

Integrating NOE and RDC using semidefinite programming for protein structure determination

Yuehaw Khoo

Stanford University

Joint work with:

Amit Singer (Princeton University)

David Cowburn

(Albert Einstein College of Medicine)

2 Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

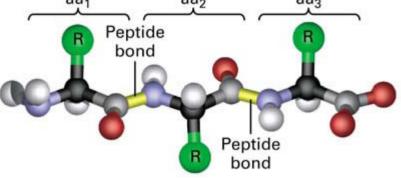
NMR Spectroscopy

Nuclear Magnetic Resonance

- Goal: Determine the position of every atom in the protein
 aa1
 aa2
 aa3
- From chemistry:
 - Amino-acid sequence
 - Bond lengths, bond angles

•

- From NMR data:
 - NOE: Pairwise hydrogen-hydrogen distances <6A</p>
 - Torsion angles
 - RDC: Residual dipolar couplings



Protein structural calculation

Geometric constraints between atoms from NMR spectra

Structure calculation problem

Find 3D coordinates of atoms satisfying geometric constraints.

Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

Classical approach: Distance geometry I

- NOE spectra provides pairwise distances d_{kl} of atoms (Wuthrich 82)
- Find coordinates $X = [x_1, ..., x_K] \in \mathbb{R}^{3 \times K}$ for K atoms such that $(d_{kl}^{low})^2 \le ||x_k - x_l||_2^2 \le (d_{kl}^{up})^2$
- Non-convex. Easy when having complete measurement
 - Classical multidimensional scaling (Shoenberg 35)

Classical approach: Distance geometry II

- Global optimization
 - Xplor-NIH: Simulated annealing (Schwieters et al. 02), Majorizeminimize (De-Leeuw 77), DGSOL: Gaussian smoothing (More & Wu 99), Branch and Prune (Liberti et al. 07)....
- Convex relaxation

6

 SDP relaxation on Gram matrix (Alfakih et al. 99, So & Ye 06, Biswas et al. 07)

Classical approach: Distance geometry III

- Speed up for protein structuring:
 - Divide-and-conquer: ABBIE (Hendrickson 95), DISCO (Leung et al.
 07), 3D-ASAP (Cucuringu et al. 12), GRET (Chaudhury, K., Singer 15)
 - Semidefinite facial reduction (Krislock & Wolkowicz 10, Alipanahi et al. 12)
- From sensor network localization:
 - Divide-and conquer: PATCHWORK (Koren et al. 05), LRE (Singer 08), ARAP (Zhang et al.).
 - Further relaxation: ESDP (Wang et al. 07)

Classical approach: Distance geometry IV

And many more...

Bad news

- Large molecules:
 - Missing NOE peaks
 - Wrong resonance assignments
 - Few or wrong NOE distances (Xu et al. 06)

Good news – other data:

Residual Dipolar Coupling (RDC)

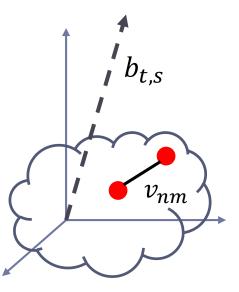
Residual Dipolar Coupling I

RDC:

$$r_{nm} = < \left(v_{nm}^T b\right)^2 - \frac{1}{3} >_{t,s}$$

- **b**: unit vector for magnetic field direction
- v_{nm} : direction between atoms (n, m)
- Fix a coordinate frame such that molecule is static:

$$r_{nm} = v_{nm}^T S v_{nm}$$
$$S = \langle bb^T \rangle_{t,s} - \frac{l}{3} \in \mathbb{R}^{3 \times 3}$$

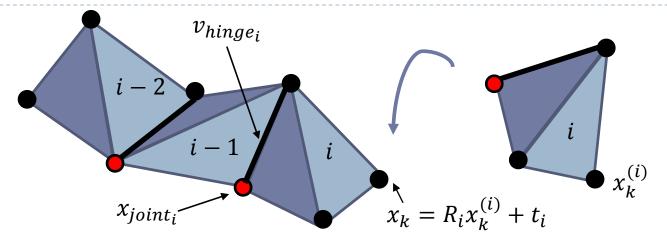


Residual Dipolar Coupling II

- In principle, both Saupe tensor S and all v_{nm} 's are unknown.
- Assuming S can be pre-estimated.
- Bond directions v_{nm} depends on the underlying protein structure.

Use RDC to get protein the structure

Molecule Structure from RDC



- Model protein as M rigid units chained together by hinges.
- Structure of each unit is known: Know local coordinate of point k in *i*-th rigid-unit, $x_k^{(i)}$
- Global coordinate of atom k in *i*-th unit is determined by rotations: $x_k = R_i \left(x_k^{(i)} - x_{joint_i}^{(i)} \right) + x_{joint_i}, \qquad R_i \in SO(3)$

Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016
 determination

Molecule Structure from RDC

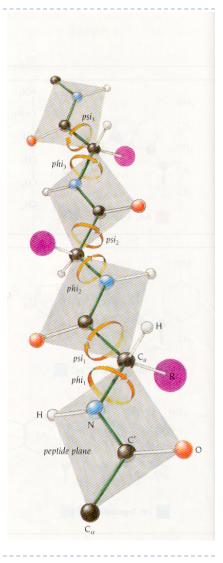
• Determine R_i from RDC gives structure

•
$$r_{nm}^{(j)} = v_{nm}^{(i) T} R_i^T S^{(j)} R_i v_{nm}^{(i)}$$
.

Superscript j: RDC for different alignment

$$R_i$$
's are not independent

•
$$R_i v_{hinge_i}^{(i)} = R_{i-1} v_{hinge_i}^{(i-1)}$$
, $i = 2, ..., M$



Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016
 determination

Previous works

Degeneracy with one Saupe tensor (Hus et al. 07)

- Mainly used for refinement.
- Branch and Prune (Zeng et al. 09), Torsion angle sampling (Bryson et al. 08)...

Optimization over rotations

• Minimize w.r.t. R_i

$$\sum_{j=1}^{N} \sum_{i=1}^{M} \sum_{(n,m)\in E_{RDC_i}} \left| v_{nm}^{(i)\,T} R_i^T S^{(j)} R_i v_{nm}^{(i)} - r_{nm}^{(j)} \right|$$

• Hinge constraints:
$$R_i v_{hinge_i}^{(i)} = R_{i-1} v_{hinge_i}^{(i-1)}$$

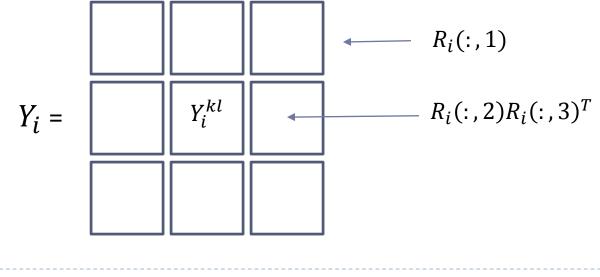
- Cost and domain (product of SO(3)) non convex, search space exponentially large
- Propose convex relaxation to quadratic problem on SO(3).

IS Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

SDP relaxation: RDC-SDP

• Main idea: Cost is convex in the rank 1 PSD variable $Y_i = vec(R_i)vec(R_i)^T \in \mathbb{R}^{9 \times 9}$

• Write optimization problem in Y_i and relax to $Y_i \ge vec(R_i)vec(R_i)^T$



I6 Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

SO(3) constraint

- $R_i^T R_i = I \quad \Rightarrow \quad Tr(Y_i^{kl}) = \delta_{kl}$
- $\triangleright R_i R_i^T = I \quad \Rightarrow \quad \left(Y_i^{11} + Y_i^{22} + Y_i^{33}\right) = I$
- Treat unit quaternions as $q \in \mathbb{R}^{4 \times 1}$: $q^T q = 1$
 - Linear relation between rotation R and qq^{T}
 - $qq^T qq^T = qq^T$
 - Gives linear constraints on Y_i and R_i

Full program

$\min_{Y_i,R_i} f(Y_i,R_i)$

- s.t. $Y_i \ge vec(R_i) vec(R_i)^T$ $Tr(Y_i^{kl}) = \delta_{kl}$ $(Y_i^{11} + Y_i^{22} + Y_i^{33}) = I_3$ Quaternion constraints
- Hinge constraints coupled Y_i's: $R_i v_{hinge_i}^{(i)} = R_{i-1} v_{hinge_i}^{(i-1)}$,

• Redundant linear constraints on Y_i, Y_{i-1} : $v_{hinge_i}^{(i)T} R_i^T e_k e_l^T R_i v_{hinge_i}^i = v_{hinge_i}^{(i-1)T} R_{i-1}^T e_k e_l^T R_{i-1} v_{hinge_i}^{(i-1)}$

• e_k : Canonical basis in \mathbb{R}^3 .

Other details

Rounding

- Rank 1 projection of Y_i
- Polar decomposition (change sign if determinant<0)</p>
- Manopt refinement (Boumal I 3)
- Can also incorporate distance constraints RDC-NOE-SDP :
 - Atom coordinates linearly related to rotations
 - Can be expressed in dimension 9M gram matrix

Simulation setting
Noise model:
$$r_{nm}^{(j)} = v_{nm}^T S^{(j)} v_{nm} + \sigma \epsilon_{nm}^{(j)}, \epsilon_{nm}^{(j)} \sim \mathcal{N}(0,1)$$

- Alpha helix of ubiquitin, M = 18, K = 80.
- Two different Saupe tensors S⁽¹⁾, S⁽²⁾, 3 bonds per rigid units.

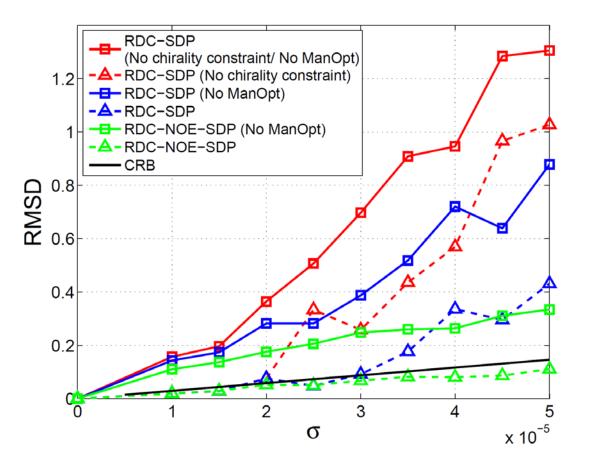
• RMSD =
$$\sqrt{\frac{||X - \bar{X}||_F^2}{K}}$$
, $X = [x_1, ..., x_K]$

Atomic resolution if RMSD is within 1 Angstrom

20 Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

Simulation results: Atomic resolution

 σ~4 × 10⁻⁵ Realistic noise
 Average over 30 realizations



Experimental data

- Ubiquitin: 500 backbone atoms
- Divide ubiquitin into 5 fragments
- Run RDC-SDP and RDC-NOE-SDP on each fragment and combine them using inter-fragment distances.

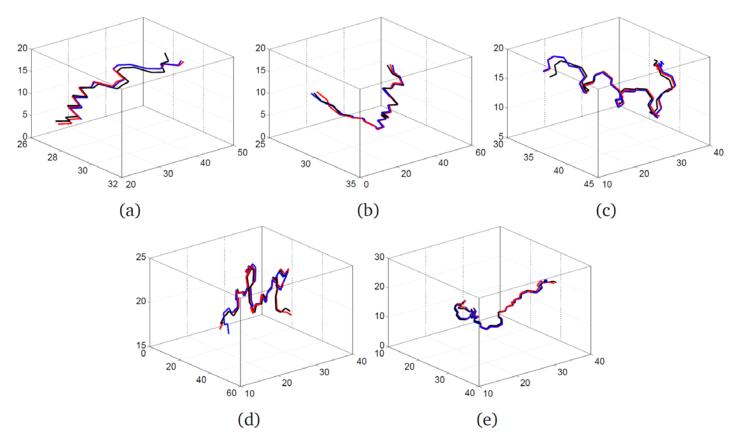
Comparison:

		1	2	3	4	5
Residue No.	RDC-SDP	2-7	10-18	22-36	39-53	54-70
	RDC-NOE-SDP	1-7	10-18	22-36	37-53	54-70
	MFR	2-7	10-18	22-36	39-53	54-70
RMSD (Å)	RDC-SDP	0.57	0.51	0.81	0.70	0.78
1UBQ	RDC-NOE-SDP	0.41	0.54	0.71	0.54	0.65
	MFR	0.42	0.51	0.45	0.78	0.52
RMSD (Å)	RDC-SDP	0.56	0.48	0.78	0.62	0.73
1D3Z	RDC-NOE-SDP	0.42	0.52	0.72	0.47	0.59
	MFR	0.40	0.46	0.42	0.71	0.44
Time (s)	RDC-SDP	8 (0.5)	11 (0.5)	63 (2)	22 (1)	23 (1.3)
	RDC-NOE-SDP	15 (6)	30 (17)	231 (162)	596 (450)	312 (281)
	MFR	1560 (all 5 fragments)				

23 Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

Comparison:

Black: X-ray structure. Blue: RDC-SDP. Red: RDC-NOE-SDP



24 Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

Summary

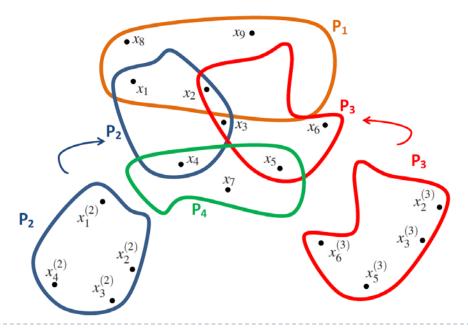
Y. Khoo, A. Singer, D. Cowburn, "Integrating NOE and RDC using semidefinite programming for protein structural calculation", Submitted

Thank you!

Questions?

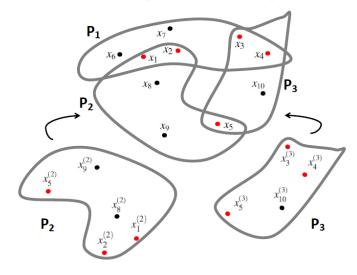
The stitching problem

- The solution to distance geometry problem has rigid transform ambiguity
- For local coordinate $x_k^{(i)}$ of point k in fragment P_i Find x_k, O_i, t_i such that $x_k \approx O_i x_k^{(i)} + t_i$



Global registration

Sequential approach: greedy and may not work



GRET: Minimize

$$\sum_{i} \sum_{k \in P_i} || x_k - O_i x_k^{(i)} - t_i ||_2^2$$

- O_i : orthogonal matrix variable in d dimension.
- x_k , t_i : free variables

28 Integrating NOE and RDC using semidefinite programming for protein structure 7/29/2016 determination

GRET: Max-cut relaxation

First order optimality condition:

$$\partial_{x_k} \phi = 0, \qquad \partial_{t_i} \phi = 0$$

$$[x_1, \dots, x_N, t_1, \dots, t_M] = [O_1, \dots, O_M] A$$

• Optimization solely in
$$O = [O_1, ..., O_M]$$
:

$$\min_O Tr(CO^T O)$$

Search space non-convex and exponentially large

Let
$$G = O^T O$$
, relaxing rank constraint:

$$\min_{G \ge 0} Tr(CG) \quad s.t. \quad G_{ii} = I_d$$

Initial results

$\sqrt{ X-\bar{X} _{E}^{2}}$	η	GRET	ASAP	DISCO
• RMSD = $\sqrt{\frac{ X - \overline{X} _F^2}{\kappa}}$,	0	1.11(0.47)	1.22(0.51)	1.26(0.34)
N K	0.2000	1.36(0.73)	1.33(0.73)	1.39(0.56)
$X = [x_1,, x_K]$	0.4000	1.34(0.72)	1.34(0.73)	1.51(0.87)
	0.6000	1.67(1.09)	1.83(1.24)	2.00(1.54)
▶ Simulations \Rightarrow	0.8000	1.80(1.24)	2.03(1.49)	2.32(1.97)
	1.0000	1.84(1.32)	1.94(1.36)	2.57(2.19)

- Real data: Igb1 with ~1000 NOE constraints
- RMSD = 2.23Å (1.61Å for backbone), running time: 2 min

