Singularity Degree of PSD Matrix Completion

Shin-ichi Tanigawa

CWI and Kyoto

July 29, 2016

Positive Semidefinite Matrix Completion

PSD completion problem (G, c)

Given G = (V, E) with $V = \{1, \dots, n\}$ and edge weight $c : E \rightarrow [-1, 1]$,

$$\begin{array}{ll} \text{find} & X \in \mathcal{S}^n \\ \text{s.t.} & X[i,j] = c(ij) & (ij \in E) \\ & X[i,i] = 1 & (i \in V) \\ & X \succeq 0 \end{array}$$

Positive Semidefinite Matrix Completion

PSD completion problem (G, c)

Given G = (V, E) with $V = \{1, \dots, n\}$ and edge weight $c : E \rightarrow [-1, 1]$,

$$\begin{array}{ll} \text{find} & X \in \mathcal{S}^n \\ \text{s.t.} & X[i,j] = c(ij) \quad (ij \in E) \\ & X[i,i] = 1 \quad (i \in V) \\ & X \succeq 0 \end{array}$$

 $\begin{array}{ll} \min & \langle \Omega, C \rangle \\ \text{s.t.} & \Omega \in S_+(G) \end{array}$

where

$$C[i,j] = \begin{cases} c(ij) & (ij \in E) \\ 1 & (i = j) \\ 0 & (otherwise) \end{cases}$$
$$S(G) := \{A \in S^n : A[i,j] = 0 \ \forall ij \notin V \cup E\}$$
$$S_+(G) := \{A \in S(G) : A \succeq 0\}$$
$$\overline{S}_+(G) := \{A \in S_+(G) : A[i,j] \neq 0 \ \forall ij \in E\}$$

Geometric View

- Given a completion problem (G, c),
- PSD completion X = PP[⊤] with rank d
 ⇔ spherical embedding p : V → S^{d−1} realizing c, i.e.,

$$p_i \cdot p_j = c(ij) \quad \forall ij \in E$$

spherical (bar-joint) framework (G, p)

Geometric View

- Given a completion problem (G, c),
- PSD completion X = PP[⊤] with rank d
 ⇔ spherical embedding p : V → S^{d-1} realizing c, i.e.,

$$p_i \cdot p_j = c(ij) \quad \forall ij \in E$$

- ▶ spherical (bar-joint) framework (*G*, *p*)
- dual optimal solution : $\Omega\in S_+(G)$ with $\langle C,\Omega
 angle=0$

Geometric View

- Given a completion problem (G, c),
- PSD completion X = PP[⊤] with rank d
 ⇔ spherical embedding p : V → S^{d-1} realizing c, i.e.,

$$p_i \cdot p_j = c(ij) \quad \forall ij \in E$$

- ▶ spherical (bar-joint) framework (G, p)
- dual optimal solution : $\Omega\in S_+(G)$ with $\langle C,\Omega
 angle=0$

- Ω is called a stress (matrix) of (G, p) if Ω satisfies (1)
- Given (G, p), $\Omega \in S(G)$ is dual opt iff Ω is a PSD stress of (G, p).

SDP Duality

For any primal and dual optimal pair (X, Ω) ,

 $\langle X, \Omega \rangle = 0 \quad \Rightarrow \quad \operatorname{rank} X + \operatorname{rank} \Omega \leq n.$

• high rank dual opt \Rightarrow low rank completion

SDP Duality

For any primal and dual optimal pair (X, Ω) ,

 $\langle X, \Omega \rangle = 0 \quad \Rightarrow \quad \operatorname{rank} X + \operatorname{rank} \Omega \leq n.$

• high rank dual opt \Rightarrow low rank completion

Rank maximality certificate

• A completion X for (G, c) attains the maximum rank if \exists dual opt with rank $n - \operatorname{rank} X$.

Parameter ν and Unique Completability

Theorem (Connelly82, Laurent-Varvitsiotis14)

• A completion X for (G, c) is unique if \exists dual opt Ω with rank $\Omega = n - \operatorname{rank} X$ and the SAP, i.e.,

 $\nexists X \in S^n \setminus \{0\}$ with $\Omega X = 0$ and X[i, j] = 0 for $ij \in V \cup E$

• (G, p) is universally rigid in \mathbb{S}^{d-1} if (G, p) admits a PSD stress Ω with rank $\Omega = n - d$ and the SAP.

Parameter ν and Unique Completability

Theorem (Connelly82, Laurent-Varvitsiotis14)

• A completion X for (G, c) is unique if \exists dual opt Ω with rank $\Omega = n - \operatorname{rank} X$ and the SAP, i.e.,

 $\nexists X \in S^n \setminus \{0\}$ with $\Omega X = 0$ and X[i, j] = 0 for $ij \in V \cup E$

• (G, p) is universally rigid in \mathbb{S}^{d-1} if (G, p) admits a PSD stress Ω with rank $\Omega = n - d$ and the SAP.

Colin de Verdière Parameter ν

 $\nu(G) := \max\{\operatorname{corank} \Omega : \Omega \in \overline{S}_+(G) \text{ has the SAP}\}.$

 $\nu(G) \leq \max\{d : \exists \text{ universally rigid } (G, p) \text{ in } \mathbb{S}^{d-1} \}$

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

 $\operatorname{rank} X + \operatorname{rank} \Omega = n$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

 $\operatorname{rank} X + \operatorname{rank} \Omega = n$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

 $\operatorname{rank} X + \operatorname{rank} \Omega = n$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP
- \Rightarrow singularity degree of a graph G

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

 $\operatorname{rank} X + \operatorname{rank} \Omega = n$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP
- \Rightarrow singularity degree of a graph G

Proposition

The following are equivalent for a graph G:

•
$$\operatorname{sd}(G) = 1;$$

The strict complementarity holds for any PSD completion problem with underlying graph G;

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

 $\operatorname{rank} X + \operatorname{rank} \Omega = n$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP
- \Rightarrow singularity degree of a graph G

Proposition

The following are equivalent for a graph G:

•
$$sd(G) = 1;$$

- The strict complementarity holds for any PSD completion problem with underlying graph G;
- One projection *E*(*G*) of the elliptope (the set of correlation matrices) onto ℝ^E is exposed (Druvyatskiy-Pataki-Wolkowicz15).

A sequence $\{\Omega_1, \ldots, \Omega_k\}$ in S^n is iterated PSD if Ω_i is positive semidefinite on \mathcal{V}_{i-1} , where $\mathcal{V}_0 = \mathbb{R}^n$ and

$$\mathcal{V}_i = \{x \in \mathbb{R}^n : \langle xx^\top, \Omega_j \rangle = 0 \ (j = 1, \dots, i-1)\}.$$

A sequence $\{\Omega_1, \ldots, \Omega_k\}$ in S^n is iterated PSD if Ω_i is positive semidefinite on \mathcal{V}_{i-1} , where $\mathcal{V}_0 = \mathbb{R}^n$ and

$$\mathcal{V}_i = \{x \in \mathbb{R}^n : \langle xx^{\top}, \Omega_j \rangle = 0 \ (j = 1, \dots, i-1)\}.$$

Theorem (Facial reduction)

For any feasible (G, c), $\exists X \text{ and } \exists \Omega_1, \dots, \Omega_k \in S(G) \text{ s.t.}$

the sequence is iterated PSD

$$(C, \Omega_i) = 0 \ for \ each \ i$$

 $ank X = \dim \mathcal{V}_k$

A sequence $\{\Omega_1, \ldots, \Omega_k\}$ in S^n is iterated PSD if Ω_i is positive semidefinite on \mathcal{V}_{i-1} , where $\mathcal{V}_0 = \mathbb{R}^n$ and

$$\mathcal{V}_i = \{x \in \mathbb{R}^n : \langle xx^{\top}, \Omega_j \rangle = 0 \ (j = 1, \dots, i-1)\}.$$

Theorem (Facial reduction)

```
For any feasible (G, c), \exists X \text{ and } \exists \Omega_1, \dots, \Omega_k \in S(G) \text{ s.t.}
```

the sequence is iterated PSD

$$(C, \Omega_i) = 0 \ for \ each \ i$$

 $ank X = \dim \mathcal{V}_k$

- the existence of a dual sequence characterizes the max rank of completions (Connelly-Gortler15)
- with the SAP, it characterize the unique completability (Connelly-Gortler15)

A sequence $\{\Omega_1, \ldots, \Omega_k\}$ in S^n is iterated PSD if Ω_i is positive semidefinite on \mathcal{V}_{i-1} , where $\mathcal{V}_0 = \mathbb{R}^n$ and

$$\mathcal{V}_i = \{x \in \mathbb{R}^n : \langle xx^{\top}, \Omega_j \rangle = 0 \ (j = 1, \dots, i-1)\}.$$

Theorem (Facial reduction)

For any feasible (G, c), $\exists X \text{ and } \exists \Omega_1, \dots, \Omega_k \in S(G) \text{ s.t.}$

the sequence is iterated PSD

$$(C, \Omega_i) = 0 \ for \ each \ i$$

 $one X = \dim \mathcal{V}_k$

- the existence of a dual sequence characterizes the max rank of completions (Connelly-Gortler15)
- with the SAP, it characterize the unique completability (Connelly-Gortler15)

Definition (Sturm 2000)

For a completion problem (G, c), the singularity degree sd(G, c) is the length of the shortest dual certificate sequence $\{\Omega_1, \ldots, \Omega_k\}$.

Singularity Degree of Graphs

Singularity degree of G

$$\operatorname{sd}(G) = \max_{c} \operatorname{sd}(G, c)$$

Question (Druvyatskiy-Pataki-Wolkowicz15) Characterize G with sd(G) = 1Question (So15) sd(G) = o(n)?

Main Results

Theorem (T16)

sd(G) = 1 iff G is chordal.

G is chordal if G has no $C_n(n \ge 4)$ as an induced subgraph

Main Results

Theorem (T16)

sd(G) = 1 iff G is chordal.

G is chordal if G has no $C_n(n \ge 4)$ as an induced subgraph

Theorem (T16)

- If G has neither W_n (n ≥ 5) nor a proper splitting of W_n (n ≥ 4) as an induced subgraph, then sd(G) ≤ 2.
- If G has an induced subgraph which is a proper splitting of one of the above forbidden subgraphs, then sd(G) > 2.

If $tw(G) \leq 2$, then $sd(G) \leq 2$.

Main Results

Theorem (T16)

sd(G) = 1 iff G is chordal.

G is chordal if G has no $C_n(n \ge 4)$ as an induced subgraph

Theorem (T16)

- If G has neither W_n (n ≥ 5) nor a proper splitting of W_n (n ≥ 4) as an induced subgraph, then sd(G) ≤ 2.
- If G has an induced subgraph which is a proper splitting of one of the above forbidden subgraphs, then sd(G) > 2.

```
If tw(G) \leq 2, then sd(G) \leq 2.
```

Theorem (T16)

For each *n* there is a graph *G* with *n* vertices and tw(G) = 3 whose singularity degree is $\lfloor \frac{n-1}{3} \rfloor$.

Theorem (T16)

sd(G) = 1 iff G is chordal.

" \Leftarrow " (Druvyatskiy-Pataki-Wolkowicz15) " \Rightarrow "

Lemma sd $(C_n) \ge 2$ if $n \ge 4$.

Theorem (T16)

sd(G) = 1 iff G is chordal.

" \Leftarrow " (Druvyatskiy-Pataki-Wolkowicz15) " \Rightarrow "

Lemma sd $(C_n) \ge 2$ if $n \ge 4$.

• Consider (*G*, *p*):

Theorem (T16)

sd(G) = 1 iff G is chordal.

" \Leftarrow " (Druvyatskiy-Pataki-Wolkowicz15)

Lemma sd $(C_n) \ge 2$ if $n \ge 4$.

• Consider (G, p):

• (G, p) is universally rigid

Theorem (T16)

sd(G) = 1 iff G is chordal.

" \Leftarrow " (Druvyatskiy-Pataki-Wolkowicz15) " \Rightarrow "

Lemma sd $(C_n) \ge 2$ if $n \ge 4$.

• Consider (G, p):

- (G, p) is universally rigid
- there is a unique stress Ω with $\operatorname{rank} \Omega = 1 < n-2$

A completion problem (G, c) is nondegenerate if $c(ij) \neq \pm 1$ for every $ij \in E(G)$.

Degenerate edges can easily be eliminated.

- Suppose c(ij) = 1 for $ij \in E$...
- Any solution X of (G, c) satisfies

$$X[i,k] = X[j,k]$$
 for every k

• Equivalently, any embedding p realizing c satisfies p(i) = p(j). The example in the last proof is degenerate...

A completion problem (G, c) is nondegenerate if $c(ij) \neq \pm 1$ for every $ij \in E(G)$.

Nondegenerate Singularity Degree

 $\mathrm{sd}^*(G) = \max\{\mathrm{sd}(G, c) : \text{ nondegenerate } (G, c)\}.$

A completion problem (G, c) is nondegenerate if $c(ij) \neq \pm 1$ for every $ij \in E(G)$.

Nondegenerate Singularity Degree

 $\mathrm{sd}^*(G) = \max\{\mathrm{sd}(G, c) : \text{ nondegenerate } (G, c)\}.$

Theorem (T16) $\mathrm{sd}^*(G) = 1$ iff G has neither $W_n (n \ge 5)$ nor a proper splitting of $W_n (n \ge 4)$ as an induced subgraph.

A completion problem (G, c) is nondegenerate if $c(ij) \neq \pm 1$ for every $ij \in E(G)$.

Nondegenerate Singularity Degree

 $\mathrm{sd}^*(G) = \max\{\mathrm{sd}(G, c) : \text{ nondegenerate } (G, c)\}.$

Theorem (T16) $\mathrm{sd}^*(G) = 1$ iff G has neither $W_n (n \ge 5)$ nor a proper splitting of $W_n (n \ge 4)$ as an induced subgraph.

A completion problem (G, c) is nondegenerate if $c(ij) \neq \pm 1$ for every $ij \in E(G)$.

Nondegenerate Singularity Degree

 $\mathrm{sd}^*(G) = \max\{\mathrm{sd}(G, c) : \text{ nondegenerate } (G, c)\}.$

Theorem (T16) $\mathrm{sd}^*(G) = 1$ iff G has neither $W_n (n \ge 5)$ nor a proper splitting of $W_n (n \ge 4)$ as an induced subgraph.

If G has no forbidden induced subgraph listed above, then the hyperplane exposing the minimal face is determined by cliques and cycles satisfying the metric inequality with equality

A completion problem (G, c) is nondegenerate if $c(ij) \neq \pm 1$ for every $ij \in E(G)$.

Nondegenerate Singularity Degree

 $\mathrm{sd}^*(G) = \max\{\mathrm{sd}(G, c) : \text{ nondegenerate } (G, c)\}.$

Theorem (T16) $\mathrm{sd}^*(G) = 1$ iff G has neither $W_n (n \ge 5)$ nor a proper splitting of $W_n (n \ge 4)$ as an induced subgraph.

If G has no forbidden induced subgraph listed above, then the hyperplane exposing the minimal face is determined by cliques and cycles satisfying the metric inequality with equality

Lemma $\operatorname{sd}(G) \leq \operatorname{sd}^*(G) + 1$.

Corollary (T16) $sd(G) \le 2$ if G has no forbidden induced subgraph listed above.

Example of Large Singularity Degree

Theorem (T16)

For each *n* there is a graph *G* with *n* vertices and tw(G) = 3 whose singularity degree is $\lceil \frac{n-1}{3} \rceil$.

• A similar result can be established for EDM

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
 "X[i,j] ≤ c(ij)" or "X[i,j] ≥ c(ij)" instead of "X[i,j] = c(ij)"

• A similar result can be established for EDM

- Signed PSD matrix completion and the singularity degree of signed graphs:
 - "X[i,j] ≤ c(ij)" or "X[i,j] ≥ c(ij)" instead of "X[i,j] = c(ij)"
 - primal the theory of tensegrities by e.g., Connelly
 - dual signed Colin de Verdiere parameter by Arav et al.

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
 - " $X[i,j] \leq c(ij)$ " or " $X[i,j] \geq c(ij)$ " instead of "X[i,j] = c(ij)"
 - primal the theory of tensegrities by e.g., Connelly
 - dual signed Colin de Verdiere parameter by Arav et al.
 - (T16) $sd(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_4 -minor free

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
 - " $X[i,j] \leq c(ij)$ " or " $X[i,j] \geq c(ij)$ " instead of "X[i,j] = c(ij)"
 - primal the theory of tensegrities by e.g., Connelly
 - dual signed Colin de Verdiere parameter by Arav et al.
 - (T16) $sd(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_4 -minor free
- Q. Characterize signed graphs (G, Σ) with $sd(G, \Sigma) = 1$.

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
 - " $X[i,j] \leq c(ij)$ " or " $X[i,j] \geq c(ij)$ " instead of "X[i,j] = c(ij)"
 - primal the theory of tensegrities by e.g., Connelly
 - dual signed Colin de Verdiere parameter by Arav et al.
 - (T16) $sd(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_4 -minor free
- Q. Characterize signed graphs (G, Σ) with $sd(G, \Sigma) = 1$.
- Q. Characterize graphs G with $sd(G) \leq 2$.

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
 - " $X[i,j] \leq c(ij)$ " or " $X[i,j] \geq c(ij)$ " instead of "X[i,j] = c(ij)"
 - primal the theory of tensegrities by e.g., Connelly
 - dual signed Colin de Verdiere parameter by Arav et al.
 - (T16) $sd(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_4 -minor free
- Q. Characterize signed graphs (G, Σ) with $sd(G, \Sigma) = 1$.
- Q. Characterize graphs G with $sd(G) \leq 2$.
- Q. Bound sd(G) by other graph parameters.