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needed--design workload to include all queries 
possibly of interest.
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Batch (non-interactive) query answering

• Goal: release answers to all queries under ε- or (ε, δ)- 
differential privacy.

the “workload”

• Linear counting queries 

• includes predicate counting queries, spatial queries, 
multi-dimensional range queries, marginals, data 
cubes, etc.

• Given: a fixed set of queries

• complex data analysis task into simpler queries.

• multiple users each issuing one or more queries.

• uncertainty about the eventual query answers 
needed--design workload to include all queries 
possibly of interest.
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Workload-aware mechanisms

Workload ObservationsObservations Citation

low-order marginals Fourier basis queries [Barak, PODS ‘07]

all one-dim range queries Hierarchical ranges [Hay, PVLDB ‘10]

all (multi-dim) range queries Haar wavelet queries [Xiao, ICDE ‘10]

2-dim range queries Quad-tree queries [Cormode, ICDE ’12]

sets of data cubes sets of data cubes [Ding, SIGMOD ’11]

set of linear queries set of linear queries [Li, PODS ‘10]         
[Li, PVLDB ‘12]

set of linear queries set of linear queries [Yuan, VLDB ’12]

• Observations selected to match (only) the workload.
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Data-aware mechanisms

Workload Observations Citation

1D range queries approx. v-optimal 
histogram [Xu, ICDE ’12]

2D range queries kd-tree queries [Xiao, SDM ‘10]

2D range queries hybrid kd-tree queries [Cormode, ICDE ’12]

Marginals scaled workload queries [Xiao, SIGMOD ’11]

Linear queries subset of workload [Hardt, NIPS ’12]

• Observations selected to match properties of the database.
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Frequency representation of the database

name gender grade
Alice Female 91
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Carl Male 82
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Edwina Female 88
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... ... ...

Relational database Frequency vector

gender grade count
Male 100 10
Male 99 13
Male 98 5
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... ... ...

Female 100 15
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Female 97 14
Female 96 9
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Frequency representation of the database

name gender grade
Alice Female 91
Bob Male 84
Carl Male 82
Dave Male 97
Edwina Female 88
Faith Female 78
Ghita Female 85

... ... ...

Relational database Frequency vector x

grade count

90-100 10

80-90 23

70-80 16

60-70 3

{grade}

x1

x2

x3
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Linear counting queries

w(D) = w1x1 + w2x2 + ... + wnxn        

A linear counting query w computes a linear 
combination of the frequency vector counts: 

each wi ∈ R

w = [w1, w2, w3 ... wn]
... as a length n row vector:

wx
The query result is:

a set of linear counting queries is a 
matrix:

Wx

The query result is:

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

1 1 1 1 1 -1 -1 -1 -1 -1

W
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• Marginals / data cube queries / contingency tables: aggregate over 
excluded dimensions.
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• Linear counting queries: arbitrary coefficients
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Privacy definitions & mechanisms

• Differential privacy

A randomized algorithm A provides (ε,δ)-differential privacy if:
for all neighboring databases D and D’, and
for any set of outputs S:

Pr[A(D) ⇥ S] � e�Pr[A(D�) ⇥ S] + �

• if δ=0, standard ε-differential privacy: 

• Laplace(0,b) noise where b=||q||1/ε

• if δ>0, approximate (ε,δ)-differential privacy: 

• Gaussian(0,σ) noise where σ= ||q||2 (2ln(2/δ))1/2/ε 

• Multi-query Laplace/Gaussian mechanism adds independent noise to each 
query answer.

• Exponential mechanism



The sensitivity of a query matrix

• For two neighboring databases D and D’, their frequency vectors x 
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The sensitivity of a query matrix

• For two neighboring databases D and D’, their frequency vectors x 
and x’ will differ in one position, by exactly 1. 

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
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y1
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=
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x7 +1
x8

x9

x10

x

query matrixanswers W

The L1 sensitivity of a query matrix is: 
the maximum L1 norm of the columns.

||W||1 = 4

x’The L2 sensitivity of a query matrix is: 
the maximum L2 norm of the columns.
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Method 4: wavelet queries

[Xiao, ICDE 10]
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Error: workload of all range queries
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Observations for the workload of all range queries

Low sensitivity, and all range queries 
can be estimated using no more than 
logn output entries.

Very low sensitivity, but 
large ranges estimated 
badly.

H YI

Noisy counts Hierarchical Wavelet

O(n/ε2)Max/Avg 
error

O(log3n/ε2) O(log3n/ε2)
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Observations for alternative workloads

• Workload: sets of 2D range 
queries

• Observations: [Cormode, ICDE ’12]

• Quad-tree queries

• Geometrically increasing ε by 
level

• Workload: sets of low-order 
marginals

• Observations: [Barak, PODS ‘07]

• Fourier basis queries 

...
more accurate

less accurate

Hi-1 Hi-1

Hi-1 -Hi-1
Hi =



Questions raised
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b mx1 noise: independent samples 
from Laplace(1)



Laplace mechanism (matrix notation)

Laplace(W,x) = Wx + (||W||1/!)b

Error(w) = 2 (||W||1/!)2
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b mx1 noise: independent samples 
from Laplace(1)



The matrix mechanism: justification



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A

z = Ax + (||A||1/!)b



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A

➌  (Derive answers) Compute estimate x of x using answers z.

z = Ax + (||A||1/!)b



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A

➌  (Derive answers) Compute estimate x of x using answers z.

z = Ax + (||A||1/!)b

• compute estimate x of x that minimizes squared error:           
⎟⎜Ax - z⎟⎜2

2



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A

➌  (Derive answers) Compute estimate x of x using answers z.

z = Ax + (||A||1/!)b

• compute estimate x of x that minimizes squared error:           
⎟⎜Ax - z⎟⎜2

2

where A+=(ATA)-1ATx=A+z
• solution is the ordinary least squares estimator:



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A

➌  (Derive answers) Compute estimate x of x using answers z.

z = Ax + (||A||1/!)b

Thm: x is unbiased 
and has the least 

variance among all 
linear unbiased 

estimators.

• compute estimate x of x that minimizes squared error:           
⎟⎜Ax - z⎟⎜2

2

where A+=(ATA)-1ATx=A+z
• solution is the ordinary least squares estimator:



The matrix mechanism: justification

➊  (Select Observations) Choose a (full rank) query matrix A 

➋  (Apply Laplace) Use the Laplace mechanism to answer A

➌  (Derive answers) Compute estimate x of x using answers z.

z = Ax + (||A||1/!)b

Thm: x is unbiased 
and has the least 

variance among all 
linear unbiased 

estimators.

• compute estimate x of x that minimizes squared error:           
⎟⎜Ax - z⎟⎜2

2

• Compute workload queries using estimate x:

Wx

where A+=(ATA)-1ATx=A+z
• solution is the ordinary least squares estimator:
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The matrix mechanism

Given a workload W, and any full-rank strategy matrix A, 
the following randomized algorithm is ε-differentially private:

MatrixA(W,x) = Wx + (||A||1/!) WA+ b b=Lap(1)

Laplace(W,x) = Wx + (||W||1/!)b

Compare with the Laplace mechanism:

instantiated with
observations A true answer scaling by 

||A||1
transformation

 by WA+



Instances of the matrix mechanism

Observation 
Matrix A Resulting mechanism

A = W Never worse than Laplace -- sometimes better

A = Identity matrix a common baseline

A = Haar wavelet [Xiao, ICDE ‘10]

A = tree based [Hay, PVLDB ‘10]   [Cormode, ICDE ’12]

A = fourier basis [Barak, PODS ‘07]

Given workload W of linear queries:
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Observation matrices equivalent to wavelet

1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1

Wavelet Y
||Y||1 = 3

Y’
||Y’’||1 = 2.414

The haar wavelet observation matrix Y is 
dominated by alternative matrix Y’’.

Y’’
||Y’||1 = 3
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Given an observation matrix A and workload W, the error 
under the mechanism MatrixA is:

TotalErrorA(w) = (2/!2)(||A||1)2 trace( W(ATA)-1WT )

ErrorA(w) = (2/!2)(||A||1)2 w(ATA)-1wT

For a single query w in W:

Total error for workload W:

Error of matrix mechanism

Error independent of the input data



Optimal selection of observations

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Optimal selection of observations

Privacy Optimization Objective Problem Type Runtime

ε
DP

Given W consisting of data cube queries, choose A 
consisting of data cube queries to minimize simplified error 
measure. [Ding, SIGMOD ’11]

set-cover 
approx O(n)

ε
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10]

SDP w/ rank 
constraints O(n8)

(ε,δ)
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10] SDP O(n8)

ε
DP

Given W, choose AB≈W to minimize 
TotalErrorA(AB) [Yuan, VLDB ’12]

bi-convex
opt O(n4)

(ε,δ)
DP

Given W, choose optimal scaling of eigenvectors 
of W to minimize TotalErrorA(W)  [Li, PVLDB ‘12]

convex
opt O(n4)

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Optimal selection of observations

Privacy Optimization Objective Problem Type Runtime

ε
DP

Given W consisting of data cube queries, choose A 
consisting of data cube queries to minimize simplified error 
measure. [Ding, SIGMOD ’11]

set-cover 
approx O(n)

ε
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10]

SDP w/ rank 
constraints O(n8)

(ε,δ)
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10] SDP O(n8)

ε
DP

Given W, choose AB≈W to minimize 
TotalErrorA(AB) [Yuan, VLDB ’12]

bi-convex
opt O(n4)

(ε,δ)
DP

Given W, choose optimal scaling of eigenvectors 
of W to minimize TotalErrorA(W)  [Li, PVLDB ‘12]

convex
opt O(n4)

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Optimal selection of observations

Privacy Optimization Objective Problem Type Runtime

ε
DP

Given W consisting of data cube queries, choose A 
consisting of data cube queries to minimize simplified error 
measure. [Ding, SIGMOD ’11]

set-cover 
approx O(n)

ε
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10]

SDP w/ rank 
constraints O(n8)

(ε,δ)
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10] SDP O(n8)

ε
DP

Given W, choose AB≈W to minimize 
TotalErrorA(AB) [Yuan, VLDB ’12]

bi-convex
opt O(n4)

(ε,δ)
DP

Given W, choose optimal scaling of eigenvectors 
of W to minimize TotalErrorA(W)  [Li, PVLDB ‘12]

convex
opt O(n4)

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Optimal selection of observations

Privacy Optimization Objective Problem Type Runtime

ε
DP

Given W consisting of data cube queries, choose A 
consisting of data cube queries to minimize simplified error 
measure. [Ding, SIGMOD ’11]

set-cover 
approx O(n)

ε
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10]

SDP w/ rank 
constraints O(n8)

(ε,δ)
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10] SDP O(n8)

ε
DP

Given W, choose AB≈W to minimize 
TotalErrorA(AB) [Yuan, VLDB ’12]

bi-convex
opt O(n4)

(ε,δ)
DP

Given W, choose optimal scaling of eigenvectors 
of W to minimize TotalErrorA(W)  [Li, PVLDB ‘12]

convex
opt O(n4)

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Optimal selection of observations

Privacy Optimization Objective Problem Type Runtime

ε
DP

Given W consisting of data cube queries, choose A 
consisting of data cube queries to minimize simplified error 
measure. [Ding, SIGMOD ’11]

set-cover 
approx O(n)

ε
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10]

SDP w/ rank 
constraints O(n8)

(ε,δ)
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10] SDP O(n8)

ε
DP

Given W, choose AB≈W to minimize 
TotalErrorA(AB) [Yuan, VLDB ’12]

bi-convex
opt O(n4)

(ε,δ)
DP

Given W, choose optimal scaling of eigenvectors 
of W to minimize TotalErrorA(W)  [Li, PVLDB ‘12]

convex
opt O(n4)

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Optimal selection of observations

Privacy Optimization Objective Problem Type Runtime

ε
DP

Given W consisting of data cube queries, choose A 
consisting of data cube queries to minimize simplified error 
measure. [Ding, SIGMOD ’11]

set-cover 
approx O(n)

ε
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10]

SDP w/ rank 
constraints O(n8)

(ε,δ)
DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10] SDP O(n8)

ε
DP

Given W, choose AB≈W to minimize 
TotalErrorA(AB) [Yuan, VLDB ’12]

bi-convex
opt O(n4)

(ε,δ)
DP

Given W, choose optimal scaling of eigenvectors 
of W to minimize TotalErrorA(W)  [Li, PVLDB ‘12]

convex
opt O(n4)

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Approximately optimal selection of observations

• Given W, choose a set of basis queries for the observations:

•                       (the eigenvectors of W)

• compute optimal scalars to minimize error

• Resulting observation matrix is:

• Efficiently solvable and achieves optimal error rates in practice.

v1, v2, ... vn

c1v1

c2v2

...
cnvn

c1, c2, ... cn

A=

Matrix Mechanism under (ε,δ)-Differential Privacy

• Algorithm running time: O(n rank(W)3)



Representative experimental findings

• Benefit of fixed observations:

• W={All Range Queries} can be reduced by a factor of 2-4 by 
using wavelet or hierarchical observations. [Xiao, ICDE ‘10] [Hay, PVLDB 
‘10]

• Benefit of optimized observations:

• ε-DP: Error reduced by 2-3 times compared with fixed 
observation methods. [Yuan, VLDB ’12]

• (ε,δ)-DP: Error reduced by 2-6 times on range and marginal 
workloads for which fixed observation methods were designed; 
up to 10 times reduction for ad hoc workloads. [Li, PVLDB ‘12]

Note 2: ratios based on root mean squared error.
Note 1: comparisons don’t depend on input data or privacy parameters.*



Lower bound on error

• Given workload W with singular values λ1 > ... > λn, the minimum 
total error of the matrix mechanism is greater than or equal to:

(tight)

Privacy Error Lower Bound

ε-DP (2/!2)(1/n)(λ1 + ... + λn)2

(ε,δ)-DP (2log(2/")/!2)(1/n)(λ1 + ... + λn)2



Runtime complexity

• Answering W using Laplace/Gaussian mechanism takes O(|W|n) 
time.

Costs Fixed
Observations

Optimized
Observations

1. Select observations - ~ O(n4)

2. Apply standard mechanism O(|A|n) O(|A|n)

3. Derive answers O(|W|n) O(|W|n2)

• Because of data-independence, observation matrix can be 
preprocessed:

• Given fixed workload W and observation matrix A, runtime is 
O(|W|n) after pre-computation of WA+: no worse than 
standard mechanisms



Summary: workload-aware mechanisms

Workload ObservationsObservations Citation

low-order marginals Fourier basis queries [Barak, PODS ‘07]

all one-dim range queries Hierarchical ranges [Hay, PVLDB ‘10]

all (multi-dim) range queries Haar wavelet queries [Xiao, ICDE ‘10]

2-dim range queries Quad-tree queries [Cormode, ICDE ’12]

sets of data cubes sets of data cubes [Ding, SIGMOD ’11]

set of linear queries set of linear queries [Li, PODS ‘10]         
[Li, PVLDB ‘12]

set of linear queries low-order set of linear queries [Yuan, VLDB ’12]

• Methods can be seen as a generalization of Laplace/Gaussian 
mechanism, with error rates significantly reduced and independent 
of data.
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Summary: workload-aware mechanisms

•  Benefits
• Independence of data makes error analysis easy, error rates 

publishable to analyst, and improves efficiency in some cases.
• Limitations

• Computational dependence on domain size, n.
• Error dependence on epsilon: 1/ε2

• For some workloads, there is no set of observations that can 
help much.

• Open questions
• Alternative derivation methods: e.g. non-negative least squares
• Relationship with “universal” error lower bounds for DP.
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(Recall) Approach 2: data-aware mechanisms

Laplace or 
Gaussian

Mechanism
database

workload W
w1

w2

w3

analystserver

a1

a2

a3

a1(D) + noise
a2(D) + noise
a3(D) + noise

Observations
 A

noisy est. w1(D) 
noisy est. w2(D)
noisy est. w3(D)

T test

noisy resultT’

Derive answers to 
workload queries

Select 
Observations

Apply standard 
mechanism

Test dataset

Derive workload 
answers



A basic intuition

• Detect when additional 
observations won’t help much.

• Challenges:

• Balance privacy budget 
between testing data and 
usable observations.

• When possible, incorporate 
test observations into query 
answers.

• Perturbation error vs. 
approximation error.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10



A basic intuition

• Detect when additional 
observations won’t help much.

• Challenges:

• Balance privacy budget 
between testing data and 
usable observations.

• When possible, incorporate 
test observations into query 
answers.

• Perturbation error vs. 
approximation error.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1+xx1+x2+x+x2+x3 x4+xx4+x5 x6+xx6+x7+x+x7+x8+x+x8+x9+x10+x10



1. Compute a private estimate of the k-bin, variance-optimal 
histogram using the exponential mechanism.

2. Use Laplace mechanism to get bin counts and all individual 
counts.

3. Derive answers to workload queries using least squares.

Data-aware histogram

Workload 1D Range Queries

Parameters k, ε1, ε2 s.t. ε1+ε2=ε 

[Xu, ICDE ’12]

!1

!2



Techniques for spatial queries

• Spatial queries are 2 dimensional counting queries (typically range 
queries)

• kd-tree: a data-aware hierarchical space partitioning data structure.  
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Data-aware kd-tree (1)

1. Use Laplace mechanism to get noisy counts: x’

2. Build kd-tree K from x’, but stop splitting if:

•  sum of counts in current region is too small (p1), or

•  counts in current region are close to uniform (p2)

3. Use Laplace mechanism to get noisy counts K’ for all 
regions in K.

4. Compute workload answers from K’ using least 
squares.

!1=!/2

!2=!/2

[Xiao, SDM ‘10]

Workload 2D Range Queries

Parameters p1, p2, ε1, ε2 s.t. ε1+ε2=ε 



Data-aware kd-tree (2)

1.Build hybrid hierarchical structure:

• l-levels of kd-tree using exponential mechanism to 
compute median.

• remaining (k-l) levels uniform quad-tree.

2.Use Laplace mechanism to get noisy counts.

3.Derive workload query answers using least squares.

!1=.3!

!2=.7!

[Cormode, ICDE ’12]

Workload 2D Range Queries

Parameters l, k, ε1, ε2 s.t. ε1+ε2=ε 



Optimizing for relative error

1. Answer all workload queries using Laplace mechanism with 
budget ε/T

2. Repeat T-1 times:

• Refine query answers, by resampling queries with small 
values.

• Final query answers have same privacy cost as single Laplace 
random variable with resulting error.

Workload marginals

Parameters T, ε

[Xiao, SIGMOD ’11]



Multiplicative weights

• Begin with uniform estimate x0 of database x

• For i = 1...T :

• Evaluate all workload queries using current estimate 
xi-1.  Select inaccurate qi  with exponential mechanism.

• Laplace mechanism: get noisy estimate mi of qi.

• Update xi-1 → xi using mi: multiplicative weights. 

!1=!/2T

!2=!/2T

[Hardt, NIPS ’12]

Workload linear queries

Parameters T, ε1, ε2 s.t. T(ε1+ε2)=ε 



Multiplicative weights

• Provably better dependence on ε than workload-aware techniques: 
squared error O(1/ε2) vs. O(1/ε2/3)

• Observations customized to workload.

• Very good accuracy for sparse datasets.

• Output satisfies non-negativity constraints.

• Must compute all workload queries T times. 

[Hardt, NIPS ’12]



Representative experimental findings

• Building a data-aware histogram reduces error on range queries by 
20-40% compared with fixed workload-aware methods like wavelet  
or tree-based. [Xu, ICDE ’12] 

• Neither of the data-aware kd-trees consistently outperform 
workload-aware quad-tree (on random sets of 2D range queries). 
[Cormode, ICDE ’12]

• For reasonable privacy parameters, small workloads of random 
range queries on sparse data, multiplicative weights can reduce 
error by a factor of 10 over matrix mechanism. [Hardt, NIPS ’12]

• (But for other datasets, it can be outperformed by a factor of 10 
by a fixed workload-aware method like wavelet.)

Note: ratios based on root mean squared error.



Data-aware mechanisms

Workload Observations Citation

1D range queries approx. v-optimal 
histogram [Xu, ICDE ’12]

2D range queries kd-tree queries [Xiao, SDM ‘10]

2D range queries hybrid kd-tree queries [Cormode, ICDE ’12]

Marginals scaled workload queries [Xiao, SIGMOD ’11]

Linear queries subset of workload [Hardt, NIPS ’12]

• Observations selected to match properties of the database; 
generally efficient, but spending privacy budget on testing doesn’t 
always pay off.



Summary: data-aware mechanisms
• Benefits:

• Lower error than Approach 1 in some cases.

• Limitations:

• Parameters for algorithms must be selected carefully.

• Public error rates not available to analyst.

• Techniques are data-aware, but are they workload-aware?

• Open questions:

• Evaluation highly dependent on workload, dataset, epsilon.  
What are “real” data and workloads like?  What properties of 
data determine error?
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Summary and conclusions

• Two approaches to batch query answering, each of which provide 
significant error improvements by building on standard Laplace/
Gaussian mechanisms, but using alternative observations. 

• Workload-aware methods ignore the input data, and choose 
observations solely by analyzing the workload.

• Data-aware methods carefully (i.e. privately) exploit properties of 
the input data.

• Both approaches are efficient for modestly sized domains.



• Benefits:

• Lower error than Approach 1 in some 
cases.

• Limitations:

• Parameters for algorithms must be 
selected carefully.

• Public error rates not available to 
analyst.

• Techniques are data-aware, but are 
they workload-aware?

• Open questions:

• Evaluation highly dependent on 
workload, dataset, epsilon.  What are 
“real” data and workloads like?  What 
properties of data determine error?

•  Benefits

• Independence of data makes error 
analysis easy, error rates publishable 
to analyst, and improves efficiency in 
some cases.

• Limitations

• Computational dependence on 
domain size, n.

• Error dependence on epsilon: 1/ε2

• For some workloads, there is no set 
of observations that can help much.

• Open questions

• Alternative derivation methods: e.g. 
non-negative least squares

• Relationship with “universal” error 
lower bounds for DP.

Workload-aware Data-aware



Open issues

• What makes one workload “harder” to answer than another?

• What makes one database “harder” to support accurately?

• Can we avoid the computational dependence on the domain size n?

• How do we analyze the error resulting from non-negative least 
squares if applied in derivation of matrix mechanism?

• Methods for more expressive queries.
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