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Single Particle Reconstruction using cryo-EM

Schematic drawing of the imaging process:

The cryo-EM problem:
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New detector technology: Exciting times for cryo-EM

www.sciencemag.org    SCIENCE    VOL 343    28 MARCH 2014 1443

The Resolution Revolution

BIOCHEMISTRY

Werner Kühlbrandt

Advances in detector technology and image 

processing are yielding high-resolution 

electron cryo-microscopy structures of 

biomolecules.

        Precise knowledge of the structure of 
macromolecules in the cell is essen-
tial for understanding how they func-

tion. Structures of large macromolecules can 
now be obtained at near-atomic resolution by 
averaging thousands of electron microscope 
images recorded before radiation damage 
accumulates. This is what Amunts et al. have 
done in their research article on page 1485 of 
this issue ( 1), reporting the structure of the 
large subunit of the mitochondrial ribosome 
at 3.2 Å resolution by electron cryo-micros-
copy (cryo-EM). Together with other recent 
high-resolution cryo-EM structures ( 2– 4) 
(see the fi gure), this achievement heralds the 
beginning of a new era in molecular biology, 
where structures at near-atomic resolution 
are no longer the prerogative of x-ray crys-
tallography or nuclear magnetic resonance 
(NMR) spectroscopy.

Ribosomes are ancient, massive protein-
RNA complexes that translate the linear 
genetic code into three-dimensional proteins. 
Mitochondria—semi-autonomous organelles 

A B C

Near-atomic resolution with cryo-EM. (A) The large subunit of the yeast mitochondrial ribosome at 3.2 Å 
reported by Amunts et al. In the detailed view below, the base pairs of an RNA double helix and a magnesium 
ion (blue) are clearly resolved. (B) TRPV1 ion channel at 3.4 Å ( 2), with a detailed view of residues lining the 
ion pore on the four-fold axis of the tetrameric channel. (C) F420-reducing [NiFe] hydrogenase at 3.36 Å ( 3). 
The detail shows an α helix in the FrhA subunit with resolved side chains. The maps are not drawn to scale.
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Cryo-EM in the news...

March 31, 2016

 

 

 

  REPORTS 

 

Cite as: Sirohi et al., Science 

10.1126/science.aaf5316 (2016).  

The 3.8 Å resolution cryo-EM structure of Zika virus 
Devika Sirohi,1* Zhenguo Chen,1* Lei Sun,1 Thomas Klose,1 Theodore C. Pierson,2 Michael G. Rossmann,1† 

Richard J. Kuhn1† 

1Markey Center for Structural Biology and Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA. 2Viral 
Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. 
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Method of the Year 2015

January 2016 Volume 13 No 1

Single-particle cryo-electron microscopy (cryo-EM) is our choice for Method of the
Year 2015 for its newfound ability to solve protein structures at near-atomic
resolution. Featured is the 2.2-Å cryo-EM structure of β-galactosidase as recently
reported by Bartesaghi et al. (Science 348, 1147–1151, 2015). Cover design by Erin
Dewalt. 

Special feature starts on p19.
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Big “Movie” Data, Publicly Available

http://www.ebi.ac.uk/pdbe/emdb/empiar/
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E. coli 50S ribosomal subunit

27,000 particle images provided by Dr. Fred Sigworth, Yale Medical School

 

 

3D reconstruction by S, Lanhui Wang, and Jane Zhao
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Orientation Estimation: Fourier projection-slice theorem

Projection Ii

Molecule φ

Electronsource

Ri ∈ SO(3)

Projection Ii

Projection Ij

Îi

Îj

3D Fourier space

3D Fourier space

(xij , yij )

(xji , yji )

Ri cij cij = (xij , yij , 0)
T

Ri cij = Rj cji

Cryo-EM inverse problem: Find φ (and R1, . . . ,Rn) given I1, . . . , In.

n = 3: Vainshtein and Goncharov 1986, van Heel 1987

n > 3: S, Shkolnisky (SIAM Imaging 2011)

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij − Rjcji‖
2

Amit Singer (Princeton University) July 2016 8 / 23



Maximum Likelihood Estimation

The images contain more information than that expressed by optimal
pairwise matching of common lines.

Algorithms based on pairwise matching can succeed only at “high”
SNR.

We would like to try all possible rotations R1, . . . ,Rn and choose the
combination for which the agreement on the common lines (implied
by the rotations) as observed in the images is maximal.

Computationally intractable: exponentially large search space,
complicated cost function.

min
g1,...,gn∈G

n
∑

i ,j=1

fij(gig
−1
j )
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3D Puzzle

G = SO(3)

min
g1,g2,...,gn∈G

n
∑

i ,j=1

fij(gig
−1
j )
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Non-Unique Games over Compact Groups

Optimization problem:

min
g1,g2,...,gn∈G

n
∑

i ,j=1

fij(gig
−1
j )

G is a compact group, fij : G → R smooth, bandlimited functions.

Parameter space G × G × · · · × G is exponentially large.

For G = Z2 = {−1,+1} this encodes Max-Cut, which is NP-hard.
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Why non-unique games?

Max-2-Lin(ZL) formulation of Unique Games (Khot et al 2005):
Find x1, . . . , xn ∈ ZL that satisfy as many difference eqs as possible

xi − xj = bij mod L, (i , j) ∈ E

This corresponds to G = ZL and

fij(x) =

{

−1 x = bij
0 x 6= bij

in

min
x1,x2,...,xn∈ZL

n
∑

i ,j=1

fij(xi − xj)

Our games are non-unique in general, and the group is not necessarily
finite.
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Fourier transform over G

Recall for G = SO(2)

f (α) =

∞
∑

k=−∞

f̂ (k)eıkα

f̂ (k) =
1

2π

∫ 2π

0
f (α)e−ıkα dα

In general, for a compact group G

f (g) =
∞
∑

k=0

dkTr
[

f̂ (k)ρk(g)
]

f̂ (k) =

∫

G

f (g)ρk(g)
∗ dg

Here
ρk are the unitary irreducible representations of G
dk is the dimension of the representation ρk
(e.g., dk = 1 for SO(2), dk = 2k + 1 for SO(3))
dg is the Haar measure on G
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Linearization of the cost function

Introduce matrix variables (“matrix lifting”)

X
(k)
ij = ρk(gig

−1
j )

Fourier expansion of fij

fij(g) =

∞
∑

k=0

dkTr
[

f̂ij(k)ρk(g)
]

Linear cost function

f (g1, . . . , gn) =

n
∑

i ,j=1

fij(gig
−1
j ) =

n
∑

i ,j=1

∞
∑

k=0

dkTr
[

f̂ij(k)X
(k)
ij

]
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Constraints on the variables X
(k)
ij = ρk(gig

−1
j )

1 X (k) � 0

2 X
(k)
ii = Idk , for i = 1, . . . , n

3 rank(X (k)) = dk

X
(k)
ij = ρk(gig

−1
j ) = ρk(gi )ρk(g

−1
j ) = ρk(gi )ρk(gj)

∗

X (k) =











ρk(g1)
ρk(g2)

...
ρk(gn)











[

ρk(g1)
∗ ρk(g2)

∗ · · · ρk(gn)
∗
]

We drop the non-convex rank constraint.

The relaxation is too loose, as we can have X
(k)
ij = 0 (for i 6= j).

Even with the rank constraint, nothing ensures that X
(k)
ij and X

(k′)
ij

correspond to the same group element gig
−1
j .
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Additional constraints on X
(k)
ij = ρk(gig

−1
j )

The delta function for G = SO(2)

δ(α) =

∞
∑

k=−∞

eıkα

Shifting the delta function to αi − αj

δ(α − (αi − αj)) =

∞
∑

k=−∞

eıkαe−ık(αi−αj ) =

∞
∑

k=−∞

eıkαX
(k)
ij

∗

The delta function is non-negative and integrates to 1:

∞
∑

k=−∞

eıkαX
(k)
ij

∗
≥ 0, ∀α ∈ [0, 2π)

1

2π

∫ 2π

0

∞
∑

k=−∞

eıkαX
(k)
ij

∗
dα = X

(0)
ij

∗
= 1
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Finite truncation via Fejér kernel

In practice, we cannot use infinite number of representations to
compose the delta function.

Simple truncation leads to the Dirichlet kernel which changes sign

Dm(α) =

m
∑

k=−m

eıkα

This is also the source for the Gibbs phenomenon and the
non-uniform convergence of the Fourier series.

The Fejér kernel is non-negative

Fm(α) =
1

m

m−1
∑

k=0

Dk(α) =

m
∑

k=−m

(

1−
|k |

m

)

eıkα

The Fejér kernel is the first order Cesàro mean of the Dirichlet kernel.
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Finite truncation via Fejér-Riesz factorization

Non-negativity constraints over SO(2)

m
∑

k=−m

(

1−
|k |

m

)

eıkαX
(k)
ij

∗
≥ 0, ∀α ∈ [0, 2π)

Fejér-Riesz: P is a non-negative trigonometric polynomial over the
circle, i.e. P(eıα) ≥ 0 ∀α ∈ [0, 2π) iff P(eıα) = |Q(eıα)|2 for some
polynomial Q.

Leads to semidefinite constraints on
{

X
(k)
ij

}

k
for each i , j .

Similar non-negativity constraints hold for general G using the delta
function over G

δ(g) =

∞
∑

k=0

dkTr [ρk(g)]

For example, Fejér proved that for SO(3) the second order Cesàro
mean of the Dirichlet kernel is non-negative.
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Additional constraints for SO(3)

X
(k)
ij is a representation of SO(3).

X
(0)
ij = 1

X
(1)
ij ∈ convSO(3) is a semidefinite constraint using unit quaternions

and Euler-Rodrigues formula
(Saunderson, Parrilo, Willsky SIOPT 2015)

Q = qqT : Q � 0, Tr(Q) = 1, Q = T (X
(1)
ij )

X
(k)
ij sum-of-squares relaxation
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Tightness of the semidefinite program

We solve an SDP for the matrices X (1), . . . ,X (m).

Numerically, the solution of the SDP has the desired ranks up to a
certain level of noise (w.h.p).

In other words, even though the search-space is exponentially large,
we typically find the MLE in polynomial time.

This is a viable alternative to heuristic methods such as EM and
alternating minimization.

The SDP gives a certificate whenever it finds the MLE.
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Final Remarks

Loss of handedness ambiguity in cryo-EM: If g1, . . . , gn ∈ SO(3) is
the solution, then so is Jg1J

−1, . . . , JgnJ
−1 for J = diag(−1,−1, 1).

Define X
(k)
ij = 1

2

[

ρk(gig
−1
j ) + ρk(Jgig

−1
j J−1)

]

Splits the representation: 2k + 1 = dk = k + (k + 1), reduced
computation

Point group symmetry (cyclic, dihedral, etc.): reduces the dimension
of the representation (invariant polynomials)

Translations and rotations simultaneously: SE (3) is a non-compact
group, but we can map it to SO(4).

Simultaneous rotation estimation and classification
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ASPIRE: Algorithms for Single Particle Reconstruction

Open source toolbox, publicly available:
http://spr.math.princeton.edu/
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