . . ≻k xn.

In particular, from the second item we deduce that the candidates inT , i andj excepted,
are not the peak of any voter.

Let us now analyze the different possible configurations. Let L be the set of candidates
ranked last by at least one voter (restricted to the candidates inT ). Based on Lemma 1,
we have 3 possible cases:

1. |L| ≥ 3: contradiction, 3 candidates must be either in positioni + 1 or j − 1.

2. L = {x, y}: eitherx is in positioni+1 andy in positionj − 1, or vice versa, or we
will find a contradiction. Let us consider a voterk who rankedx last (among the
candidates inT ):

(a) x ≺k xi andx ≺k xj : this is not possible since necessarilyxi or xj is ranked
worse thanx by k (xi or xj was the candidate ranked last byk at the previous
iteration).

(b) xi ≺k x andxj ≺k x: x being the last candidate inT , and sincex1 ≺k x2 ≺k

. . . ≺k xi andxj ≻k xj+1 ≻k . . . ≻k xn, then any axis compatible with voter
k on T will be compatible on all the candidates. Having positionedthe first
candidates does not create any constraint . Indeed, all the candidates inT are
ranked better than all the candidates inT by voterk. As a consequence, for
voterk, havingx in positioni + 1 andy in positionj − 1 or vice versadoes
not matter.

(c) xi ≺k x ≺k xj ≺k y : x is necessarily in positioni + 1. Indeed, havingx in
positionj−1 leads to a contradiction:x is positioned betweeny andxj in the
axis, butx ≺k y andx ≺k xj . Then, necessarilyx is in positioni + 1 andy in
positionj − 1. Symmetrically, ifxj ≺k x ≺k xi ≺k y, thenx is necessarily in
positionj − 1.

(d) xi ≺k x ≺k y ≺k xj (or the symmetrical case) :xj is necessarily the peak for
the voterk (the candidate positioned immediately to the left is worse,and the
candidatexj+1 (if any) positioned immediately to the right is also worse, by
our recursive hypothesis), hence the candidates inT are necessarily positioned
between positionsi andj following the increasing order of voterk. We test if
this axis is compatible with the preferences of other voters. If so, we have a
compatible axis, otherwise we conclude thatP is not single-peaked consistent.
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We repeat step 2 for all voters. If case 2d occurs (for at leastone voter),then the
algorithm ends(either we found an axis, or a contradiction). Otherwise, either
we find a contradiction (x have to be placed in two different positions), and the
algorithm stops, or we position candidatesx andy on the axis.

To conclude, note that if we are not in case 2d , the induction hypothesisx1 ≺k

x2 ≺k . . . ≺k xi andxj ≻k xj+1 ≻k . . . ≻k xn remains true after positioningx and
y (otherwise, in case 2d the algorithm stops).

3. L = {x}, i.e. each voter rankedx last (inT ). Several cases may occur for voterk:

(a) x ≺k xi andx ≺k xj : as previously, this case is impossible.

(b) xi ≺k x andxj ≺k x : no constraint.

(c) xi ≺k x ≺k xj (or inverse):x is necessarily in positioni + 1.

Hence, if no contradiction is obtained and no compatible order is found, we position
one or two new candidates.

Steps 2 and 3 are repeated until all the candidates are positioned or a contradiction
occurs. The previous analysis enables us to state the following result:

Proposition 1 Let P be a preference profile. The previous algorithm outputs an axis
compatible withP if any, or finds a contradiction otherwise.

Example 2 Let X = {x1, x2, x3, x4, x5, x6} and consider two voters with the following
preferences:x6 ≺1 x5 ≺1 x4 ≺1 x1 ≺1 x3 ≺1 x2 andx1 ≺2 x6 ≺2 x5 ≺2 x2 ≺2 x3 ≺2

x4

• Iteration 1: The setL of worst candidates isL = {x1, x6}. T being empty, we
can choose the positions ofx1 andx6, for instance respectively in the leftmost and
rightmost positions. Partial axis:x1 > .... > x6.

• Iteration 2: T = {x2, x3, x4, x5} and L = {x5}. For voter 1,x6 ≺1 x5 ≺1 x1,
hence necessarilyx5 is in fifth position in the axis. For voter 2,x1 ≺2 x5 and
x6 ≺2 x5 hence for the voter 2 the positioning does not matter. Partial axis: x1 >
... > x5 > x6.

• Iteration 3: T = {x2, x3, x4} andL = {x2, x4}. For voter 1,x5 ≺1 x4 ≺1 x1 ≺1

x2, hence necessarilyx4 is in fourth position, and thereforex2 is in second position.
For voter 2,x1 ≺2 x5 ≺2 x2 ≺2 x4 hence for her the positioning does not matter.
Partial axis: x1 > x2 > . > x4 > x5 > x6
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• Iteration 4: T = {x3}. We verify that withx3 in third position, the partial axis
x2 > x3 > x4 is compatible with the two votes. Then, the axisx1 > x2 > x3 >
x4 > x5 > x6 is compatible with the profile constituted by the preferencerelations
of the 2 voters.

Example 3 Let us consider five candidates and two voters, withx1 ≺1 x2 ≺1 x3 ≺1

x4 ≺1 x5 andx4 ≺2 x3 ≺2 x2 ≺2 x1 ≺2 x5

• Iteration 1: L = {x1, x4}: we choosex1 > ... > x4.

• Iteration 2: T = {x2, x3, x5} with L = {x2, x3}. voter 1: x1 ≺1 x2 ≺1 x3 ≺1

x4 hencex4 is necessarily the peak of the voter 1. The unique axis possible is
consequentlyx1 > x2 > x3 > x5 > x4; it is not compatible with the preference
relation of the second voter. This profile is not single-peaked consistent.

Example 4 Let us consider five candidates and two voters, withx1 ≺1 x2 ≺1 x3 ≺1

x4 ≺1 x5 andx4 ≺2 x2 ≺2 x3 ≺2 x1 ≺2 x5. Iteration 1 is as Example 3. For iteration
2: T = {x2, x3, x5} with L = {x2}. For voter 1,x1 ≺1 x2 ≺1 x4 hencex2 must be
immediately to the right ofx1. For voter 2,x4 ≺2 x2 ≺2 x1 hencex2 must be immediately
to the left ofx4. Contradiction. This profile is not single-peaked consistent.

Example 4 shows that a 2-voters profile may not be consistent.

Now, we analyse the running time of the algorithm. At each iteration, either we find a
compatible order, or a contradiction, or we position at least one new element. Assuming
that each preference relation is given in decreasing order,we find the setL of worst
candidates in timeO(m). Then, for each voter we doO(1) comparaisons. Step 2d can be
possibly longer, since we test the compatibility of an axis with the preference relations of
all voters. This step is done in timeO(nm) (O(n) for each voter), but it occurs at most
once during the algorithm. Then, as long as this step does notoccur we haveT (n, m) ≤
T (n− 1, m)+ O(m). This sums up toT (n, m) = O(nm), and the possible execution of
step 2d still leads toT (n, m) = O(nm). Therefore :

Proposition 2 The single-peaked consistency problem can be solved in timeO(nm).

Proposition 2 improves theO(m.n2) algorithm given in [2] and is established by a
completely different method. Interestingly the algorithmin [9] for cumputing atreewith
respect to which the profile is single peaked has similarities with ours. However, not only
it works in O(m.n2) but it is designed to find atreeand does not guarantee to output an
axis where there exists one.

8



Annales du LAMSADE n◦3

Of course, there may existseveralaxes compatible with a given profile (the number
of such axes is the topic of the next section), and given a profile, one might be interested
in finding all the axes compatible with it4. It is easy to see that the method we proposed
can be adapted to find all axes compatible with a profileP ; indeed, it is sufficient to keep
in steps 2b and 3b all the different possibilities when several choices are possible. As we
will see in the next section, there can be an exponential number of compatible axes, hence
of course the running time cannot be polynomially bounded.

Example 5 Let us consider 7 candidates and two voters, with:

x4 ≺1 x3 ≺1 x5 ≺1 x6 ≺1 x2 ≺1 x1 ≺1 x7

x5 ≺2 x6 ≺2 x4 ≺2 x3 ≺2 x2 ≺2 x7 ≺2 x1

The modified algorithm gives the 8 compatible axes:

x4x3x2x1x7x6x5 x5x6x1x7x2x3x4

x4x3x2x7x1x6x5 x5x6x7x1x2x3x4

x4x3x1x7x2x6x5 x5x6x2x7x1x3x4

x4x3x7x1x2x6x5 x5x6x2x1x7x3x4

4 On the number of axes compatible with a profile

In Section 3, we proposed an algorithm for computing an axis compatible with a given
profile, but such an axis is not necessarily unique. It is now worth to give bounds on
the number of axes compatible with a given profile, as well as the prior probability that
a profile is single-peaked consistent. As mentioned earlier, this set of compatible axes
may be of some interest when new voters give their preferences. Obviously, the more
compatible axes we have, the more likely this new profile is single-peaked consistent. On
the other hand, the existence of several compatible axes maybe considered as a drawback,
for instance if our goal is tolearn some structural information about the candidates. In
this section, we focus on the minimum and maximum numbers of axes that are compatible
with a set ofk distinctvotes forn candidates. Letq(k, n) andQ(k, n) be these respective
numbers.

To begin with, remark thatP is compatible withO thenP is compatible with the
inverse ofO (denoted byO−1). Moreover, of course, the more voters (or candidates), the

4This may be useful for instance if a new voter appears. In thiscase, it is very easy to find for instance
if this new profile is single-peaked consistent.
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less the number of compatible axes. Hence,q andQ are even and non increasing withk
andn.

First, let us deal with the case of a single axis.

Lemma 2 |SP (O)| = 2n−1

Proof. Let O = x1 > x2 > . . . > xn and≻∈ SP (O). ≻ is fully determined by (a) its
peakxi and (b) the positions ofx1, . . . , xi−1 in the remainingn− 1 positions. Indeed, we
know thatxj ≻ xk for xk < xj < x∗ and forx∗ < xj < xk, hence (a) and (b) suffice
to describe≻. There are

(

n−1
i−1

)

possible positionings forx1, . . . , xi−1, therefore,
(

n−1
i−1

)

preference relations inSP (O) whose peak isxi. To get the cardinality ofSP (O) we have
to sum up overi.

By symmetry considerations, we obtain that there exist2n−1 axes compatibles with a
given preference relation. Hence,q(1, n) = Q(1, n) = 2n−1. We also know (cf. Example
4 withoutx5) thatq(2, 4) = 0, therefore, for everyk ≥ 2 andn ≥ 4 we haveq(k, n) = 0.
The only missing case isq(2, 3), which can be easily shown to be equal to 2.

The case ofQ(k, n) is more interesting. We already know thatQ(1, n) = 2n−1, and,
by Lemma 2,Q(k, n) = 0 for k > 2n−1. We now show that the maximum number of
compatible axes is globally inversely proportional to the number of distinct votes. More
precisely,Q(k, n) = 2n/k whenk = 2j 1 ≤ j ≤ n−1 (Proposition 3). This gives bounds
on Q(k, n) for the other values ofk. We first show this result fork = 2n−1 (Lemma 3),
and then some relations between the values ofQ(k, n) whenn and/ork change (lemmas 4
and 5).

Lemma 3 Q(2n−1, n) = 2

Proof (sketch).Let O = x1 > x2 > · · · > xn. Let us focus on the set of axes compatible
with the2n−1 preference relations (see Lemma 2) inSP (O). Let xi, xj with xi > xj .
The relationR: xj ≻ xj+1 ≻ . . . xn ≻ xj−1 ≻ . . . ≻ xi ≻ . . . ≻ x1 is compatible with
O. Any axisO′ such thatxj >O′ xi >O′ xn is not compatible withR. Therefore,O is the
only axis compatible withSP (O) whose rightmost element isxn. By symmetry,O−1 is
the only one whose rightmost element isx1. The result follows from Lemma 1.

Lemma 4 For all k, n ≥ 1, Q(k, n + 1) ≥ 2Q(k, n)

Proof. Consider a profileP of k preference relations onn candidates that are compatible
with Q(k, n) axes. We extend thesek relations ton + 1 candidates by positioning the
new candidatexn+1 last in all relations. For each of theQ(k, n) axes compatible with
the initial k relations, we can addxn+1 either as the leftmost element or rightmost ele-
ment. Therefore we obtain2Q(k, n) distinct axes, compatible withk distinct preference
relations. Thus,Q(k, n + 1) ≥ 2Q(k, n).
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Lemma 5 For all n ≥ 2 and allk :

Q(k, n + 1) ≤ max{Q(⌈k/2⌉, n), 2Q(k, n)}.

Proposition 3 For all n ≥ 2, all j ∈ [1, n − 1]: Q(2j, n) = 2n−j

Proof (sketch). Let j between 1 andn − 1. By Lemma 3,Q(2j , j + 1) = 2. Thanks to
Lemma 4, we getQ(2j, n) ≥ 2n−j. Using Lemma 5, we can show that it is in fact an
equality.

In particular, we get that for eachk between 2 and2n−1, 2n−1/k < Q(k, n) < 2n+1/k
(or, if we want tighter bounds:2n−⌊log2(k)⌋−1 < Q(k, n) ≤ 2n−⌊log2(k)⌋).

Lemma 2 enables us to give an approximation of the probability that a randomly gen-
eratedk-voter,n-candidate profile is single-peaked consistent. SupposeP is drawn ran-
domly with a uniform probability: for each voteri, the probability that a given preference
relationR is the preference relation of voteri is 1

n!
, the preference relations of two differ-

ent voters being independent, therefore each possible profile has a probability of
(

1
n!

)k
.

From Lemma 2 we get that given an axisO and a preference relationR, the probability
thatR ∈ SP (O) is 2n−1

n!
. Now, the probability that ak-voter profile is compatible with a

fixed axisO is
(

2n−1

n!

)k

= 2k(n−1)

n!k
. This implies that the probability that ak–voter profile

onn candidates is single-peaked consistent is smaller thann!2
k(n−1)

n!k
= 2k(n−1)

n!k−1 . (The exact
probability is of course lower than that, but gets asymptotically close to this upper bound,
when the number of voters grows.) Therefore, the probability of single-peaked consis-
tency decreases exponentially with both with the number of voters and the number of
candidates5. Finally, note that the probability of single-peaked consistency is lower than
the probability of non-occurrence of the Condorcet paradox. which has received much
more attention (see e.g. [6]).

5 Communication complexity of the aggregation of single-
peaked preferences

We end this paper by a short additional result on the communication complexity of the
aggregation of single-peaked preferences. As said in Section 1, the restriction to single-
peaked profiles allows for escaping usual impossibility theorems, which means that there
exist natural and satisfactory voting rules and aggregation functions under single-peakedness.

5Of course, the above computation relies on the assumption that the preference relations of the voters
are independent, which is arguably not very realistic. Positive correlations between preference relations
allow the probability of single-peaked consistency to decrease less fast.
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First, it is well-known that, if the number of voters is odd (which we will now assume
for the sake of simplicity), then themedian of the peaksis the Condorcet winner and
the pairwise majority aggregationof a profile P , defined byx ≻∗

P y if and only if
|{k | x ≻k y}| > m

2
for all x, y ∈ X, is a linear order.

We are now interested in thecommunication complexityof the median voting rule and
pairwise majority aggregation for single-peaked profiles.The deterministic communica-
tion complexity of a function is the minimal quantity of information (measured in number
of bits) used by the a protocol that computes it. One can find a study on the commu-
nication complexity of several voting rules (without the single-peakedness restriction) in
[5].

In this Section, we assume that the axisO is given (and is common knowledge to all
voters).

Obviously, the deterministic communication complexity ofthe median of peaks for
single-peaked profiles is at mostm.⌈log n⌉, since the median of peaks can simply be
computed by asking voters to name their peak, which needs⌈log n⌉ bits per voter. The
lower bound is less obvious. It can be obtained by taking the same fooling set as in
the proof of Theorem 3 in [5], and taking an axis whose median is a. This leads to the
following result:

Proposition 4 The deterministic communication complexity of the median of peaks is
O(m. log n) andΩ(m. log n)6.

The (deterministic) communication complexity of pairwisemajority aggregation is a little
less obvious but still very simple:

Proposition 5 The deterministic communication complexity of pairwise majority aggre-
gation for single-peaked profiles is at most2m.⌈log n⌉ + 2m(n − 2).

The proof uses a protocol very similar to the one used in [4] for the elicitation of
single-peaked preferences of a voter. We start by determining the median of peaks, which
needsm.⌈log n⌉ bits (see above). Then we communicate the result to each voter (which
requires againm.⌈log n⌉ bits). After this, the voters are askedm − 2 successive pair-
wise comparisons, according to the following protocol, presented informally on an ex-
ample: suppose the median of peaks isx3 (the axis beingx1 < x2 < x3 < x4 < . . .).
We setrank(x3) = 1, and we ask to each voter her preference betweenx2 andx4. If
there is a majority forx2, thenx2 is the second “socially preferred candidate” and we set
rank(x2) = 2. Then, we ask to each voter her preference betweenx1 andx4, and so
on. Each of these steps requires the central authority (CE) to send to each voter the infor-
mation enabling her to know the two candidates she has to compare. For this, CE does
not have to send the identity of the two candidates (which would require2⌈log n⌉ bits)

6Actually, the same bounds would hold for thenondeterministiccommunication complexity – see [5].
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but only one bit, indicating whether the winner of the previous step is the “right” can-
didate, or the “left” one (for instance, after the voters have been asked their preferences
betweenx2 andx4, if there is a majority forx4 then CE sends the information “right”
to the voters, who now know the next comparison is betweenx2 andx5). Each voter
sends the answer to CE, which requires one bit per voter. Hence each iteration requires
2m bits. There are exactlyn − 2 iterations, hence the protocol requires the communica-
tion of m.⌈log n⌉ + 2m(n − 2) bits. Finally, we see easily thatx ≻∗

P y if and only if
rank(x) < rank(y), hence the protocol computes≻∗

P .

6 Discussion

In this article we have studied some combinatorial and algorithmic aspects of reasoning
with single-peaked preferences. The main contribution is an algorithm that outputs an
axis compatible with a profile (when there is one) in timeO(mn). We have identified
the minimal and maximal number of axes that are simultaneously compatible with a pro-
file (which, as a byproduct, gives an approximation of the probability of single-peaked
consistency of a randomly generated profile). As a side result we have given some simple
results on the communication complexity of the aggregationof single-peaked preferences.

This work deserves some further research in several directions. In particular, as said
in Section 4, the probability that a profile single-peakes decreases dramatically with the
number of voters and the number of candidates. However, in many practical cases, even
if not stricto sensusingle-peaked, the profile can beclose(with respect to some metric)
to being so. For instance, in a nation-wide political election, given the very high number
of voters, the profile is surely not single-peaked. However,in this case, it may be the case
that the profile is approximately single-peaked. To make this more precise, we need to
define formal notions of “approximate single-peakedness”,which are meant to measure
how far a profile is from being single-peaked. Several definitions seem natural, such
as (1) the minimum number of voters whose deletion gives a single-peaked profile, (2)
the minimum number of candidates whose deletion gives a single-peaked profile, or (3)
the minimum number of axes such that each preference relation of the profile is single-
peaked with at least one axis. Computing these measures of single-peakedness lead to
very interesting computational problems, for which our algorithm of Section 3 can be the
starting point. For instance, for (1) and (2), we can design abranch-and-bound algorithm
that generalizes our algorithm. As for (3), we can modify ouralgorithm to produce a
set of axes whichcoversthe whole profile (i.e. such that each preference relation of the
profile is compatible with at least one axis).
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