The unassigned distance geometry problem applied to find atoms in nanoclusters for sustainable energy

S.J.L. Billinge^{1,2} Pavol Juhas³, Phil Duxbury³

¹Dept. of Applied Physics and Applied Mathematics, Columbia University ²CMPMS, Brookhaven National Laboratory (BNL) ³Center for Data-Driven Discovery, BNL ⁴Department of Physics, Michigan State University

Columbia University in the City of New York Brookhaven National Laboratory

National Synchrotron Light Souce-II (NSLS-II) =>

- XPD beamline
- Coherence
- Small beams
- High energy resolution
- Resonant scattering

BROOKHAVEN

A short side-trip

- Synchrotron: a very intense source of x-rays
- Relativistic electrons (>0.99 c) are "wiggled" and radiate x-rays
- Relativistic squeezing produces a pencilnarrow beam in the direction of travel of the electrons

• We put our samples in that beam

COLUMBIA UNIVERSITY

Why bother?

Materials are the bottleneck to technological solutions to some of mankinds most pressing problems

- Photovoltaics with improved efficiency
 - Nanoparticles in the light collecting layer
- High energy density batteries
 - Electrodes
 - Electrolytes
- Fuel cells for transportation applications
 - Electrodes
 - Electrolytes
 - Catalysts
 - Hydrogen storage

Sequestration

- Functionalized mesoporous materials

U. Uppsala

Structure and properties Structure has a profound affect on properties Take pure carbon for example:

- Diamond:
 - hard
 - transparent
 - insulating
 - expensive
- Graphite:
 - soft
 - black
 - metallic (semimetallic anyway)
 - cheap

It's all just pure carbon...The difference?

A big diamond: Portugese, 31.93 carats

Something big being built out of graphite (don't try this with diamond)

Structure!

The Crystal Structure Problem

• Problem:

– Here is a crystal, what is its structure?

Solution:

- 1. Give it to your grad student
- 2. She puts it on the x-ray machine
- 3. ...Pushes the button
 - 1. Machine tells you the structure
 - 2. Or Machine gets stuck
 - 1. Throw away the crystal
 - 2. Make it the subject of her thesis

Crystallography is largely a solved problem

From LiGaTe2: A New Highly Nonlinear Chalcopyrite Optical Crystal for the Mid-IR L. Isaenko, et al., J. Crystal Growth, 5, 1325 – 1329 (2005)

The Nanostructure Problem

Crystal Structure Problem

The crystal structure problem reduces to a "phase retrieval" problem in most cases.

- The phase retrieval problem
 - Recover a general signal, an image, for example, from the magnitude of its Fourier transform
- In crystallography
 - The signal is the amplitudes of a large set of discrete Fourier coefficients in a discrete Fourer series over a periodic basis (the reciprocal lattice)
 - Solution is the contents of a periodically averaged unit cell

The Nanostructure Problem

- At the nanoscale crystalloraphy breaks down, the structure is not translationally invariant, but discovery of nanostructure is nonetheless very important
- Potential approaches
- "Single" nanocrystallography
 - Isolate a single (or a few) nanoparticle(s) and take diffraction patterns or atomically resolved images at all different angles
 - Reconstruct the structure using phase retrieval (continuous now) or tomographic reconstruction
- "Powder" nanocrystallography
 - Get a signal from a large number of similar nanoparticles with undetermined orientations
 - Reconstruct the atomic structure from the degraded signal
 - Atomic PDF

The atomic Pair Distribution Function

Nanostructure refinement

Where does Distance Geometry Come in?

 From Leo Liberti, Carlile Lavor, Nelson Maculan, Antonio Mucherino SIAM review 2014

DISTANCE GEOMETRY PROBLEM (DGP). Given an integer K > 0and a simple undirected graph G = (V, E) whose edges are weighted by a nonnegative function $d : E \to \mathbb{R}_+$, determine whether there is a function $x : V \to \mathbb{R}^K$ such that

(1.1)
$$\forall \{u, v\} \in E, \quad ||x(u) - x(v)|| = d(\{u, v\}).$$

This is fine, but it assumes that we know the whole graph, (V,E).

Unassigned Distance Geometry Problem

- To be explicit we rename that as the assigned DGP, *aDGP*
- We define a new problem, the unassigned DGP or uDGP where there is no assignment of vertices to distances
- This is a much harder problem because the graph structure itself has to be discovered as well as the embedding
- Problem formalized by my collaborator Phil Duxbury (Michigan State University) based on work going back to mid oughties

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

V **204**, pp 117 (2016) The unassigned distance geometry problem P.M. Duxbury^{a,*}, L. Granlund^a, S.R. Gujarathi^a, P. Juhas^b, S.J.L. Billinge^c

Unassigned DGP

Definition 2 (*Unassigned Distance Geometry Problem (uDGP)*). Given an integer K > 0 and a set D of strictly positive distances, determine whether there is an assignment $\alpha : L \to E$, and an embedding $x : V \to \Re^K$ such that,

 $\forall l \in L, \ u, v \in V : \{u, v\} = \alpha(l) \text{ and } \|x_u - x_v\| = d_l.$ (3)

• L is the set of m indices that enumerate the distances, d, in our distance list, D

Expression of the uDGP as an optimization problem

$$\min_{\alpha:L\to E} \left[\min_{X} \sum_{\{u,v\}\in E} f(\|x(u) - x(v)\| - d_{uv}) \right]$$

- The minimization is over all possible assignments of d_l to $d_{u,v}$ as well as over the placement of vertices, x(u) in \Re^{K}
- *f*(*y*) is a convex penalty function
- The α mapping is bijective in the ideal case, but in many real cases, D is not complete, there are missing distances resulting in an injective and non-surjective mapping

Examples

 C₆₀ (Buckminsterfuller ene)

- Note, in the upper plot the edges shown are bonds
- Exactly the info we get from the PDF

Is this problem unique? Can we solve it?

Unique

• For small systems we can find multiple solutions, so it is not unique by inspection

- At least 3 3d embeddings are weakly homometric for the distance list of a planar hexagon
- But these are trivial problems, what about when the problem gets larger?

Large systems

- For large systems we can argue that the probability of multiple solutions is vanishingly small
- In K dimensions, there are nK translational degrees of freedom for n vertices
- A rigid body in K dimensions has K(K+1)/2 translational and rotational degrees of freedom
- If we have a generic graph and we know all the distances exactly we have n(n-1)/2 distances in our list
- Since n(n-1)/2 >> nK K(K+1)/2 it is highly likely that we will have a unique solution
- OK, let's push on and try and solve it.

Structure determination from PDF

- neutron diffraction PDF data from C₆₀
- 60 atoms, => n(n-1)/2 = 1770 distances
- extracted 18 out of 21 unique distance values
- structure determination still successful

low error

high error

• algorithm extended for multiple atom-types and periodic boundary conditions

[Juhás et. al, Acta Cryst. A 64, 631-640 (2008)]

SrMise: model independent PDF peak extraction

Illustration of cluster buildup

Liga algorithm

Division 1

Division 3

Liga algorithm

Division 1

Division 2

Illustration of cluster buildup

ab-initio structure solution directly from PDF data

BRO

1

Solving the coloring problem

- cutout from $SrTiO_3$ 89 sites containing 8 Sr, 27 Ti, 54 O
- site assignment can be solved from ideal PDF
- downhill search:
 - start with random site arrangement
 - flip sites which improve match between model and ideal peak weights

Journal of Applied Crystallography

Received 20 October 2009 Accepted 16 March 2010

ISSN 0021-8898

Crystal structure solution from experimentally determined atomic pair distribution functions

P. Juhás,^a* L. Granlund,^b S. R. Gujarathi,^b P. M. Duxbury^b and S. J. L. Billinge^{a,c}

^aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA, ^bDepartment of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA, and ^cCondensed Matter Physics and Materials Science Department. Brookhaven

 C_d and C_c are the distance and atom-overlap costs, as defined in equations (3) and (4). s_x , s_y and s_z are the standard deviations in the finomalized to a simple [111] cell. s_r (Å) is the root mean-square displacement of the solved sites from the reference CIF positions.

to a simple [11] on sp(1) successful and other spin control and the source of the spin control and the spin contro												
Sample	Atoms	Cost C_d (0.01 A ²)		Cost $C_{e}(A^{2})$		Deviation of coordinates					CON-DA	
(supercell)		Liga	CIF	Liga	CIF	Sx	s _y	60 F			ALL AND	- 19
Successful solutions								001	1 11 11	11 11 111 6	BAR	
Ag [111]	4	0.0232	0.136	0	0.001	0	0			IIII tu foun	d Charles	
Ag [222]	32	0.0097	0.136	0	0.001	0.00025	0.00024	· · · · · · · · · · · · · · ·	· • • • • • • • • • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- MARA	- I
BaTiO ₂ [111]	5	0.370	0.394	0.040	0.042	0.0057	0.0066			tk Idea	COMPOS	50 -
BaTiO ₂ [112]	10	0.392	0.394	0.058	0.042	0.00023	0.039			In In In In I	142.200	
C graphite [111]	4	0.396	0.574	0.010	0.016	0.0029	0.0029	40⊢			Man And A	- I
C graphite [221]	16	0.420	0.574	0.010	0.016	0.0086	0.0065		10		124040	
CdSe [111]	4	0.107	0.138	0	0.001	0	0	E 9	Q	æ	0000	
CdSe [221]	16	0.0856	0.138	0	0.001	0.00010	0.00013	· F 🧔	Y	AD .	8	-
CeO ₂ [111]	12	0.515	0.554	0	0	0	0		9	The second se	5	
NaCl [111]	8	1.75	1.71	0	0	0	0	F 4		ď	đ	1
NaCl [222]	64	1.20	1.71	0	0	0.00031	0.00031	20-	Т		P	-
Ni [111]	4	0.0024	0.0024	0	0	0	0	20		8 0 8	%	
Ni [222]	32	0.0025	0.0024	0	0	0.00015	0.00013			P P		88 88
PbS [111]	8	0.0125	0.0104	0.010	0.011	0	0	1 ds	o oo		TI Q B B B	5 62
PbS [222]	64	0.0140	0.0104	0.010	0.011	0.00005	0.00004	13				
PbTe [111]	8	0.0024	0.0127	0.097	0.090	0	0			\$ 91. 9% ox 88 #		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
PbTe [222]	64	0.0022	0.0127	0.097	0.090	0.00011	0.00011		Ma 90.			A 16
Si [111]	8	0.0045	0.0045	0	0	0	0		01 01 01 01 01 01 01 01 01 01 01 01 01 0			ALL OAK
Si [222]	64	0.0048	0.0045	0	0	0.00010	0.00009		- Antiol			AR -
SrTiO ₃ [111]	5	0.437	0.437	0.002	0.002	0	0	-				
Zn [111]	2	0.495	0.470	0	0	0	0					
Zn [222]	16	0.564	0.470	0	0	0.00010	0.00006	hundred	menen	montheres	allow anone and	~ www
ZnS sphalerite [111]	8	0.150	0.0647	0	0	0	0	-201				_
ZnS sphalerite [222]	64	0.160	0.0647	0	0	0.00029	0.00033	-20	. I			
ZnS wurtzite [111]	4	0.141	0.152	0	0	0	0					
ZnS wurtzite [221]	16	0.165	0.152	0	0	0.00003	0.00002	0	5	10	15	20
								U	5	10	10	20
Failed solutions												
CaTiO ₃ [111]	20	0.4967	0.902	0.52	0.072	0.16	0.14	1		r (Å)		
TiO ₂ rutile [111]	6	0.5358	0.758	0.40	0.009	0.081	0.24	1		1 (A)		

Software Projects that go wrong

• Who: US department of homeland security

- What: Develop a GUI for the US president to undertake his most important functions
- Functional Requirements: Must be very simple and easy to use
- Solution:

Can graph theory help?

A survey on assigned and unassigned Distance Geometry: applications to Nanostructures and Biological Molecules

Simon J.L. Billinge¹ · Phillip M. Duxbury² · Douglas S. Gonçalves³ · Carlile Lavor⁴ · Antonio Mucherino⁵

- 4OR, to appear(?)
- Worth noting we are not the first to work on this:
- S. Skiena, W. Smith, and P. Lemke. Reconstructing sets from interpoint distances. *in Sixth* ACM Symposium on Computational Geometry, pages 332–339, 1990.

Can Graph theory help?

- Use Generic Graph Rigidity
- The condition for a unique graph representation is that the graph is globally rigid, each edge is redundant and the kernel of the stress matrix has dimension *K*+1
- Stress matrix: $S(\mathbf{r}) = \sum_{edges} \omega_{ij} (\mathbf{r}_i \mathbf{r}_j)^2$, satisfying equilibrium $\sum_i \omega_{ij} (\mathbf{r}_j \mathbf{r}_i) = 0$.
- Use combinatorial algorithms based on Laman's theorem that test for global rigidity
- => develop graph build-up methods, testing for global rigidity at each step of the buildup, globally rigid buildup (GRB) methods, can greatly reduce the search-space of viable solutions.
- LIGA is an example of a GRB and is highly efficient

 For an ideal case of generic graph with exact distances: TRIBOND (Phil Duxbury) is a deterministic GRB and polynomial
COLUMBIA UNIVERSITY

Tribond

- Core-finding is slow, buildup is fast
- Works in 2D. Extension to 3D looks promising

60 atoms

~64 atoms

Successology

Problem

Problem

Ill posed problem:

Structure Solution

Complex Modeling Solution

- c = a + ib complex number mixes real and imaginary parts
- m = e + it complex modeling mixes experiment and theory in a coherent computational framework
- Billinge and Levin, Science 2007

BRUDE

Diffpy project (BNL LDRD) Complex Modeling infrastructure: Diffpy-CMI

Official release of Diffpy-CMI v0.1

www.diffpy.org

DiffPy - Atomic Structure Analysis in Python

A free and open source software project to provide python software for diffraction analysis and the study of the atomic structure of materials.

To test this idea let's consider a rather well-defined problem

- Example: CdSe quantized growth nanoparticles.
- X-ray PDF analysis alone does not produce a unique solution.
- Complex Modeling approach is required.

We need some Applied Math help!

