Distance Geometry

and
Clifford Algebra

Carlile Lavor
(University of Campinas, Brazil)

Joint work with Rafael Alves



CONTENTS



CONTENTS

1. Distance Geometry Problem (DGP)



CONTENTS

1. Distance Geometry Problem (DGP)
2. Clifford Algebra



CONTENTS

1. Distance Geometry Problem (DGP)
2. Clifford Algebra
3. The Conformal Model



CONTENTS

. Distance Geometry Problem (DGP)
. Clifford Algebra

. The Conformal Model

. Conformal Clifford Algebra and the

Discretizable Molecular DGP (DMDGP)



CONTENTS

. Distance Geometry Problem (DGP)
. Clifford Algebra

. The Conformal Model

. Conformal Clifford Algebra and the

Discretizable Molecular DGP (DMDGP)

. Final Remarks



1. DISTANCE GEOMETRY PROBLEM (DGP)



1. DISTANCE GEOMETRY PROBLEM (DGP)

» Problem: calculation of the 3D structure of a protein
molecule, using distance information provided by Nuclear
Magnetic Resonance (NMR) experiments.

distances between atoms




1. DISTANCE GEOMETRY PROBLEM (DGP)

» Problem: calculation of the 3D structure of a protein
molecule, using distance information provided by Nuclear
Magnetic Resonance (NMR) experiments.

distances between atoms

» Model: distance geometry problem (DGP).
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» DGP: given a simple undirected graph G = (V, E) whose
edges are weighted by d : E — (0, 00), determine whether
there is a function x: V — R3 such that

V{u,v} € E,||xy — xv|| = du,v,

where x, = x(u), x, = x(v), dy, = d({u, v}).



» Complexity:



» Complexity: NP-hard.



» Complexity: NP-hard.
» Number of Solutions:




» Complexity: NP-hard.
» Number of Solutions: uncountable or finite.




» Complexity: NP-hard.
» Number of Solutions: uncountable or finite.

» Search Space:



» Complexity: NP-hard.
» Number of Solutions: uncountable or finite.
» Search Space: R3".




v

v

v

v

Complexity: NP-hard.

Number of Solutions: uncountable or finite.

Search Space: R3".

Solution Methods:




v

v

v

v

Complexity: NP-hard.

Number of Solutions: uncountable or finite.

Search Space: R3".

Solution Methods:

» Continuous approach:




v

v

v

v

Complexity: NP-hard.

Number of Solutions: uncountable or finite.

Search Space: R3".

Solution Methods:

» Continuous approach:

min Z (qu — X\,||2 — div)z.

(u,v)EE




v

v

v

v

Complexity: NP-hard.

Number of Solutions: uncountable or finite.

Search Space: R3".

Solution Methods:

» Continuous approach:

min Z (|1xs — x||? — div)z.

(u,v)EE

» Combinatorial approach:




v

v

v

v

Complexity: NP-hard.

Number of Solutions: uncountable or finite.

Search Space: R3".

Solution Methods:

» Continuous approach:

min Z (qu — X\,||2 — div)z.

(u,v)EE

» Combinatorial approach: DGP graph structure.
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> |IF there exist a vertex order vy, ..., v, € V:

» For vi, vz, v3, 3 x1, %0, x3 € R3 satisfying DGP equations;

» Vi> 3,
Hvies, vit, {vieo, it {vie1, vit} C E;
> Vi >3,
Avisvica < dvi_svio Fdy_sviys
» THEN,

» Number of solutions: finite;
» Search space: binary tree;
» Exact method: Branch & Prune (BP).
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» DGP + vertex order: Discretizable Molecular DGP (DMDGP).

Pruning edges: N(2) = {9},N(3) = N(4) = {8,9,10}. N(5) = {9, 10}, N(6) = {10}, N(7) = {11},
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which can result in up to two possible values for x;, with
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Main Operation of the BP Algorithm

» The position for vertex v;, i > 3, is obtained by solving the
quadratic system

l[xi — Xi—3||2 = di2—3,i>
Ixi —xi—2l]®> = dia,
I —xi-alP = diq

which can result in up to two possible values for x;, with
probability one.

» DMDGP order = replace quadratic systems by
matrix multiplications in R%.
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Using homogeneous coordinates:

Xiy 0
Xi. 0 .
2 :BlBg”'Bi ,VI:]., , n,
Xi3 0
where
1 0 0 O -1 0 0 —di»
0 1 0 o0 0 1 0 0
Bi=19 0 1 o |"'B=| 0o 0o -1 o |’
0o 0 o0 1 0 o0 0 1
—cos 013 —sinf13 0 —dy3cosfi3
Ba — sinfy 3 —cosfy3 O dp 3sin 61 3
3 0 0 1 0o |’
0 0 o0 1
and B; =
7COSt9,'_2,,' —sin 9,'_27,‘ 0 7d,‘_17,'COSt9,'_27,'
sin 9,-,27,-cosw,-,37,- —COSG,'72,,‘COSW,'73,,' —sin Wj—3,i d,-,l,,-sin 6’,-,2,,-cosw,-,37,-
sin 9,-,2,,-sin Wi—3,i —cos@,-,zy,-sin Wij—3,i COS W;—3,i d,',l,,-sin 49,',2,,-sin Wi—3,i
0 0 0 1

fori=4,..,n
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» Using those matrices:

X1

X3

0 —dio |
0 , X0 = 0

L 0 0 -

[ —di2+ dh3cosbyz |
d273 sin 9173

0




» Using those matrices:

0 —dip
X1 = 0 , X0 = 0 s
- 0 0 .
—di o+ dr3cosfy3
x3 = dr3sinfiz |,
- 0 .

70'172 =+ d273 cos 01’3 — d3,4 cos 9173 cos 9274 + d3’4 sin 9173 sin 02’4 COS w1 4
X4 = d2,3 sin (9173 — d3,4 sin 91)3 Ccos (9274 — d3,4 COos 91,3 sin 0274 COS W1i,4

+dsasinfray/1 — cos?wi s
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» DMDGP order:

1 2‘
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6 14 17
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®
» Precise distances for pairs (i — 1,i), (i — 2,1).

» For distances between pairs (i — 3,/):

> di_3;: 0
> di_3;: precise
» di_3,;: interval
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2. CLIFFORD ALGEBRA

» Clifford Algebra: Hamilton algebra 4+ Grassmann algebra,
using a new product.

» Def.: Clifford Algebra is a real vector space generated by three
basis vectors {e1, €2, e3}, with a multiplication operation
(geometric product) that is associative, distributive:

e%:egzegzl,
and

€16 = —eey,
€63 = —€3€,

€36 = —e1€s3.



» An element C of the Clifford algebra, called a
multivector, has the form
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» An element C of the Clifford algebra, called a
multivector, has the form
C = «
+aier + azxex + azes
+brerer + breres + bzezer

+ceieres.
> If we define
I = e3e,
J = ees,
k = e,

we get the Hamilton algebra, and defining

1
aNnb= E(ab— ba),

we get the Grassmann algebra, where a, b € R3.




» Using the basis vectors {e1, e, €3}, we can write

a = aje;+ axex + azes

b = bier + brey + bzes

to obtain



» Using the basis vectors {e1, e, €3}, we can write

a = aje1 + azex + azes
b = biei + brer + bzes

to obtain
ab = aib; 4+ axby + aszbs

+(a1bo — azb1)ere
+(a2bz — asby)eses
+(asby — arb3)eser

and



» Using the basis vectors {e1, e, €3}, we can write

a = aje;+ axes + azes
b biei + brey + bzes

to obtain
ab = aib; 4+ axby + aszbs
+(a1bo — azb1)ere
+(a2bz — asby)eses
+(asby — arb3)eser

and

ba = aib; + axby + azbs
+(azb1 — azhy)ere
+(asby — azb3)exes
+(a1bs — a3h1)esey.
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» The outer product
1
aNb= E(ab—ba)
has the form

aNnb = (31b2 — azbl)elez
+(azbz — azby)ees
+(33b1 — 31b3)e3el.

» From ab and ba, we have

1
E(ab + ba) = albl + 82b2 + 33b3.

» We can define the inner product by

1
a-b= §(ab+ ba).
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> The geometric product ab can also be written by

ab=a-b+aANb,

where

a-b = scalar,

a A b= bivector.
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» Geometric interpretation for a A b:

» Fromab=a-b+aAb:
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Properties of the Geometric Product

» We can prove that

a- b= |lal|l[b||cos 6 = [|a A bl = ||al[[|b]| sin .

» Geometric interpretation for a A b:

» Fromab=a-b+aAb:

ab

—ba<s a-b=0,
ab

ba< aNnb=0.
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» Considering a = b in

1
a-b= §(ab+ ba),

we have
|al]* = &
» For ||a|| # 0, we get
a a 32 1
a = a = = 1.
fall2  [lall? [[al[?
» We define
al= a
|[al[?’

which implies that

(anb)y™t =



» Defining
| = €1€2€3,

where {e1, e, 3} is a right-handed frame of orthonormal vectors,
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» Defining
| = €1€2€3,

where {e1, e, 3} is a right-handed frame of orthonormal vectors,
we obtain

axb = —I(anb),

a-(bxc) = (anbAc)™L
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Rotations

» The rotation of a vector a through 20 in the
m A n plane, where m- n = cos#, is given by

(nm)a(mn),

where R = nm is called a rotor.

» Using the inner and outer product,

R = nm

n-m—+nAm

= cost+nAm,

implying that
R = cosf —sinB,

where
mAn

B =

sinf



> If we want to rotate through 6,

() (g



> If we want to rotate through 6,
0
R = cos (2> — sin <g) B.

» For a rotation of a vector a through € in the B plane (with
handedness determined by B), we have

RaR~ L.
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» In the DMDGP, we used homogeneous coordinates to
calculate sphere intersections through products of 4 x 4
matrices.

> The key idea: points in 3D space are represented as vectors in
a 4D space, where the magnitude of the vector is
unimportant.

e [~
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» Fundamental weakness: the Euclidean distances are not
handled in a straightforward manner.

» Solution: the Conformal Model (introduced by A. Mdébius).

» Basic idea:
X -Y encodes d(x,y),

where x,y € R3 and X, Y are in the Conformal space.

» Implication (for x # 0):

d(x,x)=0=X-X=0.
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5D space: spanned by {ep, e1, €, €3, €x }.

New inner product: no positivity.

{e1, e, e3} is an orthonormal set:

e,--ej:5,-j.

e and e, are orthogonal to {e1, e, e3}:

Including themselves:

Exception:

e-¢ = 0,
€€ = 0.
e-e = 0,
€x €x = 0.

€ - €xo = —1.



> If we let
X = xo€p + X161 + X262 + X3€3 + Xo0 €00,

Y = yoeo + y1€1 + yoer + y3€3 + Yoo o,

the inner product of X and Y has the form



> If we let
X = xo€p + X161 + X262 + X3€3 + Xo0 €00,

Y = yoeo + y1€1 + yoer + y3€3 + Yoo o,

the inner product of X and Y has the form

XY =x-y—(X0¥0 + Xc0)0)-



> If we let
X = xo€p + X161 + X262 + X3€3 + Xo0 €00,

Y = yoeo + y1€1 + yoer + y3€3 + Yoo o,

the inner product of X and Y has the form
XY =x-y— (XYoo + X0 )0)-

» For X =Y,
X112 = [[x[]* = 2x0x00-



> If we let
X = xo€p + X161 + X262 + X3€3 + Xo0 €00,

Y = yoeo + y1€1 + yoer + y3€3 + Yoo o,

the inner product of X and Y has the form
XY =x-y— (XYoo + X0 )0)-

» For X =Y,
X112 = [[x[]* = 2x0x00-

» For X #0, ||X|| need not to be positive:

|leol| = [[€xc|| = O



> If we let
X = xo€p + X161 + X262 + X3€3 + Xo0 €00,

Y = yoeo + y1€1 + y2€2 + ¥3€3 + Yoo oo,
the inner product of X and Y has the form

XY =x-y—(X0¥0 + Xc0)0)-

» For X =Y,
[1XI[2 = [[x]* — 2x0xc0-
» For X #0, ||X|| need not to be positive:

|leol| = [[€xc|| = O

» The Conformal Space: the 5D space with this
new inner product.
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> From [|X|[? = [Ix[|* — 2x0xcc,

d(x, x)

X112

=

0=X-X=0

0= ||x]|2 — 2x0xs0 = 0.

» How to represent a point x € 3D in the 5D
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> From [|X|[? = [Ix[|* — 2x0xcc,

dx,x) = 0=>X-X=0
=
IXI2 = 0= [|x]? — 2x0%x = O.
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> From [|X[|2 = ||x|* = 2X0Xo0,
dx,x) = 0=>X-X=0
=
IXI2 = 0= [|x]? — 2x0%x = O.

v

How to represent a point x € 3D in the 5D
conformal space?

v

Requiring homogeneity (xo = 1) and || X|| = 0, we get

1
xoo = 5 I

v

In the Conformal Space, a point
X = X161 + Xxo€ + X3€3

is represented by

1
X =€ +x+ EHtzeoo.
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> Letting

1
X = eotx+[Ix|[fex,

1
Y = e+y+slylPex,
we have
1 1
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we have
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> Letting

1
X = e+x+ §|\x||2eoo,

1
Y o= ety slyiPes,
we have

1 1
x-v = ey (IR 5IR)

= ) - y)
1 2
= -yl

» Squared distances between 3D points are given by
x—y|P = —2X- .
» Consequence:

inner prod. invariant in 5D = distances invariant in 3D.
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> Ifwelet x=0in
1 2
X:eo+x+§|\x|| €005

we have
X = €.
» Because of homogeneity,

X _ €0 + X
IxI/2 - [IxI12/2 - [1x112/2

+ ex
and X represent the same 3D point.
» For ||x]|> = oo, we have

X
IxI2/2
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Spheres in the Conformal Model

> A sphere in 3D is represented in the Conformal Space by
2
r
S = C - Eeoo.

v

A point in 3D: a sphere of radius 0.

v

A line in 3D: a circle of radius co passing through e.

v

A plane in 3D: a sphere of radius oo passing through e.
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Conformal Clifford Algebra

» Unified Framework for objects and transformations.
> For {e1, e, e3}:
eiej + ejei = 250’.

» For {ep, ex}, include:

€0€00 + €€y = —2,
fori=1,2,3,
€€ = —€j€p,
€€ = —€j€x,

and
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» Point: .
Xi=e +x+ §||Xi||zeoo-
> Line:
Xi—o A Xi—1 N éso.
» Sphere:

r2

S; = X; — éeoo.



Basic Objects in the Conformal Clifford Algebra

» Point: .
Xi = e+ x; + §||Xi||2eoo'

» Line:

Xi—o A Xi—1 N éso.
» Sphere:

2

Si = Xi — 5600.

» Circle:

Si—a NSi_1.
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» Point Pair:

Si 3 NSia AN Sig.

» Point or &:
5,',]' ANSi_3ANS_2ANSi_1.
» Rotor: \ \
R; = cos <2'> — sin <2'> B;,
where

B = (X,',z AXiZ1 A eoo) AL
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4. Conformal Clifford Algebra and the DMDGP

» Basic step of the BP algorithm:

I —xiallP = diq
||Xi—Xi—2||2 = di2—2,i’
Ixi — xi—3|> = df3;

» Geometrically:

u]

o)
1

n
it
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» Chemistry of proteins:
» di_1; and d;_»; (precise distances).
» NMR experiments:

» di_3; (interval distances).
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» We define a rotor R;:

R; = cos <);> + sin <);> z7, 0 <\ < ¢,

where the rotation axis is
zi = Xi—o AN Xi—1 N exo
and z7 is the dual of z,
ZF=(Xica AXi_1 ANex) - I7h
» The arc points are given by

XP(\) = R(A)PPRTI(N),

XHN) = R(OWPIRTI(N),

forog)\;ggb,-.
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Example (distance matrix):

[0 1 1.73205
0 1
0

[1.75,2.2]
2.3452
2.3452

0

*
[2.3,2.5]
2.09165

1

0

*

*
[1.9,2.3]
1.73205

1

0

*
*
[2.2,2.5]
1.73205
1
0
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Example (distance matrix):

[0 1 1.73205 [1.75,2.2] x * .
0o 1 2.3452  [2.3,2.5] * *
0 2.3452  2.00165 [1.9,2.3] x
0 1 1.73205 [2.2,2.5]
0 1 1.73205
0 1
0

» The first three atoms can be fixed and the search begins at
the fourth level of the BP tree:

x1 = (0,0,0),
x = (=1,0,0),
x3 = (—1.5,0.866025,0).



Atom x4

> {xp,d>4} defines the sphere S, 4.



Atom x4

> {xp,d>4} defines the sphere S, 4.
> {x3,d34} defines the sphere S3 4.



Atom x4

> {xp,d>4} defines the sphere S, 4.
> {x3,d34} defines the sphere S3 4.
> So4 A\ S34 gives the circle Gy.



Atom x4

> {xp,d>4} defines the sphere S, 4.

> {x3,d34} defines the sphere S3 4.

> So4 A\ S34 gives the circle Gy.

> {x1,d14}, where di 4 € [1.75,2.2], defines spheres S , and
S14, resulting in the points:



Atom x4

v

{x2, d24} defines the sphere S, 4.

v

{x3,d3 4} defines the sphere S3 4.

v

S2.4 A S3.4 gives the circle .
ixl, di4}, where dy 4 € [1.75,2.2], defines spheres S; , and
S14, resulting in the points:

v

Py = ep+0.719e; + 1.57e; — 0.287e3 + 1.53e,
Py = e +0.719e; + 1.57e; + 0.287e3 + 1.53e,



Atom x4

v

{x2, d24} defines the sphere S, 4.

v

{x3,d3 4} defines the sphere S3 4.

v

S2.4 A S3.4 gives the circle .
ixl, di4}, where dy 4 € [1.75,2.2], defines spheres S; , and
S14, resulting in the points:

v

Py = ep+0.719e; + 1.57e; — 0.287e3 + 1.53e,
Py = e +0.719e; + 1.57e; + 0.287e3 + 1.53e,
PT? = e+ 0.25e; +1.3ep — 1.5e3 4 2e,

PL = ey+0.25e; + 1.3 + 1.563 + 2.
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» We can also calculate the angle ¢4 corresponding to the arcs
P?P? and P; P;:

¢4 = 0.588.
» We define the rotor Ry,
Ry = cos(3t) +sin(2%)z;,
zz = XoAX3A e,

given by
Ry = cos(%) + sin(%)(0.866e13 -+ 0.5ex3 + 0.866€3 A ex),

for A4 € [0,0.588].
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The two possible arcs are giving by

XP(Na) = Ra(Aa)PIR; (M),

Xe(Xa) = Ra(Aa)PiRy(Ma).

For example,

)sin(%2) — 3.22sin%(3)
sin(3%) — 0.703sin?(%%)
)sin(3%) + 0.286sin?(3%)

0.719 cosZ(%) 0.496 cos(%
x)(\g) = | 1.57cos 2(28) — 0.286 cos( %)
—0.286 cos2(%) 4.55 cos(%

for A4 € [0,0.588].

)
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Atom xs

> For x5, we have to consider xo, x3, X4, but the sphere S; 5 has
a “moving” center:

X2(A5)

» The rotation axis for Rs,
X3 A\ Xi()\4) N €sxo,

also changes when )4 varies.
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» Important: the angle ¢5 corresponding to the arcs in Cs does
not depend on \4.

» The position X5 depends on “local” rotation given by Rs,
through the axis determined by the “global” change caused by
Ry.

» We can prove that
= Ra(Ma)(X3 A Py A exc) Ry (Ma),

Rs = cos(%2) +sin(32)zE (\a), 0 < A5 < ¢,

implying that
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XL (A4, As) = Rs(Aa, As)Ra(Ma) PERy M (Na) R (M4, As).

» That is,




» After some calculations, we get



» After some calculations, we get

(x5)1 =

n(¥)-

) + 1.21 cos (
)‘5) + 2.28 cos (
C

g 25 ) cin (M) sin(2s) —
> cos( )sm<2)sm<2)
.2

A5 ) cin2
2)Sln
A

{Jon

2
0S (%) — 0.727 sin? (/\4
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» Additional interval distance d>:

DA
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