Evaluating the predictive power of R_0 in wildlife populations: dueling timescales of host movement and disease dynamics

Philip Johnson, UC Berkeley
Paul Cross, USGS
James Lloyd-Smith, Pennsylvania State
Wayne Getz, UC Berkeley

Our question:

- Why does a given disease affect some species much more than other species?
- Potential answers:
 - Immunological differences
 - Behavioral differences

Population structure

Outline

- Why structure matters
 - Phenomenological coupling
 - Mechanistic coupling
- Our model
- Threshold metrics for disease invasion
 - \square R_0
 - □ R_{*}
- Decision tree prediction of invasion

Why structure matters

Phenomenological coupling

Mechanistic coupling

Keeling & Rohani (2002): phenomenological coupling is OK when mixing is fast.

Discrete SIR Model

Parameters

 β – force of infection

 γ – Pr(recovery)

But what about the herds?

Parameters

 β – force of infection

 γ – Pr(recovery)

 μ – Pr(movement)

n – group size

Simulation

- Discrete-time, nonhomogenous Markov chain
- Initial state: one infected host in one group
- Transition matrices
 - Spatial: 11x11 torus = 1210 groups = 1210x1210 matrix
 - □ Disease: S,I,R states 3x3 matrix where S→I transition depends on I and n

R_0 : The basic reproductive

- How the theoreticians see it:
 - expected number of new infections caused by a single index case in an infinite population where everyone is susceptible.
- How it is often interpreted:
 - extrapolation of R₀ > 1 threshold to real-life
 stochastic contacts, finite population, depletion
 of susceptible pool

Why structure **really** matters

R_* : taking R_0 to the next level

- expected number of new infected groups caused by a single initially infected group in a population with infinite susceptible groups
- First coined by Ball et al. 1997
- Calculating R_{*}
 - analytic
 - simulation

Effect of movement (μ)

Effect of group size (n)

Rule of thumb for high R_0 : $n \cdot \mu / \gamma > 1$

Effect of stochasticity

R₀>1 and movement necessary but not sufficient

Empirical R₀ versus R_{*}

R_{*} predicts better than R₀

A problem: how to predict?

- R_{*} is great, but cannot be calculated beforehand
- R₀ is easy to calculate, but runs into trouble as a predictor
- What to do, what to do?

Classification trees to the rescue!

- Past applications:
 - Clinical risk assessments
 - Growing use in ecological literature
- Goal: minimize misclassification rate of response variable (disease invasion) via binary decision tree
- Heuristic penalty used to avoid huge trees

SIRS & SIR-bd

$$R_0 \approx \beta/\gamma$$

$$R_0 \approx \beta/(\gamma + \delta)$$

Hypothetical classification tree

Misclassification (error) rate: (5+3+1)/28 = 0.32

CART method

- Aggregate, measurable parameters:
 - \square β/γ (R_0)
 - \square $\mu \cdot n/\gamma$ (previous rule of thumb)
 - $\rho \cdot n/\gamma$ or $\delta \cdot n/\gamma$ (influx of new susceptibles)
- Other combinations possible (including raw parameters)

CART results

Recap

- Model design
 - Population structure critical
 - Mechanistic host movement
- Single predictors
 - R₀ gives high false-positives
 - □ R_∗ best, but no way to calculate
- CART's measurable parameters
 - \square R₀, μ ·n/ γ , ρ ·n/ γ

Acknowledgements

- Getz Lab
- For more info:
 - □ Cross, et al. (2005) *Ecology Letters* **8**:587-595
 - □ Cross, et al. (submitted) *J R Soc Interface*