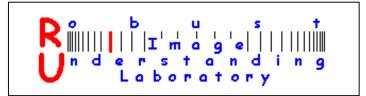
Nonparametric Clustering of High Dimensional Data

Peter Meer

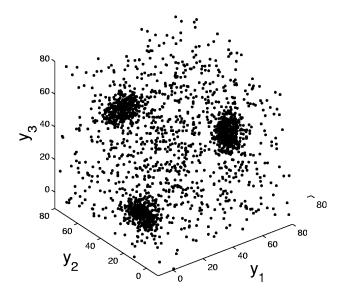
Electrical and Computer Engineering Department Rutgers University

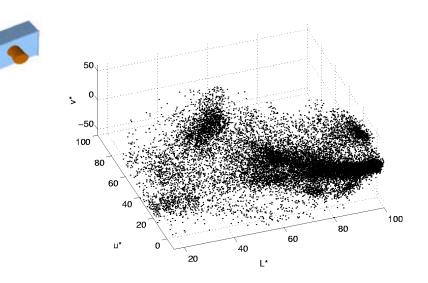
Joint work with

Bogdan Georgescu and Ilan Shimshoni



Robust Parameter Estimation: Location Problems





RIUL

elliptical	cluster shape	arbitrary
known	number of clusters	estimated
not needed	adaptive techniques	needed

Kernel Density Estimation

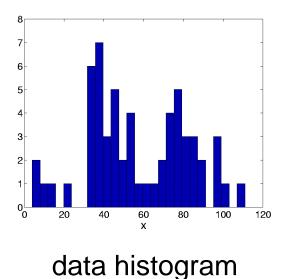
kernel density estimation (Parzen window method)

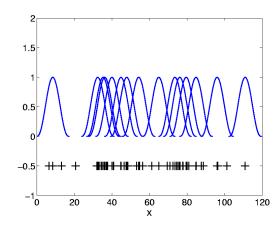
univariate data x_i $i = 1, \ldots, n$

p.d.f. estimate
$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

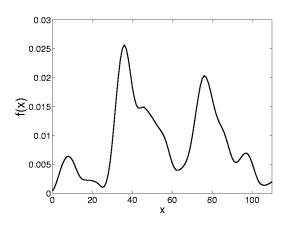
K(u) kernel function

bandwidth *h* controls resolution $\hat{h} = n^{-1/5} \mod_i |x_i - \mod_j x_j|$





a few kernels...



kernel density estimate

given $x_i \in \mathcal{R}^p$ $i = 1, \dots, n$ choose radially symmetric kernel $K(\mathbf{u}) = c_{k,p} k(\mathbf{u}^\top \mathbf{u})$ $k(\mathbf{u})$ profile define $g(\mathbf{u}) = -k'(\mathbf{u})$ and the kernel $G(\mathbf{u}) = c_{g,p} g(\mathbf{u}^\top \mathbf{u})$

kernel density estimate with kernel K(G)

$$\widehat{f}_{h,K}(\boldsymbol{x}) = \frac{c_{k,p}}{nh^p} \sum_{i=1}^n k\left(\left\| \frac{\boldsymbol{x} - \boldsymbol{x}_i}{h} \right\|^2 \right)$$

the density gradient estimate

$$\widehat{\nabla}f_{h,K}(\boldsymbol{x}) = \frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\| \frac{\boldsymbol{x} - \boldsymbol{x}_{i}}{h} \right\|^{2} \right) \right] \left[\frac{\sum_{i=1}^{n} \boldsymbol{x}_{i} g\left(\left\| \frac{\boldsymbol{x} - \boldsymbol{x}_{i}}{h} \right\|^{2} \right)}{\sum_{i=1}^{n} g\left(\left\| \frac{\boldsymbol{x} - \boldsymbol{x}_{i}}{h} \right\|^{2} \right)} - \boldsymbol{x} \right]$$

the mean shift vector

$$\mathbf{m}_{h,G}(\boldsymbol{x}) = \frac{\sum_{i=1}^{n} x_i g\left(\left\|\frac{\boldsymbol{x}-\boldsymbol{x}_i}{h}\right\|^2\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\boldsymbol{x}-\boldsymbol{x}_i}{h}\right\|^2\right)} - \boldsymbol{x} = \frac{1}{2}h^2 c \frac{\widehat{\nabla}f_{h,K}(\boldsymbol{x})}{\widehat{f}_{h,G}(\boldsymbol{x})}$$

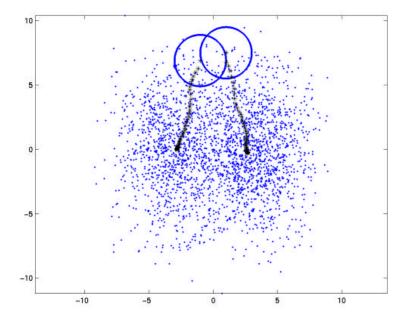
iterative computation of

$$x = \frac{\sum_{i=1}^{n} x_i g\left(\left\|\frac{\boldsymbol{x}-\boldsymbol{x}_i}{h}\right\|^2\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\boldsymbol{x}-\boldsymbol{x}_i}{h}\right\|^2\right)}$$

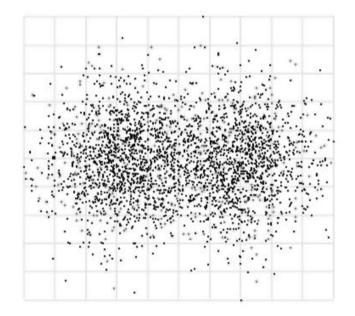
solves
$$\widehat{\nabla} f_{h,K}(\mathbf{x}) = 0$$

detects modes (stationary points) of the distribution

[Fukunaga and Hostetler, 1975]

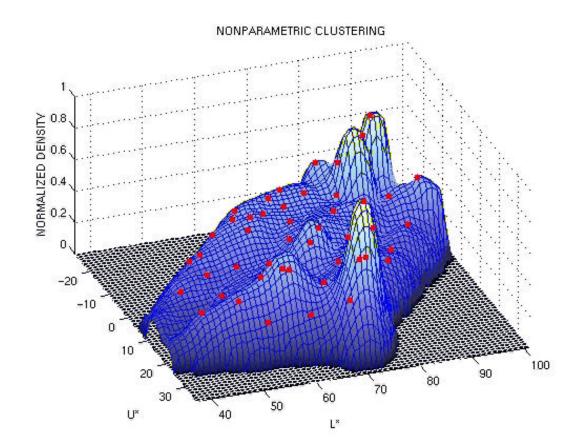


Mean Shift Based Data Analysis



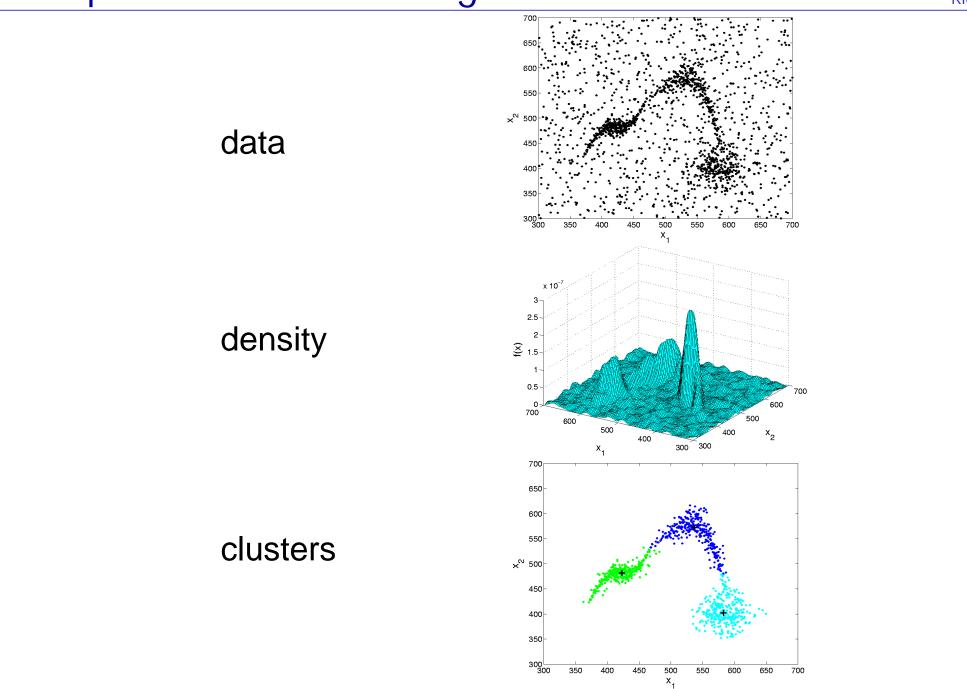
data

Mean Shift Based Data Analysis (2)



RIUL

Nonparametric Clustering



in 5D (3 color + 2 lattice) or 3D (1 gray +2 lattice) feature space

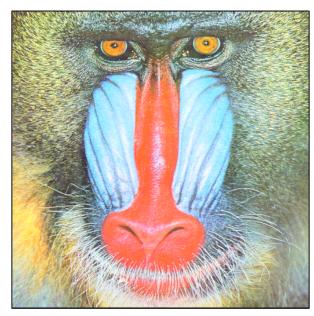
- (1) *Filtering*: pixel *-*value of the nearest mode
- (2) *Fusion*: transitive closure under color information on the region adjacency graph generated by filtering

resolution controlled by the window radii: h_s (spatial), h_r (color)

Reference: D. Comaniciu, P. Meer: "Mean Shift: A robust approach toward feature space analysis." *IEEE Trans. Pattern Anal. Machine Intell*, **24**, 603-619, May 2002.

Filtering Examples

original squirrel

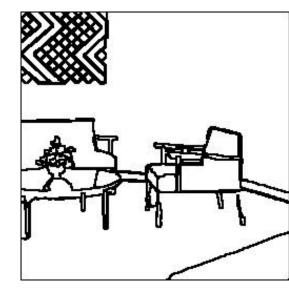


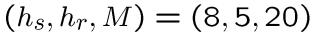
original baboon

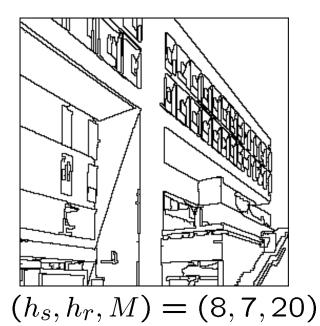
filtered $(h_s, h_r) = (8, 16)$

filtered $(h_s, h_r) = (16, 16)$

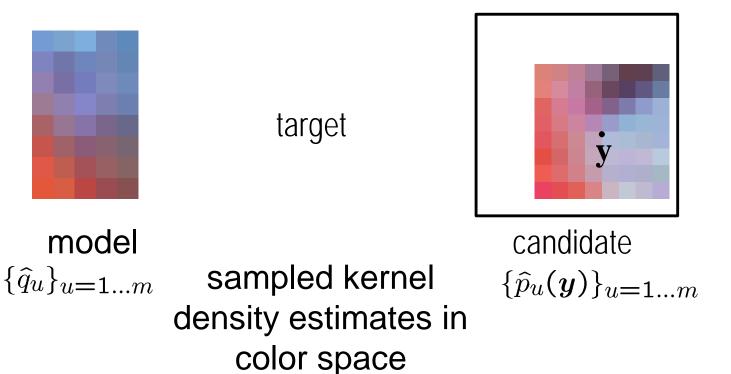
Segmentation Examples







Tracking of Non-Rigid Objects

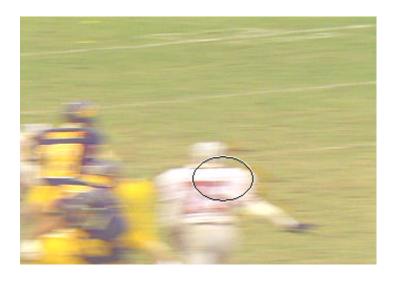


maximizing the Bhattacharyya coefficient $\hat{\rho}(y) = \sum_{u} \sqrt{\hat{p}_u(y)} \cdot \hat{q}_u$ is equivalent to finding the nearest mode in the scalar field of template matching scores

Reference: D. Comaniciu, V. Ramesh, P. Meer: "Kernel-based object tracking" *IEEE Trans. Pattern Anal. Machine Intell*, **25**, 564-577, May 2003.

Football Sequence (150 frames)

RGB space histogram of 32 x 32 x 32 bins Java implementation 30 fps on 600 MHz PC IIR filter for scale



given $x_i \in \mathbb{R}^p$ $i = 1, \dots, n$ and the bandwidth matrix H

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_{\mathrm{H}} (x - x_i)$$

 $K_{\rm H}(x) = [\det[{\rm H}]]^{-1/2} K({\rm H}^{-1/2}x) = c_{k,p} [\det[{\rm H}]]^{-1/2} k(x^{\top} {\rm H}^{-1/2}x)$

given
$$x_i \in \mathcal{R}^p$$
 and \mathbf{H}_i $i = 1, \cdots, n$

sample point kernel density estimator

$$\widehat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K_{\mathbf{H}_i} (\mathbf{x} - \mathbf{x}_i)$$

is the adequate variable bandwidth technique

important particular case: $\mathbf{H}_i = h_i^2 \mathbf{I}_p$

$$\widetilde{\mathbf{H}}(\boldsymbol{x}) = \left(\sum_{i=1}^{n} w_i(\boldsymbol{x})\mathbf{H}_i^{-1}\right)^{-1}$$

where
$$w_i(\boldsymbol{x}) = \frac{[\det[\mathbf{H}_i]]^{-1/2} g\left(\mathsf{D}[\boldsymbol{x}, \boldsymbol{x}_i, \mathbf{H}_i]^2 \right)}{\sum_{i=1}^n [\det[\mathbf{H}_i]]^{-1/2} g\left(\mathsf{D}[\boldsymbol{x}, \boldsymbol{x}_i, \mathbf{H}_i]^2 \right)}$$

and
$$\mathsf{D}\left[x,x_{i},\mathrm{H}
ight]^{2}\equiv\left(x-x_{i}
ight)^{ op}\mathrm{H}^{-1}(x-x_{i})$$

the adaptive mean shift

$$\mathbf{m}_G(\mathbf{x}) = \widetilde{\mathbf{H}}(\mathbf{x}) \sum_{i=1}^n w_i(\mathbf{x}) \mathbf{H}_i^{-1} \mathbf{x}_i - \mathbf{x}$$

has the property

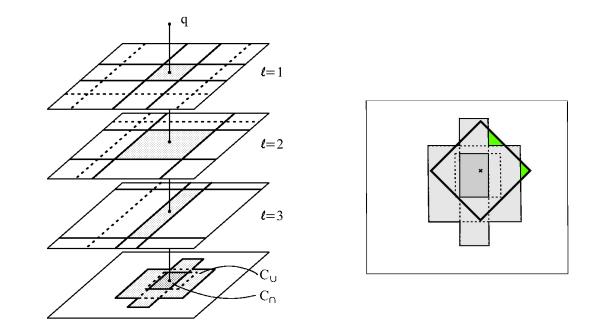
$$\mathbf{m}_G(\mathbf{x}) = \frac{c}{2} \widetilde{\mathbf{H}}(\mathbf{x}) \frac{\widehat{\nabla} f_K(\mathbf{x})}{\widehat{f}_G(\mathbf{x})}$$

statistical curse of dimensionality: sparseness of the data mode detection requires variable bandwidth

computational curse of dimensionality: range queries very expensive approximate nearest neighbor

Mean Shift in High Dimensions: LSH

idea: locality sensitive hashing [Gionis, Indyk, Motwani, 99]



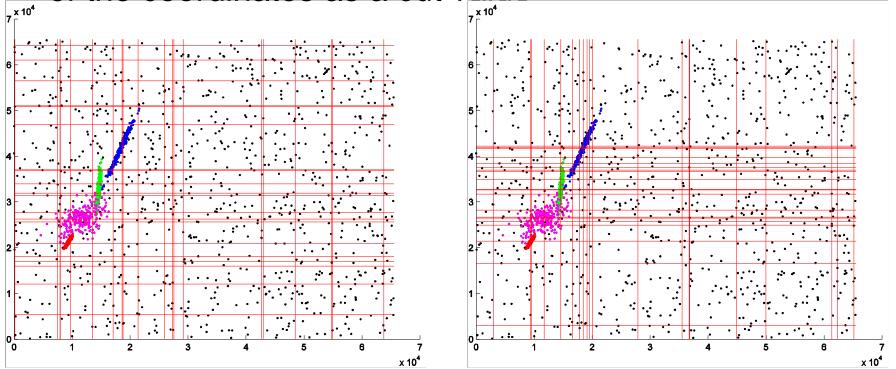
L random tessellations of the space by K random cuts each

query returns the content of the L cells in which the query point q is located in *sublinear time*

Randomly Selecting the Cuts

in original LSH cut values are randomly selected in the *range* of the data

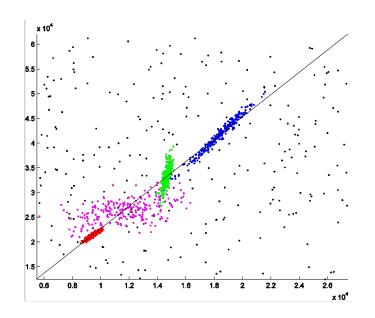
we randomly select a *point* from the data and use one of the coordinates as a cut value



uniform

data driven

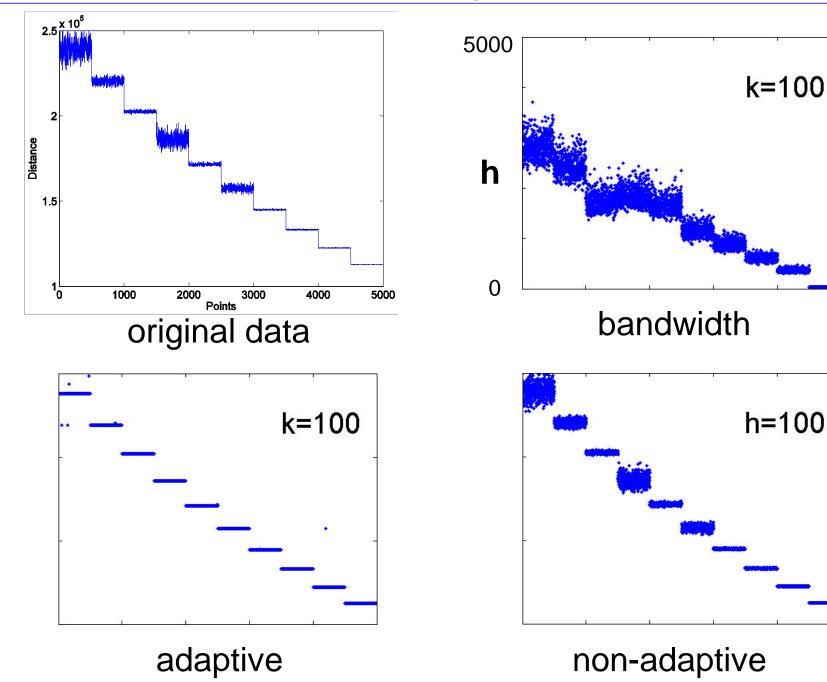
50,000 points in 50D 10x2500: normally distributed means along a line random covariances 25,000 points uniformly distributed



K and L chosen to minimize running time for finding *all* the points in a neighborhood

the bandwidth associated with a point is defined as the region containing *k* neighbors

Fast Adaptive Mean Shift: Synthetic Data (2)

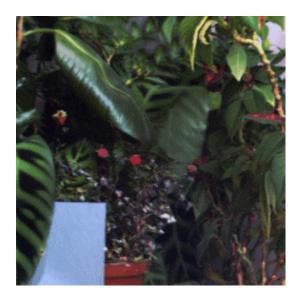


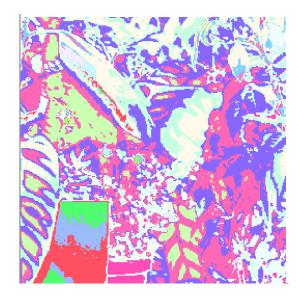
RIUL

Example: Multi-spectral Images

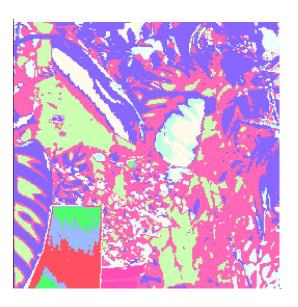
a pixel 31 bands in the visual spectrum modes detected with fast adaptive mean-shift pixels allocated

to nearest mode (vector quantization) by basin of attraction



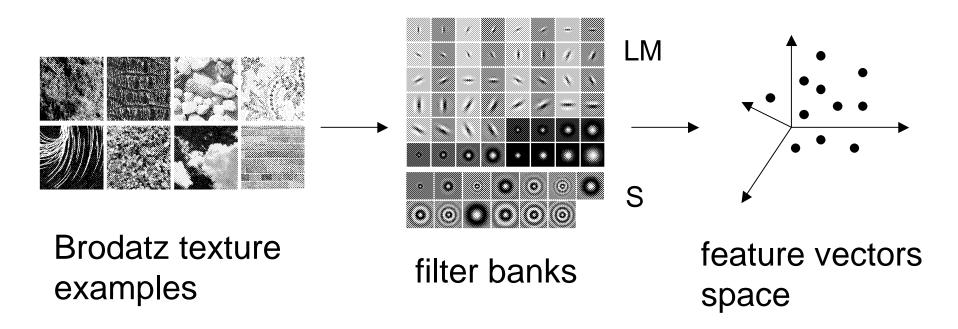


nearest mode



basin of attraction

Application: Texture Classification



cluster centers in feature space = textons [Leung and Malik' 99]

the characteristic repetitive structures of a texture clustering \rightarrow *texton* dictionary

each texture represented by the histogram of textons

query: texture class assigned based on the ?² distance between histograms

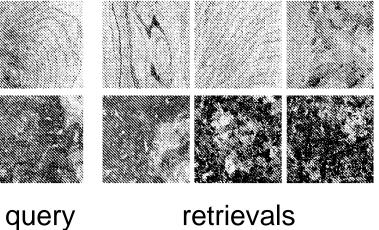
Application: Texture Classification (2)

Brodatz database:

112 textures; each texture: 2 train, 2 test;

classification performance

Filter	M4	M8	S	LM
RND	84.82%	88.39%	89.73%	92.41%
k-means	85.71%	94.64%	93.30%	97.32%
FMS	85.71%	94.64%	93.75%	98.21%
AFMS				98.66%



retrieval example:

Application: Texture Classification (3)

different texton locations yield different representations

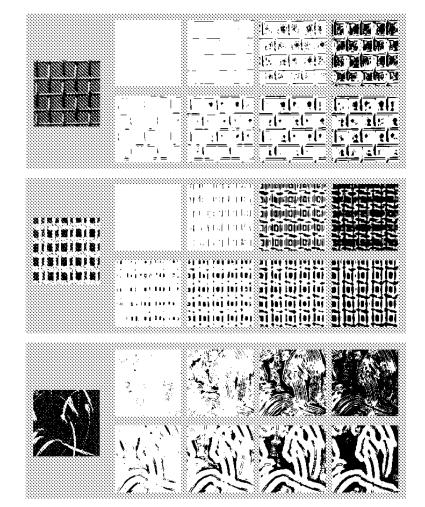


image pixels at increasing distance from textons

k-means textons

AFMS textons

mean shift: proven nonparametric method for mode seeking

applications: image segmentation object tracking texture classification etc...

implementing adaptive mean shift using LSH extends the method to high dimensional spaces