Evaluating the predictive power of R_0 in wildlife populations: dueling timescales of host movement and disease dynamics Philip Johnson, UC Berkeley Paul Cross, USGS James Lloyd-Smith, Pennsylvania State Wayne Getz, UC Berkeley ## Our question: - Why does a given disease affect some species much more than other species? - Potential answers: - Immunological differences - Behavioral differences # Population structure #### Outline - Why structure matters - Phenomenological coupling - Mechanistic coupling - Our model - Threshold metrics for disease invasion - \square R_0 - □ R_{*} - Decision tree prediction of invasion #### Why structure matters Phenomenological coupling Mechanistic coupling Keeling & Rohani (2002): phenomenological coupling is OK when mixing is fast. #### Discrete SIR Model #### **Parameters** β – force of infection γ – Pr(recovery) #### But what about the herds? #### **Parameters** β – force of infection γ – Pr(recovery) μ – Pr(movement) n – group size #### Simulation - Discrete-time, nonhomogenous Markov chain - Initial state: one infected host in one group - Transition matrices - Spatial: 11x11 torus = 1210 groups = 1210x1210 matrix - □ Disease: S,I,R states 3x3 matrix where S→I transition depends on I and n ## R_0 : The basic reproductive # - How the theoreticians see it: - expected number of new infections caused by a single index case in an infinite population where everyone is susceptible. - How it is often interpreted: - extrapolation of R₀ > 1 threshold to real-life stochastic contacts, finite population, depletion of susceptible pool #### Why structure **really** matters ### R_* : taking R_0 to the next level - expected number of new infected groups caused by a single initially infected group in a population with infinite susceptible groups - First coined by Ball et al. 1997 - Calculating R_{*} - analytic - simulation ## Effect of movement (μ) ## Effect of group size (n) Rule of thumb for high R_0 : $n \cdot \mu / \gamma > 1$ #### Effect of stochasticity R₀>1 and movement necessary but not sufficient ## Empirical R₀ versus R_{*} R_{*} predicts better than R₀ ## A problem: how to predict? - R_{*} is great, but cannot be calculated beforehand - R₀ is easy to calculate, but runs into trouble as a predictor - What to do, what to do? #### Classification trees to the rescue! - Past applications: - Clinical risk assessments - Growing use in ecological literature - Goal: minimize misclassification rate of response variable (disease invasion) via binary decision tree - Heuristic penalty used to avoid huge trees #### SIRS & SIR-bd $$R_0 \approx \beta/\gamma$$ $$R_0 \approx \beta/(\gamma + \delta)$$ ## Hypothetical classification tree Misclassification (error) rate: (5+3+1)/28 = 0.32 #### CART method - Aggregate, measurable parameters: - \square β/γ (R_0) - \square $\mu \cdot n/\gamma$ (previous rule of thumb) - $\rho \cdot n/\gamma$ or $\delta \cdot n/\gamma$ (influx of new susceptibles) - Other combinations possible (including raw parameters) #### CART results ### Recap - Model design - Population structure critical - Mechanistic host movement - Single predictors - R₀ gives high false-positives - □ R_∗ best, but no way to calculate - CART's measurable parameters - \square R₀, μ ·n/ γ , ρ ·n/ γ ## Acknowledgements - Getz Lab - For more info: - □ Cross, et al. (2005) *Ecology Letters* **8**:587-595 - □ Cross, et al. (submitted) *J R Soc Interface*