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Problem Definition

Given p points in R".

Euclidean Steiner Tree Problem

Find a tree with minimal Euclidean length that spans these points using or not extra
points, which are called Steiner points.
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Problem Definition

Example in R3

Terminals are the 12 vertices of an icosahedron
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Problem Definition

Determine the Steiner Minimal Tree (SMT):
@ The number of Steiner points to be used on the minimal tree.
@ The edges of the tree.

o Geometric position of the Steiner points.
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The Euclidean Steiner Problem for a Given Topology

Minimize [|a' — x®|| 4 ||a® — x® 4 ||x® —X6||+Ha —x°|| + [[a* — x|
subject to: x3,x6 € R”

The shortest tree for a given topology 7 is called a Relatively Minimal Tree (RMT) for T

The minimum spanning tree
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The Steiner Minimal Tree

Properties:

In a SMT for p given terminals:

No angle between edges is < 120 degrees.

Each terminal has degree between 1 and 3.
Each Steiner point has degree equal to 3.
The Steiner point and its 3 adjacent nodes lie in a plane.

The number of Steiner points is no more than p — 2.

If the number of Steiner points is exactly p — 2, each terminal has degree equal to 1.

Definition:

o A Full Steiner Topology (FST) for p terminals is a topology with p — 2 Steiner
points, where each Steiner point has degree 3 and each terminal has degree 1.

e
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Degenerate Steiner Topologies

A topology is called a degeneracy of another if the former can be obtained from the
latter by shrinking edges. J

10=5
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Degenerate Steiner Topologies

A topology is called a degeneracy of another if the former can be obtained from the
latter by shrinking edges. J

Fact: Given an SMT, an FST always exists such that the SMT is an RMT for it. )

10=5
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Exact Algorithms (general n-space)

Gilbert and Pollak (1968)

o Find all the full Steiner topologies on the p given terminals.

o For each topology optimize the coordinates of the Steiner points.
@ Output: the shortest tree found.

E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Applied Math., vol. 16,
pp. 1-29, 1968.
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o Find all the full Steiner topologies on the p given terminals.
o For each topology optimize the coordinates of the Steiner points.

@ Output: the shortest tree found.

E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Applied Math., vol. 16,
pp. 1-29, 1968.

The number of full Steiner topologies for p terminals is

t(p):=1-3-5-7...(2p—5) = (2p —5)!!

t(2) =1, t(4) = 3, t(6) = 105, £(8) = 10395, £(10) = 2,027,025, t(12) = 654,729,075
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Exact Algorithms (general n-space)

An implicit enumeration scheme to generate full Steiner topologies.

W. D. Smith, How to find Steiner minimal trees in Euclidean d-space, Algorithmica, vol.
7, pp. 137-177,1992. J
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Terminals: @0 @00 Steiner Points: @ 0 O

Upper bound=11 '/I\.

SMT=13
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Improvements to Smith’s B&B algorithm

@ Use of a conic formulation for the subproblems of locating the Steiner points
o Implementation of a strong branching strategy

@ New order in which the terminals are added

M. Fampa and Kurt M. Anstreicher, An improved algorithm for computing Steiner
minimal trees in Euclidean d-space, Discrete Optimization 5(2), 530-540, 2008. J
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Remarks on Smith’s procedure

o Good: Enumeration scheme.
@ Bad: The pruning criterion.
o Lower bounds for the subproblems are given by the length of the RMTs corresponding
to FSTs on only a subset of the terminals - weak bounds.
o Few nodes are pruned until deep down in the B&B tree.
o Growth of tree is super-exponential with depth.
o Subproblems get larger at deeper levels.
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MINLP Formulations for the Euclidean Steiner Problem

Maculan, Michelon, Xavier (2000)
Given p points in R” (a',...,a"), let G = (V, E) be the graph where

o P:={1,2,...,p—1,p} is the set of indices associated with p terminals;

o S:={p+1,p+2,...,2p—3,2p — 2} is the set of indices associated with p — 2

Steiner points;
e V.=PUS;
Ev:={[i,jlli € P,j € S}

° B :={[ijllieS,jeSk
o E = E1 U E2.
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MINLP Formulations for the Euclidean Steiner Problem

Maculan, Michelon, Xavier (2000)

(MMX):  Minimize >3 1ce [|la’ — ||y + 2 lil€E [|x" — xI||y;

subject to
dyi = 1, i€eP
JES
Syit > vi+ Y. vk = 3, JES
ieP k<j,k€S k>j,keS
> oy = 1, jeS—{p+1}
k<j,keS

x €R", i€S, y;€{0,1}, [i,j]J€E

N. Maculan, P. Michelon and A. E. Xavier, The Euclidean Steiner problem in R" : A
mathematical programming formulation, Annals of Operations Research, vol. 96, pp.
209-220, 2000.
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MINLP Formulations for the Euclidean Steiner Problem

G(V,E) for p==6

@ 6 terminals, 4 Steiner points, all possible edges;
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MINLP Formulations for the Euclidean Steiner Problem

G(V,E) for p==6

@ 6 terminals, 4 Steiner points, all possible edges;

@ a feasible solution;

@ the optimal solution;

2
1 / 3
7 8

10=5
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Drawbacks in applying a spatial branch-and-bound to MMX

o Weak lower bounds for subproblems.

o Nondifferentiability at points where the FSTs degenerate - problem for algorithms
that require the functions to be twice continuously differentiable.

C. D'Ambrosio, M. Fampa, J. Lee, and S. Vigerske. On a nonconvex MINLP
formulation of the Euclidean Steiner tree problems in n-space, LNCS (SEA 2015), vol.
9125, pp. 122-133, 2015.
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Non-combinatorial cuts

@ 7; be the distance from terminal a' to the nearest other terminal.

Theorem

yi|[x* = a'|| <, forallie P, ke S.

A

Theorem (Extend to the case where x* is adjacent to fewer than two terminals)

yieyie (I =l + lIx* = 211) < 2lja’ = #[/v3,
foralli,jeP, i<j, kes.

N

Theorem (Extend to n > 3)
Forn=3andi,jeP, i<j, k€S k<l

i aj Xk X’
}/ik}/jk}’kl'det[ i 1011 } =0.

v
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Combinatorial cuts

Let

o 7; be the distance from terminal a' to the nearest other terminal.
@ T be a minimum-length spanning tree on the terminals.

o f3; be the length on the longest edge on the path between a’ and &/ in T.

Theorem

| \

Fori,je P, i <j,

If ||a' =& >mni+mnj, then yu +yx <1, forall ke S.

Lemma - well known

| \

An SMT contains no edge of length greater than §; on the path between a’ and &/, for
all i,j e P.

| A\

Corollary
Fori,je P, i#],

If ||a" — & || > i +m; + By, then yu +y+yy <2, forall k,/ €S, k<.
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Remarks on Nonconvex models/Global solvers

o Good:

o Capacity and facility to formulate geometric cuts and other valid inequalities to the
model.

o The valid cuts proposed were effective in reducing the number of nodes in the B&B
tree and the computational time on small instances.

@ Bad: With nonconvex constraints we lose a nice feature of the problem - it can be
efficiently solved once the topology (binary variables) is fixed.
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MINLP Formulations for the Euclidean Steiner Problem

Fampa and Maculan (2004)

(FM) :  Minimize Z djj subject to

lijl€eE
di > |la — || - M@ —yy), [i,j] € E
d; > ||Xi7XjH*M(17yij)7 [i,j] € E2
ZVU = 1, ieP
jes
DVit D v+ D vk = 3 JES
ieP k<j,k€S k>j,keS
Z vig = 1, jeS—{p+1}
i<j,i€S

x eR", i€S, y;€{0,1}, [i,j]€E, dj Ry, [i,j]EE

M. Fampa and N. Maculan, Using a conic formulation for finding Steiner minimal trees,
Numerical Algorithms, vol. 35, pp. 315-330, 2004.
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Drawbacks in applying MINLP solvers to FM

o Weak lower bounds for subproblems.

@ Isomorphic subproblems.

M. Fampa, J. Lee, and W. Melo. A specialized branch-and-bound algorithm for the
Euclidean Steiner tree problem in n-space, Computational Optimization and Applications,
vol. 63(2) DOI 10.1007/s10589-016-9835-z, 2016.
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Dealing with isomorphism

Create a set of representative FSTs, with one topology saved for each group of

isomorphic FSTs.

Later, during the B&B execution, we only solve subproblems corresponding to these
representative topologies, pruning all the others.
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Number of Representative FSTs vs Number of FSTs in the feasible set of FM

p Rep. FSTs FSTsin FM  Reduction (%)
4 3 6 50
5 15 30 50
6 105 450 76
7 945 9450 90
8 10395 264600 96
9 135135 9525600 98
10 2027025 428652000 99
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Branch-and-Bound - Preprocessing Phase

Discarding representative FSTs based on geometric conditions satisfied by SMTs
Let

o 7; be the minimum Euclidean distance between a’ and all other terminals.
o T be a minimum-length spanning tree on the terminals.

@ f3; be the length on the longest edge on the path between a' and & in T.

@ Two terminals a’ and @ may be connected to a common Steiner point only if

la" = &1} < + .

@ Two terminals a’ and @ may be connected by two or fewer Steiner points only if

la" = &l < i +n; + By
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Branch-and-Bound

B&B enumeration scheme starts, at its first level, with one node corresponding to each
representative of spanning trees of Steiner points only.
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@
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Branch-and-Bound

Each node on the enumeration tree has at most p — 2 children. A terminal is connected
to a different Steiner point (with degree less than 3) at each child of the node.

°99
02990
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Branch-and-Bound

Pruning by isomorphism

Prune nodes where the variables fixed at 1 do not correspond to edges in any
representative FST.

Fixing variables

Let the following representative FSTs, be on the set of descendants of a given node

Fix
vis=1, y16=0
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Numerical results

Tabela: Average results on 10 instances of each dimension

Dimension  Muriqui Branch-and-Bound SAMBA
gap cpu time gap cpu time

(%) (sec) (%) (sec)
n=3 84 14400.38 0 240.96
n=4 84 14401.12 0 740.87
n=5 82 14400.34 0 1301.54

@ Muriqui - standard B&B algorithm for convex MINLP
@ SAMBA - Steiner Adaptations on Muriqui B&B Algorithm
@ Time limit of 4 hours (3.60 GHz core i7-4790 CPU, 8 MB, 16 GB, Linux)
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Convex MINLP models/Specialized B&B

o Capacity of formulating valid inequalities to strengthen the model.

@ Solution of non isomorphic subproblems only.
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