
Decision Policy Design as Pareto-Minimization
of Infeasible Lower Bounds

Ulrich Junker∗, Alexis Tsoukiàs†

Abstract

A decision policy chooses an outcome dependent on given input parameters.
Policies can adequately be represented by production rules, which are at the heart
of modern business rule management systems. Classic ways of policy design are
rule authoring by experts or learning from data. In this paper, we show that policies
can also be derived from a model consisting of constraints and preferences. We can
design a policy that respects the given preferences by solving a particular combina-
torial Pareto-optimization problem. We consider a combined parameter and decision
space and introduce a rule for each Pareto-minimal infeasible lower bound in this
space. The approach gives interesting insights in the relationships between combi-
natorial optimization under preferences and rule-based decision making.

Key words: Pareto-Optimization, Decision Rules

1 Introduction

A decision policy defines which outcome is chosen dependent on given input. For ex-
ample, consider an automated pricing system that has to assign discounts depending on
the customer profile and the shopping cart. Discounts may significantly depend on the
input parameters and production rules are a convenient way to represent complex policies
that make different decisions depending on which conditions are met by the parameters
[3]. As production rules constitute a very natural representation of the decision making
policies, they can directly be acquired from the experts. Another method for rule acquisi-
tion is learning from historical data and the whole breadth of data mining techniques can

∗ILOG, 1681, route des Dolines, 06560 Valbonne, France {ujunker}@ilog.fr
†LAMSADE-CNRS, Université Paris Dauphine, 75775 Paris Cedex 16, France

{tsoukias}@lamsade.dauphine.fr

1

Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

be applied for this purpose. However, the rule-based representation of policies also has
drawbacks. There is no guarantee that a set of rules is consistent and complete, meaning
that there may be cases where multiple decisions are made or no decision is made at all.
However, even when a rule-set is consistent and complete, there is no guarantee that it
represents a policy which is a rational choice function [1] and which makes the decisions
in agreement with a given preference order.

These problems become even more apparent if the decision space is combinatorial.
For example, we want to design a recommender system for configuring computers. To
keep things simple, we suppose that the computer consists of a PC and an external disk.
The recommender system will ask the user for budget limitations and the minimal speed
and will return the disk space provided by the configuration. Even in this simple setting,
there may be numerous combinations of the PC type and the disk type and the ideal com-
bination will strongly vary depending on the budget and the required speed. It may not be
easy to establish a rule set that is consistent, complete, and rational as explained above.
But now suppose that such a desired rule-set is given, but the product catalog changes
slightly. If a new product is added to the catalog, it may lead to better configurations un-
der certain parameter configurations, but not under others. The simple change may affect
several rules and a tedious rule updating process is necessary for this purpose [2].

Those changes are easy to incorporate into a model which describes the possible con-
figurations in terms of variables, constraints, and preferences. For example, there will be
constraints that model the product catalogs and others that describe the costs, speed, and
memory of a given component. Those catalogs can directly be imported from data-bases
and mapped to constraints. A constraint-based configurator [6] can directly determine a
best configuration depending on the user input. In this case, the decision is determined by
solving a combinatorial optimization problem for each user request. Whereas this process
implements a policy in a desired way, the policy is not represented explicitly and cannot
be inspected and refined by experts.

Decision-making policies can thus be represented explicitly by rules or implemented
by an optimizer. Both approaches have desirable properties and are complementary. In
spite of this, it is difficult to conciliate both approaches and to move from combinatorial
optimization to rules or vice versa. In this paper, we show that work in multi-criteria
decision analysis and multi-objective optimization provides the necessary concepts and
methods to provide an interesting link between combinatorial optimization and rules.

We first define policies and their representation in form of rules. We then discuss
policy design for combinatorial decision making problems. We map this problem to a
Pareto-minimization problem over a space of infeasible lower bounds. Duality results
about Pareto-optimization allow us to deduce the minimal bounds from a standard Pareto-
frontier, which can be computed by existing methods.

2

Annales du LAMSADE no 3

2 Policies and Rules

We consider repetitive decision making problems as they occur in (web) services for busi-
ness automation and in online recommender systems. In those problems, a decision has to
be made in function of parameter values, which capture the characteristics of a particular
request. For example, a limit on the budget is one typical parameter occurring in online
configuration services for cars and computers. Minimal speed may be another parameter
in those systems. The parameters determine which decisions are possible in the problem
under consideration. We thus obtain a decision space X which contains all the possible
decisions and a parameter space P which describes the possible combinations of parame-
ter values. The decision space is restricted by the parameter values, which is modelled by
a mapping X : P → 2X from the parameter space to the powerset of the decision space.
X(p) describes the set of decisions that are feasible under the parameter value p.

A decision policy is choosing a decision from X(p) depending on the parameter values
p. We can also describe a policy by a function π : P → X that maps a parameter value p

to a decision π(p) from X(p). Hence, we define policies as in Markov decision processes,
but use them in a simpler setting. Usually, the parameters have the character of bounds
or limits, meaning that less options are obtained if the parameter values are replaced by
stricter values. For example, smaller budget usually means that less options are available.
We model this by a (partial) preorder %p on the parameter space P , i.e. a transitive and
reflexive relation, and require that X is monotonic under this order:

p1 %p p2 implies X(p1) ⊆ X(p2) (1)

We may also require that policies make optimal choices under a given weak preference
order %x on the decision space, which is again a preorder. The strict part of this preorder
is the strict partial order Âx that satisfies x1 Âx x2 iff x1 %x x2 holds, but not x2 %x x1.
A policy makes an optimal (or best) choice for parameter value p iff there is no decision
x∗ in the restricted set X(p) that dominates the chosen decision π(p) w.r.t. the preference
order (i.e. there is no x∗ ∈ X(p) s.t. x∗ Âx π(p)). A policy is rational iff it makes optimal
choices for all parameter values under the same preference order %x. If the preference
order %x is a total order, then there is a single best decision in each option set. Hence,
there is a unique rational policy in this case.

As policies describe which decisions are made under which parameter values, they
are of highest importance for the provider of a decision-making service. In order to un-
derstand and control the service, the provider must be able to analyze the policies and to
adapt them if needed. An explicit representation of policies is therefore desirable. Pro-
duction rules provide a compact representation of complex policies as they specify which
decision will be made under which conditions.

A simple example is that of choosing a customer category x such as Silver, Gold, and
Platinum in a customer fidelity program. The set of options depends on the amount p of

3

Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

Table 1: Catalogs for components a and b

ya y1,a y2,a y3,a

a1 10 20 30
a2 20 30 10

yb y1,b y2,b y3,b

b1 10 10 30
b2 20 30 10

Table 2: Updated catalogs

ya y1,a y2,a y3,a

a1 10 20 30
a2 20 30 10
a3 20 20 10

yb y1,b y2,b y3,b

b1 10 10 30
b2 20 30 10
b3 10 30 20

goods that have been bought by the customer. If the customer buys for less than $500,
then only the category Silver is possible. If he buys goods for an amount between $500
and $1000, then Silver and Gold are possible. Finally, if the customer buys for more than
$1000, then all options are possible. Furthermore, suppose that Platinum is preferred to
Gold, which is preferred to Silver. Then there is a single rational policy, which can be
described by the following rules:

if p ≤ 500 then x := Silver.
if p > 500 ∧ p ≤ 1000 then x := Gold.

if p > 1000 then x := Platinum.

Given the amount bought by a customer, these rules can then be applied to choose the
category. For example, if the customer has bought for $600, the chosen category will
be Gold. The policy makes this choice directly and does not need to determine the set
of feasible options and its optimal elements. Indeed, the policy neither describes the
mapping X , nor the preference order %x. In simple problems, it is even possible to
write down those policies without specifying the set of feasible options for each case and
without specifying a preference order.

3 Policies and Combinatorial Optimization

In more complex problems, policies cannot be determined so easily. If data about his-
torical decisions are available, then learning and classification methods can be used to
induce a decision policy. For example, the dominance-based rough set approach in [4]

4

Annales du LAMSADE no 3

determines a policy that respects a total preference order on the decision space. In other
problems, the set of feasible options may be too large to be described explicitly. A good
example is product configuration where multiple components have to be chosen such that
given customer requirements are satisfied and technical compatibility constraints are re-
spected. In this case, the set of feasible options is implicitly described in form of variables
and constraints. As a policy determines the best option depending on the parameter val-
ues, finding an explicit representation of this policy is a non-trivial task. In this paper, we
adapt the framework of [4] to this policy design problem.

We describe the set of feasible options in terms of a constraint satisfaction problem.
We consider m variables with finite and non-empty domains D1, . . . , Dm. We suppose
that n < m and that P := D1 × . . . × Dn is the parameter space and that X := Dn+1

is the decision space. All the other domains Dn+2, . . . , Dm are the domains of auxiliary
variables. The overall problem space is the Cartesian product D := D1 × . . . × Dm

of all these domains. We also suppose that there is a total order ≥i on each parameter
domain Di (for i = 1, . . . , n). The preorder on the parameter space is defined by a weak
Pareto-ordering %p on this space: (p∗1, . . . , p

∗
n) %p (p1, . . . , pn) holds iff p∗i ≥i pi for all

i = 1, . . . , n. Furthermore, we suppose that there is a total order ≥x on the decision
space X . The worst element in this decision space is denoted by x⊥. Given a tuple
y := (y1, . . . , ym) from D, we write yp for the parameter values (y1, . . . , yn) and yx for
the decision yn+1.

The problem space is restricted by a set of constraints. Each constraint has a scope
i1, . . . , ik consisting of indexes from 1, . . . ,m and a relation R which is a subset of Di1 ×
. . . × Dik . A tuple y from D satisfies this constraint iff (yi1 , . . . , yik) is an element of the
relation R. A constraint respects the preorder %p on the parameter space iff the following
property holds for all tuples y∗, y ∈ D: if (y∗

1, . . . , y
∗
n) %p (y1, . . . , yn), y∗

j = yj for
j = n + 1, . . . ,m, and y∗ satisfies the constraint, then y satisfies the constraint.

In the sequel, we consider a set of constraints C that respect the preorder %p. The set
of solutions Sol(C) is the set of all tuples from D that satisfy all constraints in C.

The parameter value p ∈ P reduces the set of solutions of C to those elements y ∈
Sol(C) that support p, i.e. that satisfy the property yp = p. The set of feasible options
X(p) consists of all elements x in the decision space X that are supported by an element
y of this reduced solution space meaning that the property yx = x holds. Furthermore,
the worst element x⊥ is an element of X(p):

X(p) := {x⊥} ∪ {x ∈ X | there is y ∈ Sol(C)
s.t. yp = p and yx = x}

(2)

It can easily be shown that the sets X(p) of feasible options satisfy the monotonicity
property (1).

A rational policy will choose the best element of X(p) under the order ≥x. For a given
p ∈ P , this problem corresponds to a classic single-objective combinatorial optimization

5

Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

problem. If this problem has no solution for a parameter value p, then the worst decision
x⊥ will be chosen. Hence, there is a unique policy which determines an optimal decision
for each combination of parameter values p. In this paper, we study the problem of finding
an explicit representation of this policy.

As an example, we consider a simple product configuration problem. A customer
wants to buy a product consisting of two components a and b. Each component i has
a product type yi and three positive integer attributes y1,i, y2,i, y3,i such as price, power
consumption, disk space capacity. Component a may have type a1 or a2 and component
b may have type b1 or b2. These product types and their attribute values are specified
by the two product catalogs in table 1. The product catalog for component i defines
a constraint on the variables yi, yi,1, yi,2, yi,3 such that the table entries are the admissible
tuples that may be assigned to the variables of this constraint. The customer does not want
any combination of those product types, but requires that the sum of the y1,j’s exceeds a
parameter p1 and the sum of the y2,j’s exceeds a parameter p2.

y1,a + y1,b ≥ p1

y2,a + y2,b ≥ p2

Furthermore, the customer wants to maximize the sum x of the y3,j’s.

y3,a + y3,b = x

Each variable has a positive integer domain which is limited by a suitably chosen upper
bound. Greater parameter values lead to stricter problems meaning that the orders ≥i

correspond to the order ≥ of the integers. Similarly, the order ≥x on the decision space
corresponds to this order since greater values are preferred.

This example is kept small for didactic reasons. Real configuration problems in the
car and computer industries will have more components, additional constraints such as
compatibility constraints between the component types, and much larger product catalogs.
However, the number of parameters and decision variables will usually be small.

We give a rational policy for this example. It may happen that there is no configuration
that meets the customer request. In this case, the policy chooses the worst value x⊥ in
the decision space, which is 0 in this example. In this case, the request will be rejected.
Furthermore, the resulting policy does not include the values of the auxiliary variables as
they do not impact the choice behaviour of the system. As the preference order ≥x is not
expressed on the auxiliary variables, two solutions y and y ′ that differ in the values of the
auxiliary variables, but have the same decision yx = y′

x, are indifferent under the order
≥x. Any of these solution can be kept as a support for this decision and displayed to the
user. We do not detail this step in this paper. We thus obtain a policy that determines a

6

Annales du LAMSADE no 3

decision depending on the parameters:

if p1 ≥ 0 ∧ p1 ≤ 20 ∧ p2 ≥ 0 ∧ p2 ≤ 30 then x := 60.
if p1 ≤ 30 ∧ p2 ≥ 31 ∧ p2 ≤ 50 then x := 40.
if p1 ≤ 40 ∧ p2 ≥ 51 ∧ p2 ≤ 60 then x := 20.
if p1 ≥ 0 ∧ p2 ≥ 61 then x := 0.

if p1 ≥ 21 ∧ p1 ≤ 30 ∧ p2 ≤ 50 then x := 40.
if p1 ≥ 31 ∧ p1 ≤ 40 ∧ p2 ≤ 60 then x := 20.
if p1 ≥ 41 ∧ p2 ≥ 0 then x := 0.

(3)

As explained above, experts can easily analyze and refine such a policy. Hence, the rules
are sufficient as long as no question about the rationality of the policy is asked. But now
suppose that two new component types a3 and b3 are introduced as shown in table 2. Is
the policy still rational?

4 Policy Design by Exhaustive Optimization

This question is not trivial as the set of options is specified implicitly in form of a con-
straint satisfaction problem. A naive approach consists in exploring the parameter space
completely and to solve a combinatorial optimization problem for each value v in the
parameter space.

We can formulate this problem as that of finding a best lower bound for the decision
with respect to the order ≥x. The value l is a lower bound for x under parameter values v

iff there is a solution y ∈ Sol(C) that satisfies yp = v and yx ≥x l. Alternatively, we can
also consider strict upper bounds and determine a worst element among those bounds. A
value u is a strict upper bound for the decision under parameter values v iff there is no
solution y ∈ Sol(C) that satisfies the conditions yp = v and yx ≥x u. Now let l∗ be the
best lower bound and u∗ the worst strict upper bound with respect to the order ≥x

As u∗ is a strict upper bound, the following property holds for all solutions y ∈
Sol(C):

yp = v ⇒ yx <x u∗ (4)

This rule will reduce the set of possible decisions to the set {x ∈ X | x ≤x l∗} if yp = v

holds. Hence, l∗ is the optimal decision in this case and it is feasible. We can therefore
incorporate the following rule in our policy:

If p = v then x := l∗

Repeating this process for the other parameter values will produce the unique rational
policy.

7

Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

Although the combinatorial problem specified by constraints and preferences has a
unique rational policy, there are different ways to represent it by rules. The naive approach
generates a rule for each element of the parameter space. This is costly in space and also
in time since each rule requires to solve a combinatorial optimization problem.

5 Policy Design by Pareto-Optimization

In this section, we will show how to compute compact representations of policies for
problems where the set of feasible options satisfies the monotonicity property (1). In this
case, we can replace the value assignments to parameters by bounds on the parameters
and eliminate redundant rules.

First, we reconsider rules of the form yp = v ⇒ yx <x u∗. The monotonicity as-
sumption (1) means that we cannot obtain better decisions when replacing v by any value
v′ that is stricter than v. Hence, the following property holds for all those values and all
solutions y of C:

yp = v′ ⇒ yx <x u∗ (5)

Hence, we obtain an equivalent rule if we replace the condition yp = v by the relaxed
condition yp %p v:

yp %p v ⇒ yx <x u∗ (6)

These rules are in a format proposed in [4]. If yp is at least as good as v, then yx is
strictly worse than u∗. They can be encoded in production rule systems by using the best
lower bound l∗:

if p %p v then x := min(x, l∗)

Those rules are confluent, meaning that there is a unique result, which complies to the
rational policy. Hence, the first step has transformed the rules into a format which is
easier to manipulate. When we reformulate the policy (3) in this format, the upper-bound
conditions disappear:

if p1 ≥ 0 ∧ p2 ≥ 0 then x := min(x, 60).
if p1 ≥ 0 ∧ p2 ≥ 31 then x := min(x, 40).
if p1 ≥ 0 ∧ p2 ≥ 51 then x := min(x, 20).
if p1 ≥ 0 ∧ p2 ≥ 61 then x := min(x, 0).
if p1 ≥ 21 ∧ p2 ≥ 0 then x := min(x, 40).
if p1 ≥ 31 ∧ p2 ≥ 0 then x := min(x, 20).
if p1 ≥ 41 ∧ p2 ≥ 0 then x := min(x, 0).

(7)

8

Annales du LAMSADE no 3

s2

s3

s1

Figure 1: Pareto-
frontier.

s2

s3

s1

Figure 2: Dominated
space.

c4

c3

c2

c1

s2

s3

s1

Figure 3: Dual fron-
tiers.

r1

r2

r3

r4

Figure 4: Rules.

Now consider two values v and v∗ from the parameter space and two values u and u∗

from the decision space. We consider the combined space Z := P×X and define a weak
Pareto-ordering %z on this space by combining %p and ≥x. We define vu %z v∗u∗ iff
v %p v∗ and u ≥x u∗. Now consider two rules such that vu is as least as good as v∗u∗

w.r..t the weak Pareto-order:

yp %p v ⇒ yx <x u

yp %p v∗ ⇒ yx <x u∗ (8)

Since v %p v∗, the condition yp %p v of the first rule implies the condition yp %p v∗ of the
second rule. Moreover, since u ≥x u∗, we also have u∗ ≤x u and the conclusion yx <x u∗

of the second rule implies the conclusion yx <x u of the first rule. Hence, the first rule
is redundant and can be removed if it is different to the second one. When removing the
redundant rules, we obtain a rule-set which is logically equivalent to the original one,
but contains only rules for critical pairs (v∗, u∗). As a consequence, we obtain a more
compact representation of the rational policy.

We can obtain those pairs as results of the following optimization problem. We con-
sider the set of all candidate vectors v and u such that the following condition is satisfied

9

Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

by all solutions y of C:
yp %p v ⇒ yx <x u (9)

and we determine those that are worst w.r.t. the Pareto-ordering for %p and ≥x. The
candidate pairs are exactly those vectors v and u for which there is no solution y of C that
satisfies the following condition:

yp %p v ∧ yx ≥x u (10)

As this condition is equivalent to ypyx %z vu, we can also say that we seek vectors w

from Z that are not dominated by any solution w.r.t. to the combined Pareto-order %z

and which thus constitute infeasible lower bounds. Among all those infeasible lower
bounds, we want to determine the worst elements w.r.t. the Pareto-ordering. Hence, we
end up with the problem of doing a Pareto-minimization over the space of infeasible lower
bounds.

6 Computing the Policy by a Dual Approach

In this section, we map the Pareto-minimization problem over the space of infeasible
lower bounds to a Pareto-maximization problem over the solution space. This will allow
us to solve the original policy design problem.

Given a vector y from D, we write yz for ypyx, i.e. for the tuple (y1, . . . , yn, yn+1). We
consider the elements of Z that are supported by solutions y of Sol(C):

S := {w ∈ Z | there is y ∈ Sol(C) s.t. yz = w} (11)

An element w of Z is a Pareto-maximal element of S iff there is no other element w∗ of
S that dominates w w.r.t. to the strict part Âz of the preorder %z (i.e. w∗ %z w holds,
but not w %z w∗). We denote the set of Pareto-maximal elements of S by Max (S,%z).
Figure 1 shows the Pareto-maximal solutions for a two-dimensional space.

The Pareto-frontier of the constraint problem C can be computed by different meth-
ods. We briefly explain the method in [7]. This method does an outer branching which
splits the Pareto-frontier in disjoint parts and which is thus different from the usual inner
branching which splits the solution set of C in disjoint parts. In each branching step, we
compute one Pareto-optimal solution by solving an ordinary lexicographical optimization
problem. If w∗ is the optimal value obtained from this step, then we consider all Pareto-
optimal solutions that assign w∗ to yz in the left branch and all other solutions in the right
branch. The left branch is already solved. In the right branch, we add the constraint
yz 6-

z w∗ to the constraint set C and repeat the approach. The algorithm is summarized in
figure 5. It enumerates the Pareto-optimal solutions in decreasing lexicographical order.

We now divide the space Z into two disjoint subspaces:

10

Annales du LAMSADE no 3

• The space of feasible lower bounds:

P := {w ∈ Z | there is y ∈ Sol(C) s.t. yz %z w} (12)

• The space of infeasible lower bounds:

N := {w ∈ Z | there is no y ∈ Sol(C) s.t. yz %z w} (13)

The space of feasible lower bounds contains all elements of Z that are weakly dominated
by some Pareto-maximal element of Z. Hence, the set P can be characterized in terms of
the Pareto-maximal elements of S:

P = {w ∈ Z | there is w∗ ∈ Max (S,%z) s.t. w∗ %z w} (14)

Figure 2 illustrates this property. As a consequence, the set of Pareto-maximal elements
of S and the set of Pareto-maximal elements of P coincide.

We now consider the dual problem, namely that of finding minimal elements in the
space of infeasible bounds (see figure 3). This is the set of all elements of N which do
not dominate any other element of N w.r.t. the strict part of the order %z. We denote this
set by Min(N,%z). It contains the Pareto-minimal infeasible lower bounds which are
needed to generate the rules as explained in the last section. The set N contains exactly
those elements of Z that weakly dominate such an infeasible lower bound:

N = {w ∈ Z | there is w∗ ∈ Min(N,%z) s.t. w %z w∗} (15)

Hence the space Z is partitioned into a part P that is weakly dominated by the Pareto-
frontier w.r.t. the order %z and a part N that is weakly dominated by the dual frontier
w.r.t. the inverse order -z as illustrated in Figure 3. Hence, there is a duality between the
minimization of the infeasible lower bounds and the maximization of the feasible lower
bounds under a preorder %. For the particular case of Pareto-ordering, the duality result
leads to the following equivalence, which holds for each element y of D:

∨

w∗∈Min(N,%)

∧

i

yi ≥ w∗

i ≡
∧

w∗∈Max(P,%)

∨

i

yi > w∗

i (16)

A detailled study of duality notions can be found in the literature of multiobjective pro-
gramming. For example, the duality result above has been stated in [5]. It can also be
derived from propositions 4 and 5 in [8].

We now exploit this duality property to determine the set Min(N,%z). We first deter-
mine N by using (14):

N = {w ∈ Z | w∗ 6%z w for all w∗ ∈ Max (S,%z)} (17)

11

Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

As the preorder %z is a Pareto-ordering, we can describe this space in terms of constraints.
For each element w∗ of Max (P,%z), we introduce a constraint with scope 1, . . . , n, n +
1. The constraint is violated by the vectors that are weakly dominated by w∗. Hence,
its relation contains all elements w of Z that satisfy the condition w 6-z w∗, which is
equivalent to

∨
i wi > w∗

i as %z is a Pareto-ordering. We denote the set of all those
constraints by CN . The solutions of CN contain all vectors y from D that satisfy the
condition

∧
w∗∈Max(P,%z)

∨
i yi > w∗

i . The set N is obtained by projecting these solutions
to the indexes z, i.e. N = {yz | y ∈ Sol(CN).

We are now able to compute the Pareto-minimal solutions of the new problem CN and
to extract the dual frontier Min(N,%z) from it. We use outer branching again for this
step. We then introduce a rule for each element of this frontier in the format of [4]. The
policy design algorithm in figure 6 performs these steps and computes the rational policy.

In the configuration example, there are five Pareto-optimal solutions after the update
of the catalog, namely (20, 30, 60), (30, 50, 40), (20, 50, 50), (40, 60, 20), (30, 60, 30).
Consequently, each element y of N satisfies the following constraints:

y1 > 20 ∨ y2 > 30 ∨ y3 > 60
y1 > 30 ∨ y2 > 50 ∨ y3 > 40
y1 > 20 ∨ y2 > 50 ∨ y3 > 50
y1 > 40 ∨ y2 > 60 ∨ y3 > 20
y1 > 30 ∨ y2 > 60 ∨ y3 > 30

(18)

Pareto-minimization under these constraints yields the minimal infeasible lower bounds:

Min(N,-z) = {(0, 0, 61), (0, 31, 51), (0, 51, 31),
(0, 61, 0), (21, 0, 41), (31, 0, 21), (41, 0, 0)}

(19)

As a result, we obtain a new policy (note that y1 corresponds to the parameter p1, y2

corresponds to the parameter p2 and y3 corresponds to the decision x):

if p1 ≥ 0 ∧ p2 ≥ 0 then x := min(x, 60).
if p1 ≥ 0 ∧ p2 ≥ 31 then x := min(x, 50).
if p1 ≥ 0 ∧ p2 ≥ 51 then x := min(x, 30).
if p1 ≥ 0 ∧ p2 ≥ 61 then x := min(x, 0).
if p1 ≥ 21 ∧ p2 ≥ 0 then x := min(x, 40).
if p1 ≥ 30 ∧ p2 ≥ 0 then x := min(x, 20).
if p1 ≥ 41 ∧ p2 ≥ 0 then x := min(x, 0).

(20)

The second and third rules now assign a better value thanks to the new product types. The
policy designer thus discovers meaningful changes of the policies, which are difficult to
detect manually.

12

Annales du LAMSADE no 3

Algorithm Pareto-OB(z, %z, C)

1. R := ∅;
2. let Âz be the strict part of %z;
3. let > be a lexicographic order extending Âz;
4. repeat
5. if C has no solution then return R;
6. find a >-optimal solution y of C;
7. let w be yz;
8. R := R ∪ {w};
9. C := C ∧

∨
i zi >i wi;

Figure 5: Computing Pareto-maximal solutions.

Algorithm PolicyDesigner(C, p, %p, x, ≥x)

10. let %z be the weak Pareto-order for %p and ≥x;
11. let L be the result of Pareto-OB(px, %z, C);
12. let CN be

∧
v∈L

∨
i vi > zi;

13. let U be the result of Pareto-OB(px, -z, CN);
14. R := ∅;
15. for each vw ∈ U do
16. add yp %p v ⇒ yx <x w to R;
17. return R;

Figure 6: Policy design.

7 Conclusion

Decision-making policies as used in business automation and recommender systems can
explicitly be represented in forms of rules. Those rules can directly be acquired from
the experts or learned from historical data. In this paper, we elaborated a third method
of policy design, which consists in deriving the rules from a domain model which is de-
scribed in terms of variables, constraints and preferences. Our approach consists in two
step. Firstly, we determine Pareto-optimal solutions of the constraint problem, which
represent the interesting trade-offs between the possible input and output of the system.
Secondly, we convert the Pareto-frontier into a dual frontier by a logical transformation.
Each point in the dual frontier creates a rule. Not only the resulting policy is consis-
tent and complete, but also makes optimal choices under the given preference order. The
approach is interesting for configuration problems and complex pricing problems where
explicit representations of policies are desired, but frequent changes in product catalogs or

13

Decision Policy Design as Pareto-Minimization of Infeasible Lower Bounds

marketing strategies make it difficult to establish those rules. The paper provides a prelim-
inary study of methods that derive those policies automatically. As the generated rule-sets
may be large in size, future work is needed to study other rule formats or approximation
techniques to obtain rule-sets of manageable size.

References

[1] Kenneth Arrow. Rational choice functions and orderings. Economica, 26:121–127,
1959.

[2] Virginia E. Barker, Dennis E. O’Connor, Judith Bachant, and Elliot Soloway. Expert
systems for configuration at Digital: XCON and beyond. Commununications of the
ACM, 32(3):298–318, 1989.

[3] Edward A. Feigenbaum. The art of artificial intelligence: Themes and case studies of
knowledge engineering. In IJCAI, pages 1014–1029, 1977.

[4] S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicriteria deci-
sion analysis. European Journal of Operational Research, 129:1–47, 2001.

[5] Thomas Hanne. On utilizing infeasibility in multiobjective evolutionary algorithms.
In MOPGP’06, 2006.

[6] Ulrich Junker. Configuration. In Handbook of Constraint Programming, pages 837–
873. Elsevier, 2006.

[7] Ulrich Junker. Outer branching: How to optimize under partial orders? In ECAI-06
Workshop on Advances in Preference Handling, pages 58–64, 2006.

[8] Ulrich Junker. Preference-based inconsistency proving: When the failure of the best
is sufficient. In ECAI, pages 118–122, 2006.

14

