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Introduction

Realizing Linkages given dimension

EDM Completion given rank = PSD Completion given rank

Definition (Realizing a Linkage)
Given graph G = (V,E,d) with 6 : E — Q,

o find/describe the set of all p: V — R? with
l|pu — pvl| = d(u, v), modulo trivial transformations.

e equivalently, find/describe the set of all completions of
d(u,v) =||pu — pv|| from E to V x V.




Optimal
Decomposition

Meera
Sitharam

Introduction

Realization = Solution of GCS

e Problem: Finding/Roadmapping the real solution set of
the corresponding polynomial (typically quadratic) system.

e Extends to other Geometric Constraint Systems with
underlying constraint (hyper)graphs (other distance
metrics, types of constraints), with corresponding trivial
transformation groups.

e Numerous applications: Computer Aided
Mechanical /Structural design, Robotics, Graphics and
Computer Vision, Molecular Configuration Spaces.
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Problems

e Configuration Space Atlasing &
« Configurational Entropy Computation for

- Assemblies of upto 5 rigid molecular motifs given
e pair potentials
and sterics
e global
constraints




Problems

» Configuration Space Atlasing &
» Configurational Entropy Computation for

- Assemblies of upto 5 rigid molecular motifs given
e pair potentials
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Problems

e Configuration Space Atlasing &
« Configurational Entropy Computation for

- Assemblies of upto 5 rigid molecular motifs
- Small molecules with loop closure, pair potentials/sterics

Courtesy: CUIK project, Barcelona



Problems

« Configuration Space Atlasing &
« Configurational Entropy Computation for

- Assemblies of upto 5 rigid molecular motifs

- Small molecules with loop closure

— Sticky sphere systems (sterics)

Courtesy:

“A geometrical approach to computing free-energy
landscapes from short-ranged potentials”

Miranda Holmes-Cerfon, Steven J. Gortler,

Michael P. Brenner PNAS v110(1)




Problems

« Configuration Space Atlasing &

« Computation of Free Energy & Formation Rate (kinetics) for

- Assemblies of upto 5 rigid molecular motifs
- Small molecules with loop closure

- Sticky sphere systems

Prediction of Crucial Interactions for Larger Assemblies e.g. Viral Shells
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Figure 1: Left T=3 BMV assembly tree schematic; Mid: different bi-assembly interfaces {2-fold or 3-fold) for the same intermediate from
the same pentamer subassemblies; Right top: 2-fold interface types, one magnified; mid: 3, 5 and & fold interfaces; bottom: bi-assemblies

of monomers extracted from 5 and 6 fold and larger bi-assembly of small multimers from 5-fold at bottom right {the exhaustive list of such
bi-assemblies of small multimers contains approx 24 for BMV)
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Motivating Decomposition

—Complexity of solving a quadratic system prohibitively high.
— Easy Case: Triangularizable System (maintaining degree 2) -
QRS (quadratically radically solvable, or "ruler and compass”
systems.

— A corresponding natural class of graphs:

Definition

For dimension 2, G is /A-decomposable if it is a single edge, or
can be divided into 3 A-decomposable subgraphs s.t. every
two of them share a single vertex.

Note: A-decomposable implies minimally rigid
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e There is a base edge f with a graph
construction from f: each step
appends a new vertex shared by 2
A-decomposable subgraphs
(clusters)

e Corresponding linkages have a ruler
and compass realization parallel to
the graph theoretical construction

e Extends to arbitrary dimension d.
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@® Recursive Decomposition



Decomposition for Recombination
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Definition (Decomposition-recombination (DR-) plan)

Recursive De-

SR A DR-plan of constraint graph G is a forest where:
e Each node is a rigid subgraph of G.

e A root node is a vertex-maximal rigid subgraph.
e An internal node is the union of its children.

e A leaf node is a single edge
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Recursive De-
composition

Example DR-Plans: G, x G3
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Example DR-Plans: G, x G5
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Optimal DR-Plan

Dec?)s;‘;::i'ﬂon An optimal DR-plan minimizes the maximum fan-in.
Corresponds to the largest system that needs to be solved
simultaneously.

Recursive De-
composition




Optimal DR-Plan

Optimal An optimal DR-plan minimizes the maximum fan-in.

Decomposition

Corresponds to the largest system that needs to be solved
simultaneously.

Fecureive De. In general, finding optimal is NP-hard.
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Uses of DR-Planning
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(Determining complexity of) Realization.

Recursive De-
composition

e Decomposition of the stress and flex matrices.

Completion to Rigid.

Interactive removal of dependent edges/constraints.
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2001: Formalized in HoffmanLomonosovSitharamJSC2001
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Late 1980's: Began with triangle-decomposable graphs.
Corresponds to systems that can be triangularized and
therefore have quadratic radical solutions (QRS).

Recursive De-
composition

1990's-2000’s: Older algorithms were bottom-up and were
based on maximum matching. E.g., Frontier. Polynomial time,
ensuring some properties other than optimality.

2015: When graph is independent, our paper
BakerSitharamWangWilloughbyCAGD2015 contains a
top-down O(|V|3) algorithm with a formal guarantee to find an
optimal DR-plan.
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© Main Result: Optimal DR-Plan Algorithm
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Summary of Results

If the geometric constraint system we are considering. ..

e Has an underlying abstract rigidity matroid — We can
push the structure theorems through.
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Summary of Results

If the geometric constraint system we are considering. ..

e Has an underlying abstract rigidity matroid — We can
push the structure theorems through.

e Is independent — We achieve optimality of DR-plan.
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Summary of Results

If the geometric constraint system we are considering. ..

e Has an underlying abstract rigidity matroid — We can
push the structure theorems through.

e Is independent — We achieve optimality of DR-plan.

e Has an underlying sparsity matroid — We get a
polynomial time algorithm.

For 2D linkages we have O(|V/|?) time algorithm.
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Definition (Canonical DR-plan)
A DR-plan that satisfies the

additional two properties: %
@ Children are rigid

g‘;t‘?mRalew't: vertex-maximal proper 7N
DR-Plan. subgraphs (rvmps) of the @
parent.
@ If all pairs of rvmps %’ @ ﬁ
intersect trivially then all . -
of them are children, =T I T

otherwise exactly two that AN I I I 2\

intersect non-trivially are
children.
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We restrict the space of DR-plans for the input to this special
class of canonical DR-plans.

Main Result:

Theorem

Optimal
DR-Plan . . o
Algorithm A canonical DR-plan exists for a graph G and any canonical

DR-plan is optimal if G is independent.*

*Applies when G has an underlying abstract rigidity matroid.

Proof is non-trivial.
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Algorithmic Result

Theorem

Computing an optimal DR-plan for an independent graph G
has time complexity O(|V/|3).*

*Provided there exists underlying sparsity matroid.
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Algorithmic Result

Theorem

Computing an optimal DR-plan for an independent graph G
has time complexity O(|V/|3).*

*Provided there exists underlying sparsity matroid.

Proof outline:
@ We define a new class of DR-plans.

® We show it has fan-in no larger than a canonical DR-plan.
(Non-trivial proof.)

©® We show how to build it in time O(|V|3).
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Definition (Pseudosequential DR-plan)

i e A DR-plan where, if all pairs of rymps of a node intersect
ain Result:

Optimal e Trivially: then all of them are children.

Algorithm

e Non-trivially: then exactly two that intersect non-trivially,
C; and G, are used to find the children; they are C; and
the pseudosequential DR-plan of G\ G;.




Example DR-Plans: Canonical vs.
Pseudosequential

Canonical Psuedosequential
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Branches

Definition (Branch)

Branch(T, a, b) of tree T is every node on the path from a to
b and their children.
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A Pseudosequential DR-Plan Branch from the
Leaves
Given G and e € G, there exists a pseudosequential DR-plan

P¢ where the leaves of branch(Pg, G, €) is exactly* the rvmps
of G\ e.
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A Pseudosequential DR-Plan Branch from the
Leaves

Given G and e € G, there exists a pseudosequential DR-plan
P¢ where the leaves of branch(Pg, G, €) is exactly* the rvmps
of G\ e.

We can find the rvmps of G\ e in O(|V?).
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A Pseudosequential DR-Plan Branch from the
Leaves

Given G and e € G, there exists a pseudosequential DR-plan
P¢ where the leaves of branch(Pg, G, €) is exactly* the rvmps
of G\ e.

We can find the rvmps of G\ e in O(|V?).

Given a preprocessing step of finding the rvmps of G \ f for all
f, branch(Pg, G, e) can be built in time O(|V/|?).
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A Pseudosequential DR-Plan Branch from the
Leaves

Given G and e € G, there exists a pseudosequential DR-plan
P¢ where the leaves of branch(Pg, G, €) is exactly* the rvmps
of G\ e.

We can find the rvmps of G\ e in O(|V?).

Given a preprocessing step of finding the rvmps of G \ f for all
f, branch(Pg, G, e) can be built in time O(|V/|?).

Building the branch (from G to e):
@ Compute the rvmps of G \ e, {L;}.
@® For each L € {L;}
@ Choose an arbitrary edge f € L and compute the rvmps of
G\ f, {M}.
® Compare the intersection of L with each M; to get its
position relative to the other leaves.

©® Compute nodes on the path from G to e.
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Finding an Entire Pseudosequential DR-Plan

Building the DR-plan (of G):
@ Preprocessing: Compute the rvmps of G \ e, for all e.
® Start with G as the single node in the DR-plan.
©® Recursively compute a branch for each leaf in the DR-plan.
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Finding an Entire Pseudosequential DR-Plan

Building the DR-plan (of G):
@ Preprocessing: Compute the rvmps of G \ e, for all e.
® Start with G as the single node in the DR-plan.
©® Recursively compute a branch for each leaf in the DR-plan.
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O Main Result: Solving Indecomposables via Cayley
Convexification
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Main Result:
Solving Inde-
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via Cayley
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What Next?

What comes after optimal DR-planning? We've decomposed to
the extent possible.

Naively, we would, bottom-up, recombine the solved children
into parents.

Recombining is equivalent to solving an indecomposable
system.
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OMD

Definition (Optimal modification for decomposition (OMD))

Informally, drop some edges and add some others to make

—an easily realizable system (i.e. small max fan-in DR-plan),

—easy to search for lengths of added edges (Cayley parameters) that
meet desired lengths of dropped edges.

Dropped edges: Chosen so that the realization space has a convex
Cayley parameterization.

Added edges: Cayley parameters that convexify the realization space.
Additionally, realization of modified linkage can be efficiently
computed (e.g., triangle-decomposable.)
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Convexity permits efficient search the realization space of
modified linkage for realizations that satisfy the dropped

constraints.
Main Result: \‘
Solving Inde-
composables
via Cayley

Convexifica-
tion




Convex Cayley Characterization
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Meera (179 (21 2)
Sitharam

(2,1

(1,0)

Main Result:

Solving Inde-
composables

va Cayley [SitharamGaoDCG2010], [SitharamWilloughbyADG2015]:

tion —Characterizes graphs that have (Strong/Weak) Convex Cayley
Parameterization in dimension d

—Strong: Directly equivalent to d-flattenability, i.e., gram
dimension < d.

—Results extend to linkages in other norms
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d-flattenability

Definition

A graph G is d-flattenable under norm ||.|| if for any m and
any realization r : V(G) — R™ there is a realization

r': V(G) — R with ||r(u) — r(v)|| = ||/(u) — r'(v)]] for
every (u,v) € E(G).

Analogous definition for flattenability of frameworks (G, r)



Optimal
Decomposition

Main Result:
Solving Inde-
composables
via Cayley
Convexifica-
tion

d-flattenability

Let ®,(n) be the cone of vectors of (3) pairwise I distances
on n points. Let ¢i(n) be the stratum of the cone consisting
of those vectors when the points are in R?. Then G is
d-flattenable if and only if both objects have the same
projection on on the edge set G.
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d-flattenability

Observation
Let ®,(n) be the cone of vectors of (3) pairwise I distances
on n points. Let ¢i(n) be the stratum of the cone consisting

of those vectors when the points are in R?. Then G is
d-flattenable if and only if both objects have the same
projection on on the edge set G.
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Strong (Inherently) Convex Cayley Spaces

Definition

SitharamGaoDCG2010 A graph H has an inherently convex
Cayley space in d-dimensions for a given norm /;, 1 < g < oo,
if the projection of d>z’7(n) on the edge set of H is convex. l.e.,
the space of realizable edge-length-vectors for H in
d-dimensions and given norm, is convex.
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Strong (Inherently) Convex Cayley Spaces

Definition

SitharamGaoDCG2010 A graph H has an inherently convex
Cayley space in d-dimensions for a given norm /;, 1 < g < oo,
if the projection of d>i’7(n) on the edge set of H is convex. l.e.,
the space of realizable edge-length-vectors for H in
d-dimensions and given norm, is convex.

Theorem

SitharamWilloughby2015 For any norm, a graph H has an
inherently convex Cayley realization space in d dimensions if
and only if H is d-flattenable.
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e For any norm and any dimension d, d-flattenability and
Strong Cayley convexity in dimension d are minor-closed
properties, with finite forbidden minor characterizations.

Soing e e Graphs of tree-width d (among others) have inherently

composables H H
e convex Cayley configuration spaces.
Convexifica-

tion
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Applications

e Application (, Inherently Convex, multiple Cayley
parameters): EASAL for molecular/sticky-sphere assembly
OzkanSitharamBiCoB2011; WuEtAIACMBCB2013,16;
SitharamEtAI2015,16; OzkanEtAlI2016A,B,C
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Applications

e Application (, Inherently Convex, multiple Cayley
parameters): EASAL for molecular/sticky-sphere assembly
OzkanSitharamBiCoB2011; WuEtAIACMBCB2013,16;
SitharamEtAI2015,16; OzkanEtAlI2016A,B,C

e Application (/, Non-Convex, single Cayley parameter):
CayMos for CAD Mechanisms Sitharam\WangSPM2014,
WangSitharamTOMS2015, SitharamWangGao2013a,b



EASAL — Virus Assembly

« Approximate computation of volume of potential energy basins — free energy change
for each node of assembly tree

« Topology of configuration space — formation rates for_each node of assembly tree

« Likelihood of each assembly tree

— &

PN full capsid
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Figure 1: Left T=3 BMV assembly tree schematic; Mid: different bi-assembly interfaces {2-fold or 3-fold) for the same intermediate from
the same pentamer subassemblies; Right top: 2-fold interface types, one magnified; mid: 3, 5 and & fold interfaces; bottom: bi-assemblies

of monomers extracted from 5 and 6 fold and larger bi-assembly of emall multimers from 5-fold at bottom right (the exhaustive list of such
bi-assemblies of small multimers contains approx 24 for BMV)
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Predicting crucial interactions
for T=1,3 viral capsid shell assembly

predict minimal sets of
geometric  constraints  whose
removal disrupts assembly of
viral shell.




Predicting crucial interactions
for T=1 viral shell assembly

see how the atlas differs (in black) if a
constraint is dropped.
- crucial constraints result in big changes in
(approximate) configurational entropy +

formation rate computation
: K . 7
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- * EASAL'’s prediction is
confirmed by

mutagenesis data from
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aav, dimer

aav, pentamer

Bond Confirmed Bond Confirmed
D231 and K692 T337 and Q319
P293 and W694  |Yes L23872 a”‘; NKf;g‘é
P293 and P696  |Yes an
R389 and Y704
R294 and E689 Yes
Y397 and S292 Yes bmv. hexamer
R294 and E697 Yes : .
Q401 and N227 Yes Bond Confirmed
R298 and E689  [Yes M402 and Q677  |Yes mvm. trimer
’ - A25 and R26
P366 and W694 Yes Bond Confirmed 028 and Q28
Y720 and W694 | Ves mvm, pentamer W283 and C216  |Yes an
- Bond Confrmed [w283 and N244 [Yes P29 and [31
mvm, dimer Y47 and E251 W283 and Q246 | Yes P98 and K105
T Y47 and 1256 oo and STo Tyes
an es
D127 and N540 Y47 and L298 Q291 and S209  |Yes _
N149 and R260 291 andR212_ Y bmv, hex-pen
Q129 and V546  |Yes Q291 an es :
K153 and D171  |Yes R314 and D102 |Yes Bond Confirmed
N133 and Q548
D302 and 1567 K153 and N504 Yes L453 and L481 Yes Q172 and F180  |Yes
Y168 and D507 R584 and D474 Yes V187 and ka1 Y
D302 and N571 N170 and T173 R584 and E476 Yes an €S
N540 and $126 V187 and V132 |Yes
P545 and W564 |Yes omv. pentamer bmv, trimer3
Y547 and S550 Bond Confirmed Bond Confirmed . fimer)
| 598 and 66 E80andE110 | Yes mv, trimer .
bmv, dimer . P98 and E116 E80 and D148 Bond Confirmed
Bond Confirmed P98 and F119 £30 and N151 £110 and E80
191and F184 Yes zgg :23 g% Yes K81andD139  |Yes K130and R189  |Yes
Q172 and F184 Yes =13 and K130 Vos E84 and T145 Yes D139 and F183 YeS
D181and D181 __|Yes E131 and E131 E84and D148 |Yes TI45andE84  [Yes
Y188 and K130 Yes D148andE84  |Yes




EASAL — Virus Assembly

» Mysterious “Missing” factor. Combinatorial entropy
— counting pathway symmetry equivalence classes

(%)

» Sparse mutagenesis data — need to use kinetics,
differential calorimetry and other combination of
experimental data, including fine-grained MC/MD for
cross-validation

* :
( ) Bona, Sitharam, Vince “Tree orbits under permutation groups and application to virus
assembly” Bulletin of Math Bio, 2011



sticky sphere system

EASAL — Sticky Spheres
 Complete computation of free energy and formation rates for 6,7,8
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Opensource Software

Available on my webpage.

Decomposition:

FRONTIER (GPL, bitbucket),

New version Under development Available at:
cise.ufl.edu/~tbaker/drp
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cise.ufl.edu/~tbaker/drp

Optimal
Decomposition

Main Result:
Solving Inde-
composables
via Cayley
Convexifica-
tion

More Opensource Software

Cayley Configuration spaces:
CayMos (for 2D mechanisms) (GPL, bitbucket)
EASAL (for molecular and sticky sphere assembly)



