DIMACS Workshop on Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications
May 14 - 16, 2003
DIMACS Center, Rutgers University, Piscataway, NJ
- Organizers:
- Regina Liu, Rutgers University, rliu@stat.rutgers.edu
- Robert Serfling, University of Texas at Dallas, serfling@utdallas.edu
- Diane Souvaine, Tufts University, dls@eecs.tufts.edu
- Yehuda Vardi, Rutgers University, vardi@stat.rutgers.edu
Presented under the auspices of the DIMACS Special Focus on Data Analysis and Mining and the DIMACS Special Focus on Computational Geometry and Applications.
- David Eppstein, University of California
Robust Statistics and Arrangements
- Belen Fernandez-de-Castro, Universidade de Santiago de Compostela, Spain
Functional Samples and Bootstrap for Predicting SO 2 Levels
- Sara Lopez-Pintado, Juan Romo, Universidad Carlos III de Madrid, Spain
A definition of depth for functional observations
- Peter Meer, Rutgers University
Nonparametric Clustering of High-Dimensional Data
- Karl Mosler, Universitat zu Koln, Germany
Data Analysis by Zonoid Depth
- Hannu Oja, University of Jyvaskyla, Finland
On the Geometry of Multivariate L1 Objective Functions
- Eynat Rafalin, Tufts University
A computational tool for depth-based Statistical analysis
- Mario Romanazzi, Ca' Foscari University of Venice, Italy
Data Depth in Multivariate Analysis: Dependence, Discrimination and Clustering
- Vera Rosta, McGill University
Exact, Adaptive, Parallel Algorithms for Data Depth Problems
- Suresh Venkatasubramanian, AT&T Labs - Research
Real-time Computation of Data Depth Using
the Graphics Pipeline
- Yijun Zuo, Michigan State University
Computing of Projection Depth and Related Estimators
Workshop Index
DIMACS Homepage
Contacting the Center
Document last modified on June 3, 2003.