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The molecule problem: existence

Basic Molecule Problem: Given a graph G and edge lengths
{eij = eji} for G , is there a configuration p = (p1, . . . ,pn) in Rd

such that |pi − pj | = eij for all edges ij of G?

Easier Molecule Problem: Same as above, but allow the
realization p to be in any higher dimensional Euclidean space
RD ⊃ Rd .
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Universal rigidity: uniqueness

Given a graph G and a corresponding configuration p in Rd , we
say that (G ,p) is universally rigid if for any other configuration q
in any RD ⊃ Rd , with corresponding edge lengths in G the same,
then q is congruent to p. That is, ALL edge lengths of q are the
same as the corresponding edge lengths of p.

Planar examples

Universally rigidNot universally rigid
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Back to the molecule problem

A direct consequence of the definition of universal rigidity is:

Theorem

If (G ,p) is universally rigid, then the molecule problem, given its
edge lengths, is approximately solvable by semi-definite
programming (SDP).

The determination of universal rigidity is a much more tractable
problem on its own.

Theorem (Connelly-Gortler 2014)

Given universally rigid (G ,p), in general, it is possible to find a
certificate that guarantees that it is universally rigid.

The certificate above is a sequence of positive semi-definite
matrices, whose ranks sum to n − d − 1 and another calculation
that rules out affine motions.
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An interesting example: Complete bipartite graphs

Theorem (Connelly, Gortler 2015)

If (K (n,m), (p,q)) is a complete bipartite framework in Rd , with
m + n ≥ d + 2, such that the partition vertices (p,q) are strictly
separated by a quadric, then it is not universally rigid.

Not Universally RigidUniversally Rigid
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Conic/quadric separation

Our quadric is of the form {x ∈ Rd | x̂tAx̂ = 0}, where A is a
(d + 1)-by-(d + 1) symmetric matrix, x̂ is the vector x with a 1
added as an extra coordinate, and x̂t is its transpose.

Definition

If p = (p1, . . . ,pn) and q = (q1, . . . ,qm) are two configurations of
points in Rd , we say that they are strictly separated by a quadric,
given by a matrix A, if for each i = 1, . . . , n and j = 1, . . . ,m,

q̂tjAq̂j < 0 < p̂tiAp̂i .
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Symmetry Helps

If the configuration is symmetric about a point with a sufficiently
large symmetry group the conic (or quadric in 3D) must also be
symmetric by averaging, and this simplifies the calculation of
universal rigidity considerably.

Not Universally RigidUniversally Rigid
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Stress Matrices

Any set of scalars ωij = ωji associated to all the pairs of points of a
configuration is called a stress, and in the context of an associated
graph G , we assume that ωij = 0 for non-edges i , j of G . The
matrix of the quadratic form∑

i<j

ωij(xi − xj)
2

is called the stress matrix Ω, where the row and column sums are
0, and the i , j entry is −ωij for i 6= j . We say Ω is an (equilibrium)
stress for a configuration p if for each vertex i∑

j

ωij(pj − pi ) = 0.

8 / 22



First Section

Basic Results

The following fundamental theorem is a basic tool and the first
step used to establish universal rigidity.

Theorem

Let (G ,p) be a framework whose affine span of p is all of Rd , with
an equilibrium stress ω and stress matrix Ω. Suppose further

(i) Ω is positive semi-definite (PSD).

(ii) The rank of Ω is N − d − 1.

(iii) The edge directions of (G ,p) do not lie on a conic at infinity.

Then (G ,p) is universally rigid.

A framework satisfying these properties are called super stable
(and is clearly universally rigid).
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A Small Bipartite Example

When the number of vertices and edges of the graph G is small,
one very simple example is K (d + 1, d + 1) is Rd , where one
partition p = (p1, . . . ,pd+1) is just chosen to be affine
independent with the origin in the centroid of its convex hull, while
q = −p = (−p1, . . . ,−pd+1).

These are all super stable frameworks.
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Rigidity Definitions

Definition

We say a framework (G ,p) is globally rigid in Rd if any other
framework (G ,q) equivalent to (G ,p) in Rd is such that q is
congruent to p.

Definition

We say a framework (G ,p) is locally rigid in Rd if every other
framework (G ,q), equivalent to (G ,p) in an open neighborhood
Up of p in configuration space, is congruent to (G ,p).

Definition

We say a framework (G ,p) is infinitesimally rigid spanning Rd if
there is an open neighborhood Up of p in configuration space such
that for all configurations q,q′ ∈ Up, (G ,q) is equivalent to (G ,q′)
if and only if q is congruent to q′.
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Connecting Theorems

Definition

We say a configuration p is generic in Rd if the coefficients of p
satisfy no non-zero polynomial with integer coefficients.

Theorem (Gortler-Thurston)

If a given framework (G ,p) in Rd is infinitesimally rigid and
globally rigid, then (G ,q) in Rd is globally rigid at any generic
configuration q.

Theorem (Connelly-Gortler-Theran 2016)

If a given framework (G ,p) in Rd is globally rigid, then there is a
generic configuration q in Rd such that (G ,q) is super stable and
infinitesimally rigid.
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Trilateration

For any given framework (G ,p) in Rd a trilaterization is an
attachment of another vertex, say p0 to d + 1 other vertices of
(G ,p) such that p0 and the other attaching vertices are in general
position (no d + 1 of the d + 2 vertices lie in a hyperplane).

0p

This is an example of super stable K (3, 3) trilaterated from p0.

Proposition (easy)

Trilaterization preserves universal, global, and infinitesimal rigidity.
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Basic Results

The following is the starting point for showing non-universal
rigidity.

Theorem (Alfakih 2011)

If (G ,p) is a universally rigid framework with N vertices whose
affine span is d dimensional, d ≤ N − 2, then (G ,p) has a
non-zero PSD equilibrium stress matrix Ω.

Note that the rank of the stress matrix Ω implied above can be
quite low, even one-dimensional. This is also the starting point for
the one-dimensional case of Jordan and Nguyen.
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Proof of the bipartite theorem

Let A be the (d + 1)-by-(d + 1) symmetric matrix for the separating quadric
for our bipartite theorem, and let ω be an equilibrium stress for
(K(n,m), (p, q)) with stress matrix Ω. For any vertex qj in one partition, the
equilibrium condition can be written, for each j = 1, . . . ,m as

n∑
i=1

ωij(p̂i − q̂j) = 0,

or equivalently
n∑

i=1

ωij p̂i =

(
n∑

i=1

ωij

)
q̂j = µj q̂j .

Then taking the transpose of this equation, and multiplying on the right by
Aqj , we get

n∑
i=1

ωij p̂
t
iAq̂j = µj q̂

t
jAq̂j .

Similarly for the pi . (x̂ is the vector x with a 1 added as an extra coordinate.)
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Proof of the bipartite theorem

m∑
j=1

µj q̂
t
jAq̂j =

∑
ij

ωij p̂
t
iAq̂j =

∑
ij

ωij q̂
t
iAp̂j =

n∑
i=1

λj p̂
t
iAp̂i .

By Alfakih’s Theorem, if (K (n,m), (p,q)) were universally rigid,
then there would be an equilibrium stress with a stress matrix Ω
that would be PSD and non-zero. Then µj ≥ 0 for all j = 1, . . . ,m,
λi ≥ 0 for all i = 1, . . . , n, and we would have at least one positive
diagonal term. But then the equation above would contradict the
quadric separation condition in the definition of quadric/conic
separation. Thus (K (n,m), (p,q)) is not universally rigid.

16 / 22



First Section

The Verenose Map

Let Md be the (d + 1)(d + 2)/2 dimensional space of
(d + 1)-by-(d + 1) symmetric matrices, which we call the
matrix space.

Define the map V : Rd →Md by V(v) = v̂v̂t , which is a
(d + 1)-by-(d + 1) symmetric matrix, with the lower
right-hand coordinate 1, where v̂ is the vector with an extra
coordinate of 1 added at the bottom.

V(Rd) is a d-dimensional algebraic set embedded in a
(d + 1)(d + 2)/2− 1 dimensional linear subspace. The
function V is called the Veronese map.
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The Veronese Map

The effect of V is to transfer quadratic conditions in Rd to linear
conditions in a (d + 1)(d + 2)/2− 1 dimensional linear subspace of
Md .

Proposition

In Rd the vertices of the configurations p and q can be strictly
separated by a quadric , if and only if the matrix configurations
V(p) and V(q) can be strictly separated by a hyperplane in Md .

So in the plane the vertices of the partitions of a bipartite graph
K (4, 3) can be strictly separated by a conic if and only if their
Veronese images can be linearly separated by a hyperplane in a
5-dimensional linear space.
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Non-separability Predicts Universal Rigidity

Theorem (Connelly, Gortler 2015)

If the convex hull of V(p) and V(q) intersect in the relative interior
of each set, then (K (m, n), (p,q)) is universally rigid.

Some examples in R3:

K(6,5)K(7,4)
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Lower Dimensional Spans

When the configuration lies on a conic (or quadric) the separation
criteria determine the universal rigidity.

Universally Rigid Not Universally Rigid

K(3,3)

This lies on the
intersection of 3
quadrics.

These lie on
one
quadric.

K(4,4)K(6,4) K(5,5)
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Back to the Molecule Problem

The generic case: This is where there is no algebraic relation
among the coordinates of the configuration. Here the
conic/quadric separation criterion determines whether its
configuration can be determined with SDP.

The generic realization of K (5, 5) in R3 has another
realization with the same edge lengths. So SDP fails to give a
3 dimensional realization, or if it does, it may not be the
“right” one. But when its vertices lie on a quadric and cannot
be separated with a quadric, it can be universally rigid.

Instead of general position or generic position, it is useful to
assume that the Veronese realization is in general position. So
SDP success is determined by the separability.
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