Using Encryption to Enforce an Information Flow Policy – Research Directions

Jason Crampton

Information Security Group Royal Holloway, University of London

The problem

Given a poset X, find a method of assigning keys to elements of X with the following properties:

- For each $x \in X$, there is a single key k(x)
- For each key k(x), it is possible to derive k(y) for all $y \leq x$

We must consider the following issues:

- Key generation
- Key derivation
- Security resistance to collaborative attacks by keyholders
- Computational and key storage overheads

Introduction – Generic solution

Associate certain public information with each element $x \in X$ Compute secret key k(x) for each element $x \in X$ using one-way function

Publish information for each element of X such that

- Given k(x) and y ≤ x it is possible to use public information to derive secret key k(y)
- Given k(x) and $y \not\leq x$ it is not possible to derive secret key k(y)

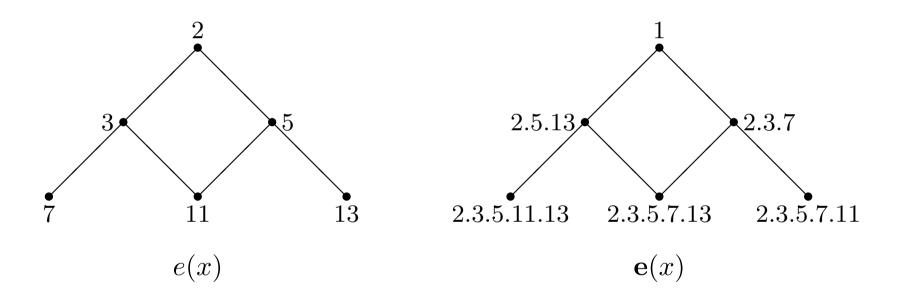
Outline of talk

- Review of yesterday's talk
- A hybrid scheme
- Embedding a poset into a lattice of divisors
- Policies and schemes based on directed graphs
- Future work

The Akl-Taylor scheme – Key generation

- (1) Choose large primes p and q and publish n = pq
- (2) Choose $\kappa \in [2, n-1]$ such that $(\kappa, n) = 1$
- (3) For each $x \in X$, choose a distinct prime e(x)
- (4) For each $x \in X$, define and publish $\mathbf{e}(x) = \prod_{y \leq x} e(y)$
- (5) For each $x \in X$, compute secret key $k(x) = \kappa^{\mathbf{e}(x)} \mod n$

The Akl-Taylor scheme – A simple example



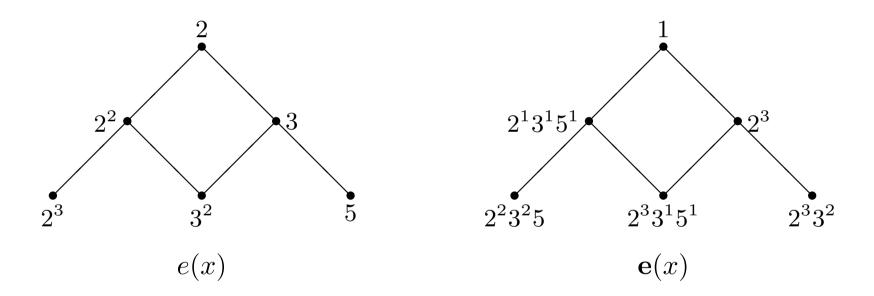
The MacKinnon-Taylor-Meijer-Akl scheme

We assume that there exists a partition of X into w disjoint chains

- (1) Choose large primes p and q and publish n = pq
- (2) Choose $\kappa \in [2, n-1]$ such that $(\kappa, n) = 1$
- (3) Assign a prime e_i to the *i*th chain and, starting with the maximal element of each chain, define $e(x) = e_i^j$, where x is the *j*th element of the *i*th chain
- (4) For each $x \in X$, define $\mathbf{e}(x) = \operatorname{lcm}\{e(y) : y \leq x\}$
- (5) For each $x \in X$, compute secret key $k(x) = \kappa^{\mathbf{e}(x)} \mod n$

Key derivation is similar to Akl-Taylor scheme

The MTMA scheme – A simple example



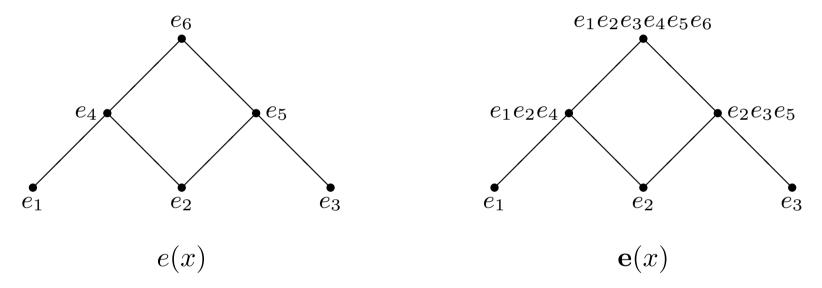
The Harn-Lin scheme – Key generation

- (1) Choose large primes p and q and publish n = pq
- (2) Choose $\kappa \in [2, n-1]$ such that $(\kappa, n) = 1$
- (3) For each $x \in X$, choose a prime e(x) and compute d(x), where $e(x) \cdot d(x) = 1 \mod \phi(n)$
- (4) For each $x \in X$, define

$$\mathbf{e}(x) = \prod_{y \leqslant x} e(y)$$
 and $\mathbf{d}(x) = \prod_{y \leqslant x} d(y) \mod \phi(n)$

(5) For each $x \in X$, compute secret key $k(x) = \kappa^{\mathbf{d}(x)} \mod n$

The Harn-Lin scheme – A simple example



Each $\mathbf{e}(x)$ includes a factor that is not included in $\mathbf{e}(y)$ for any $y \leq x$

A hybrid scheme (Crampton)

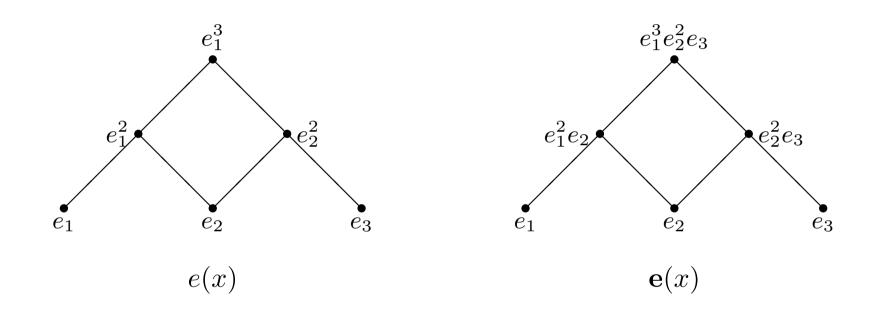
Combine elements of the MTMA and the Harn-Lin schemes

- Reduce the number of primes required in the Harn-Lin scheme
- Reduce the difficulty of updates in the MTMA scheme

Key generation

- (1) Choose large primes p and q and publish n = pq
- (2) Choose $\kappa \in [2, n-1]$ such that $(\kappa, n) = 1$
- (3) Choose primes e_1, \ldots, e_w and compute d_i , where $e_i \cdot d_i = 1 \mod \phi(n)$
- (4) Assign e_i to the *i*th chain and, starting with the *minimal* element of each chain, define $e(x) = e_i^j$, where x is the *j*th element in the *i*th chain
- (5) For each $x \in X$, define $\mathbf{e}(x) = \operatorname{lcm}\{e(y) : y \leq x\}$ and $\mathbf{d}(x) = \operatorname{lcm}\{d(y) : y \leq x\} \mod \phi(n)$
- (6) For each $x \in X$, compute secret key $\kappa^{\mathbf{d}(x)} \mod n$

A simple example



If the holders of keys κ^{d_1} and κ^{d_2} wish to compute $\kappa^{d_1^2 d_2}$ (say) then they must solve the equation $e_1 d_1 = 1 \mod \phi(n)$

Security considerations

Claim: Security of hybrid scheme is equivalent to that of Harn-Lin scheme

Question: Is the Harn-Lin scheme secure against *all* collaborative attacks?

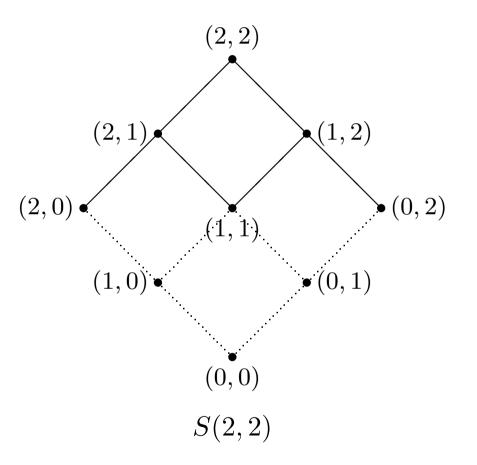
The Akl-Taylor and Harn-Lin schemes require n primes (where n = |X|)

The MTMA and hybrid schemes require w primes (where w is the width of X)

Can we do better?

Let m be the maximal outdegree or in-degree of a node in the Hasse diagram of X

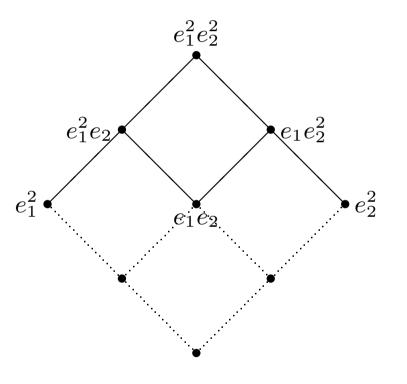
Claim: X can be embedded in a fragment of the poset $S(a_1, \ldots, a_m)$ for suitable values of a_i



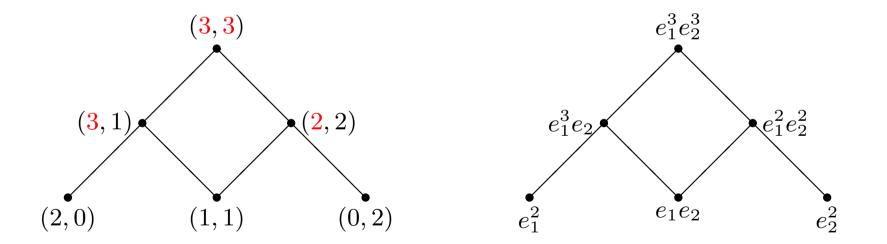
Note that $S(a_1, \ldots, a_m)$ is order isomorphic to the lattice of divisors of $\prod_{i=1}^m e_i^{a_i}$ for suitable choices of primes e_i

$$(b_1,\ldots,b_m)\mapsto e_1^{b_1}\ldots e_m^{b_m}$$

However, keyholders can collaborate to derive keys



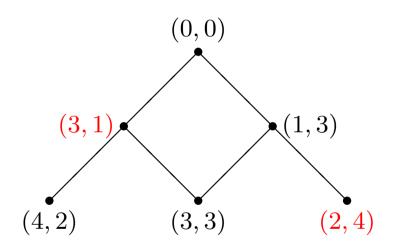
Ensure that the value of at least one co-ordinate in the parent node exceeds the corresponding value in each of the child nodes



The MTMA scheme revisited

A similar method can be used for the assignment of public parameters for top-down schemes

Note that each co-ordinate in the *i*th level must be at least one greater than each of the corresponding co-ordinates in the (i-1)th level



Embedding posets in $S(a_1, \ldots, a_m)$

Is there a systematic way of assigning public values to elements of an arbitrary poset X?

Construct a mapping $\phi: X \to S(a_1, \ldots, a_m)$ such that

- ϕ is injective
- ϕ is order-preserving
- ϕ^{-1} is order-preserving

Minimizing the size of public values (and keys)

Scheme	Largest public value
Akl-Taylor	2.3.5.11.13
MTMA	$2^2 3^2 5$
Harn-Lin	$e_1e_2e_3e_4e_5e_6$
Hybrid Harn-Lin-MTMA	$e_1^3 e_2^2 e_3$
Modified Harn-Lin	$e_{1}^{3}e_{2}^{3}$
Modified MTMA	$e_{1}^{4}e_{2}^{2}$

Minimizing the size of public values (and keys)

- It would seem that at least one public value must contain at least n-1 factors, where n = |X|
- This is intuitively reasonable ...
- ... but can it be proved?

Information flow policies for directed graphs

A poset can be thought of as the (acyclic) directed graph of the transitive closure of its Hasse diagram

Some information flow policies may

- not wish to have transitivity
- want cyclic information flow

May be important in formulating complex access control policies in non-military applications

The work of de Santis et al

Paper to appear in *Information Processing Letters* Extension of Akl-Taylor to directed graphs

- Graph is transformed into a poset of height 2 and width equal to the number of nodes in the graph
- Akl-Taylor is applied to poset

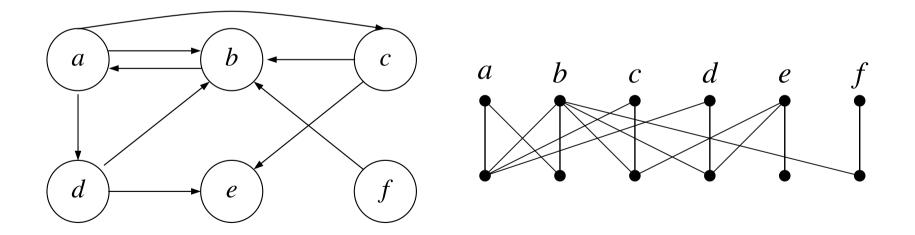
Each node x is associated with a key k(x) and a secret value s(x)

 s(x) is used to derive k(y) for any y such that (y, x) is an edge in the graph

The graph-poset transformation

Each node x in the graph (X, E) is associated with two elements in the poset – a lower element x_l and an upper element x_u

 $x_l \lessdot y_u$ iff either x = y or $(x, y) \in E$



Keys, secret values and public information

Apply Akl-Taylor scheme to poset Define $k(x) = k(x_l) = \kappa^{\mathbf{e}(x_l)}$ and $s(x) = k(x_u) = \kappa^{\mathbf{e}(x_u)}$ Publish $e(x_l)$ and $e(x_u)$

Key derivation

Let $(y, x) \in E$ and suppose the holder of k(x) wishes to compute k(y)Then he computes

$$(s(x))^{\mathbf{e}(y_l)/\mathbf{e}(x_u)} \mod n = \left(\kappa^{\mathbf{e}(x_u)}\right)^{\mathbf{e}(y_l)/\mathbf{e}(x_u)} \mod n$$
$$= \kappa^{\mathbf{e}(y_l)} \mod n$$
$$= k(y)$$

Optimizing the scheme

de Santis *et al* note that their scheme requires 2n pairs of keys and secret values

They propose an optimization that requires only n pairs of keys and secret values

• Similar in style to MTMA optimization of Akl-Taylor

An alternative scheme (Crampton)

Does not require graph-poset transformation Simpler to compute keys and secret values Security comparable to that of Akl-Taylor and de Santis schemes

Key and secret value generation

- Choose large primes p and q and publish n = pq
- Choose $\kappa \in [2, n-1]$ such that $(\kappa, n) = 1$
- For each $x \in X$, choose a distinct prime p(x) and define $P = \prod_{x \in X} p(x)$
- For each $x \in X$, publish q(x) = P/p(x)
- For each $x \in X$, define and publish $\mathbf{p}(x) = \prod_{\{y \in X: (x,y) \notin E\}} p(y)$
- For each $x \in X$, define secret value $s(x) = \kappa^{\mathbf{p}(x)} \mod n$
- For each $x \in X$, compute secret key $k(x) = \kappa^{q(x)} \mod n$

Key derivation

Let $(y, x) \in E$ and suppose the holder of k(x) wishes to compute k(y)The keyholder computes

$$(s(x))^{q(y)/\mathbf{p}(x)} = \left(\kappa^{\mathbf{p}(x)}\right)^{q(y)/\mathbf{p}(x)} = \kappa^{q(y)} = k(y)$$

It can be shown that this scheme is secure against collaborative attacks

Proof is very similar to work by Akl-Taylor and de Santis et al

A comparison

		de Santis $et al$		Crampton	
Node x	p(x)	$e(x_u)$	$e(x_l)$	$\mathbf{p}(x)$	q(x)
a	2	5.7.11.13	3.5.7.11.13	5.7.11.13	3.5.7.11.13
b	3	11	5.7.11.13	11	2.5.7.11.13
c	5	3.7.11.13	2.3.7.11.13	3.7.11.13	2.3.7.11.13
d	7	3.5.11.13	2.3.5.11.13	3.5.11.13	2.3.5.11.13
e	11	2.3.13	2.3.13	2.3.13	2.3.5.7.13
f	13	2.3.5.7.11	2.3.5.7.11	2.3.5.7.11	2.3.5.7.11

Further research opportunities

Can we relax the restriction that no coalition of users should be able to derive keys to which they should not have access?

• Can we set some threshold value t such that no coalition of fewer than t users can derive keys they should not have access to?

Can we find other one-way functions to use as the basis for cryptographic schemes?

Can we find other applications in which these techniques are useful?

Partial orders and computer security

Role-based access control

- Central concept is role hierarchy (modelled as poset)
- Antichains are very important in RBAC
- Many interesting mathematical questions regarding lattice of antichains

Access control policies for hierarchical structures

- File systems
- XML documents

References

- S.G. Akl and P.D. Taylor. Cryptographic solution to a problem of access control in a hierarchy. ACM Transactions on Computer Systems, 1(3):239-248, 1983.
- [2] L. Harn and H.Y. Lin. A cryptographic key generation scheme for multilevel data security. *Computers and Security*, 9(6):539–546, 1990.
- [3] S.J. MacKinnon, P.D. Taylor, H. Meijer, and S.G. Akl. An optimal algorithm for assigning cryptographic keys to control access in a hierarchy. *IEEE Transactions on Computers*, C-34(9):797–802, 1985.
- [4] A. De Santis, A.L. Ferrara, and B. Masucci. Cryptographic key assignment schemes for any access control policy. *Information Processing Letters*. To appear.