Singularity Degree of PSD Matrix Completion

Shin-ichi Tanigawa

CWI and Kyoto
July 29, 2016

Positive Semidefinite Matrix Completion

PSD completion problem (G, c)
Given $G=(V, E)$ with $V=\{1, \ldots, n\}$ and edge weight $c: E \rightarrow[-1,1]$,

$$
\begin{array}{ccc}
\text { find } & X \in \mathcal{S}^{n} & \\
\text { s.t. } & X[i, j]=c(i j) & (i j \in E) \\
& X[i, i]=1 & (i \in V) \\
& X \succeq 0 &
\end{array}
$$

Positive Semidefinite Matrix Completion

PSD completion problem (G, c)
Given $G=(V, E)$ with $V=\{1, \ldots, n\}$ and edge weight $c: E \rightarrow[-1,1]$,

$$
\begin{array}{ccc}
\text { find } & X \in \mathcal{S}^{n} & \\
\text { s.t. } & X[i, j]=c(i j) & (i j \in E) \\
& X[i, i]=1 & (i \in V) \\
& X \succeq 0 &
\end{array}
$$

$$
\begin{array}{cc}
\min & \langle\Omega, C\rangle \\
\text { s.t. } & \Omega \in S_{+}(G)
\end{array}
$$

where

$$
\begin{aligned}
C[i, j] & = \begin{cases}c(i j) & (i j \in E) \\
1 & (i=j) \\
0 & (\text { otherwise })\end{cases} \\
S(G) & :=\left\{A \in \mathcal{S}^{n}: A[i, j]=0 \forall i j \notin V \cup E\right\} \\
S_{+}(G) & :=\{A \in S(G): A \succeq 0\} \\
\bar{S}_{+}(G) & :=\left\{A \in S_{+}(G): A[i, j] \neq 0 \forall i j \in E\right\}
\end{aligned}
$$

Geometric View

- Given a completion problem (G, c),
- PSD completion $X=P P^{\top}$ with rank d \Leftrightarrow spherical embedding $p: V \rightarrow \mathbb{S}^{d-1}$ realizing c, i.e.,

$$
p_{i} \cdot p_{j}=c(i j) \quad \forall i j \in E
$$

- spherical (bar-joint) framework (G, p)

Geometric View

- Given a completion problem (G, c),
- PSD completion $X=P P^{\top}$ with rank d \Leftrightarrow spherical embedding $p: V \rightarrow \mathbb{S}^{d-1}$ realizing c, i.e.,

$$
p_{i} \cdot p_{j}=c(i j) \quad \forall i j \in E
$$

- spherical (bar-joint) framework (G, p)
- dual optimal solution : $\Omega \in S_{+}(G)$ with $\langle C, \Omega\rangle=0$

$$
\begin{align*}
\langle C, \Omega\rangle=0 & \Leftrightarrow\langle X, \Omega\rangle=0 \\
& \Leftrightarrow \Omega P=0 \\
& \Leftrightarrow \Omega[i, i] p(i)+\sum_{j \sim i} \Omega[i, j] p(j)=0 \quad(\forall i \in V) \tag{1}
\end{align*}
$$

Geometric View

- Given a completion problem (G, c),
- PSD completion $X=P P^{\top}$ with rank d \Leftrightarrow spherical embedding $p: V \rightarrow \mathbb{S}^{d-1}$ realizing c, i.e.,

$$
p_{i} \cdot p_{j}=c(i j) \quad \forall i j \in E
$$

- spherical (bar-joint) framework (G, p)
- dual optimal solution : $\Omega \in S_{+}(G)$ with $\langle C, \Omega\rangle=0$

$$
\begin{align*}
\langle C, \Omega\rangle=0 & \Leftrightarrow\langle X, \Omega\rangle=0 \\
& \Leftrightarrow \Omega P=0 \\
& \Leftrightarrow \Omega[i, i] p(i)+\sum_{j \sim i} \Omega[i, j] p(j)=0 \quad(\forall i \in V) \tag{1}
\end{align*}
$$

- Ω is called a stress (matrix) of (G, p) if Ω satisfies (1)
- Given $(G, p), \Omega \in S(G)$ is dual opt iff Ω is a PSD stress of (G, p).

SDP Duality

For any primal and dual optimal pair (X, Ω),

$$
\langle X, \Omega\rangle=0 \Rightarrow \operatorname{rank} X+\operatorname{rank} \Omega \leq n .
$$

- high rank dual opt \Rightarrow low rank completion

SDP Duality

For any primal and dual optimal pair (X, Ω),

$$
\langle X, \Omega\rangle=0 \Rightarrow \operatorname{rank} X+\operatorname{rank} \Omega \leq n .
$$

- high rank dual opt \Rightarrow low rank completion

Rank maximality certificate

- A completion X for (G, c) attains the maximum rank if \exists dual opt with rank $n-\operatorname{rank} X$.

Parameter ν and Unique Completability

Theorem (Connelly82, Laurent-Varvitsiotis14)

- A completion X for (G, c) is unique if \exists dual opt Ω with $\operatorname{rank} \Omega=n-\operatorname{rank} X$ and the SAP, i.e.,

$$
\nexists X \in \mathcal{S}^{n} \backslash\{0\} \text { with } \Omega X=0 \text { and } X[i, j]=0 \text { for } i j \in W E
$$

- (G, p) is universally rigid in \mathbb{S}^{d-1} if (G, p) admits a PSD stress Ω with $\operatorname{rank} \Omega=n-d$ and the SAP.

Parameter ν and Unique Completability

Theorem (Connelly82, Laurent-Varvitsiotis14)

- A completion X for (G, c) is unique if \exists dual opt Ω with $\operatorname{rank} \Omega=n-\operatorname{rank} X$ and the SAP, i.e.,

$$
\nexists X \in \mathcal{S}^{n} \backslash\{0\} \text { with } \Omega X=0 \text { and } X[i, j]=0 \text { for } i j \in W E
$$

- (G, p) is universally rigid in \mathbb{S}^{d-1} if (G, p) admits a PSD stress Ω with $\operatorname{rank} \Omega=n-d$ and the SAP.

Colin de Verdière Parameter ν

$$
\nu(G):=\max \left\{\operatorname{corank} \Omega: \Omega \in \bar{S}_{+}(G) \text { has the SAP }\right\} .
$$

$\nu(G) \leq \max \left\{d: \exists\right.$ universally rigid (G, p) in $\left.\mathbb{S}^{d-1}\right\}$

Strict Complementarity and Singularity Degree

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

$$
\operatorname{rank} X+\operatorname{rank} \Omega=n
$$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?

Strict Complementarity and Singularity Degree

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

$$
\operatorname{rank} X+\operatorname{rank} \Omega=n
$$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP

Strict Complementarity and Singularity Degree

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

$$
\operatorname{rank} X+\operatorname{rank} \Omega=n
$$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP
- \Rightarrow singularity degree of a graph G

Strict Complementarity and Singularity Degree

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

$$
\operatorname{rank} X+\operatorname{rank} \Omega=n
$$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP
- \Rightarrow singularity degree of a graph G

Proposition

The following are equivalent for a graph G :
(1) $\operatorname{sd}(G)=1$;
(2) The strict complementarity holds for any PSD completion problem with underlying graph G;

Strict Complementarity and Singularity Degree

Strict Complementarity

A primal and dual optimal pair (X, Ω) satisfies a strict complementarity condition if

$$
\operatorname{rank} X+\operatorname{rank} \Omega=n
$$

- For which problem the strict complementarity can be guaranteed?
- How far from the strict complementarity?
- \Rightarrow singularity degree of SDP
- \Rightarrow singularity degree of a graph G

Proposition

The following are equivalent for a graph G :
(1) $\operatorname{sd}(G)=1$;
(2) The strict complementarity holds for any PSD completion problem with underlying graph G;
(0) The projection $\mathcal{E}(G)$ of the elliptope (the set of correlation matrices) onto \mathbb{R}^{E} is exposed (Druvyatskiy-Pataki-Wolkowicz15).

Facial Reduction (Borwein-Wolkowitcz81)

A sequence $\left\{\Omega_{1}, \ldots, \Omega_{k}\right\}$ in \mathcal{S}^{n} is iterated PSD if Ω_{i} is positive semidefinite on \mathcal{V}_{i-1}, where $\mathcal{V}_{0}=\mathbb{R}^{n}$ and

$$
\mathcal{V}_{i}=\left\{x \in \mathbb{R}^{n}:\left\langle x x^{\top}, \Omega_{j}\right\rangle=0(j=1, \ldots, i-1)\right\} .
$$

Facial Reduction (Borwein-Wolkowitcz81)

A sequence $\left\{\Omega_{1}, \ldots, \Omega_{k}\right\}$ in \mathcal{S}^{n} is iterated PSD if Ω_{i} is positive semidefinite on \mathcal{V}_{i-1}, where $\mathcal{V}_{0}=\mathbb{R}^{n}$ and

$$
\mathcal{V}_{i}=\left\{x \in \mathbb{R}^{n}:\left\langle x x^{\top}, \Omega_{j}\right\rangle=0(j=1, \ldots, i-1)\right\} .
$$

Theorem (Facial reduction)
For any feasible (G, c), $\exists X$ and $\exists \Omega_{1}, \ldots, \Omega_{k} \in S(G)$ s.t.
(1) the sequence is iterated PSD
(2) $\left\langle C, \Omega_{i}\right\rangle=0$ for each i
(3) $\operatorname{rank} X=\operatorname{dim} \mathcal{V}_{k}$

Facial Reduction (Borwein-Wolkowitcz81)

A sequence $\left\{\Omega_{1}, \ldots, \Omega_{k}\right\}$ in \mathcal{S}^{n} is iterated PSD if Ω_{i} is positive semidefinite on \mathcal{V}_{i-1}, where $\mathcal{V}_{0}=\mathbb{R}^{n}$ and

$$
\mathcal{V}_{i}=\left\{x \in \mathbb{R}^{n}:\left\langle x x^{\top}, \Omega_{j}\right\rangle=0(j=1, \ldots, i-1)\right\} .
$$

Theorem (Facial reduction)

For any feasible (G, c), $\exists X$ and $\exists \Omega_{1}, \ldots, \Omega_{k} \in S(G)$ s.t.
(1) the sequence is iterated PSD
(2) $\left\langle C, \Omega_{i}\right\rangle=0$ for each i
(3) $\operatorname{rank} X=\operatorname{dim} \mathcal{V}_{k}$

- the existence of a dual sequence characterizes the max rank of completions (Connelly-Gortler15)
- with the SAP, it characterize the unique completability (Connelly-Gortler15)

Facial Reduction (Borwein-Wolkowitcz81)

A sequence $\left\{\Omega_{1}, \ldots, \Omega_{k}\right\}$ in \mathcal{S}^{n} is iterated PSD if Ω_{i} is positive semidefinite on \mathcal{V}_{i-1}, where $\mathcal{V}_{0}=\mathbb{R}^{n}$ and

$$
\mathcal{V}_{i}=\left\{x \in \mathbb{R}^{n}:\left\langle x x^{\top}, \Omega_{j}\right\rangle=0(j=1, \ldots, i-1)\right\} .
$$

Theorem (Facial reduction)

For any feasible (G, c), $\exists X$ and $\exists \Omega_{1}, \ldots, \Omega_{k} \in S(G)$ s.t.
(1) the sequence is iterated PSD
(2) $\left\langle C, \Omega_{i}\right\rangle=0$ for each i
(3) $\operatorname{rank} X=\operatorname{dim} \mathcal{V}_{k}$

- the existence of a dual sequence characterizes the max rank of completions (Connelly-Gortler15)
- with the SAP, it characterize the unique completability (Connelly-Gortler15)

Definition (Sturm 2000)

For a completion problem (G, c), the singularity degree $\operatorname{sd}(G, c)$ is the length of the shortest dual certificate sequence $\left\{\Omega_{1}, \ldots, \Omega_{k}\right\}$.

Singularity Degree of Graphs

Singularity degree of G

$$
\operatorname{sd}(G)=\max _{c} \operatorname{sd}(G, c)
$$

Question (Druvyatskiy-Pataki-Wolkowicz15) Characterize G with $\operatorname{sd}(G)=1$ Question (So15) $\operatorname{sd}(G)=o(n)$?

Main Results

Theorem (T16)
$\operatorname{sd}(G)=1$ iff G is chordal.
G is chordal if G has no $C_{n}(n \geq 4)$ as an induced subgraph

Main Results

Theorem (T16)
$\operatorname{sd}(G)=1$ iff G is chordal.
G is chordal if G has no $C_{n}(n \geq 4)$ as an induced subgraph

Theorem (T16)

- If G has neither $W_{n}(n \geq 5)$ nor a proper splitting of $W_{n}(n \geq 4)$ as an induced subgraph, then $\operatorname{sd}(G) \leq 2$.
- If G has an induced subgraph which is a proper splitting of one of the above forbidden subgraphs, then $\operatorname{sd}(G)>2$.

If $\operatorname{tw}(G) \leq 2$, then $\operatorname{sd}(G) \leq 2$.

Main Results

Theorem (T16)
$\operatorname{sd}(G)=1$ iff G is chordal.
G is chordal if G has no $C_{n}(n \geq 4)$ as an induced subgraph

Theorem (T16)

- If G has neither $W_{n}(n \geq 5)$ nor a proper splitting of $W_{n}(n \geq 4)$ as an induced subgraph, then $\operatorname{sd}(G) \leq 2$.
- If G has an induced subgraph which is a proper splitting of one of the above forbidden subgraphs, then $\operatorname{sd}(G)>2$.

If $\operatorname{tw}(G) \leq 2$, then $\operatorname{sd}(G) \leq 2$.

Theorem (T16)

For each n there is a graph G with n vertices and $\operatorname{tw}(G)=3$ whose singularity degree is $\left\lfloor\frac{n-1}{3}\right\rfloor$.

Proof of the first theorem

```
Theorem (T16)
sd(G)=1 iff G is chordal.
"\Leftarrow"(Druvyatskiy-Pataki-Wolkowicz15)
" ""
Lemma }\operatorname{sd}(\mp@subsup{C}{n}{})\geq2\mathrm{ if }n\geq4
```

Lemma. $\operatorname{sd}(G) \geq \operatorname{sd}(H)$ for any induced subgraph H of G.

Proof of the first theorem

```
Theorem (T16)
sd(G)=1 iff G is chordal.
"\Leftarrow" (Druvyatskiy-Pataki-Wolkowicz15)
"=>"
Lemma }\operatorname{sd}(\mp@subsup{C}{n}{})\geq2\mathrm{ if }n\geq4
```

- Consider (G, p):

Lemma. $\operatorname{sd}(G) \geq \operatorname{sd}(H)$ for any induced subgraph H of G.

Proof of the first theorem

```
Theorem (T16)
sd(G)=1 iff G is chordal.
"\Leftarrow" (Druvyatskiy-Pataki-Wolkowicz15)
"=>"
Lemma }\operatorname{sd}(\mp@subsup{C}{n}{})\geq2\mathrm{ if }n\geq4
```

- Consider (G, p):

- (G, p) is universally rigid

Lemma. $\operatorname{sd}(G) \geq \operatorname{sd}(H)$ for any induced subgraph H of G.

Proof of the first theorem

```
Theorem (T16)
sd(G)=1 iff G is chordal.
"\Leftarrow" (Druvyatskiy-Pataki-Wolkowicz15)
"=>"
Lemma }\operatorname{sd}(\mp@subsup{C}{n}{})\geq2\mathrm{ if }n\geq4
```

- Consider (G, p):

- (G, p) is universally rigid
- there is a unique stress Ω with $\operatorname{rank} \Omega=1<n-2$

Lemma. $\operatorname{sd}(G) \geq \operatorname{sd}(H)$ for any induced subgraph H of G.

Nondegenerate Singularity Degree

A completion problem (G, c) is nondegenerate if $c(i j) \neq \pm 1$ for every $i j \in E(G)$.
Degenerate edges can easily be eliminated.

- Suppose $c(i j)=1$ for $i j \in E \ldots$
- Any solution X of (G, c) satisfies

$$
X[i, k]=X[j, k] \quad \text { for every } k
$$

- Equivalently, any embedding p realizing c satisfies $p(i)=p(j)$. The example in the last proof is degenerate...

Nondegenerate Singularity Degree

A completion problem (G, c) is nondegenerate if $c(i j) \neq \pm 1$ for every $i j \in E(G)$.
Nondegenerate Singularity Degree

$$
\operatorname{sd}^{*}(G)=\max \{\operatorname{sd}(G, c): \text { nondegenerate }(G, c)\} .
$$

Nondegenerate Singularity Degree

A completion problem (G, c) is nondegenerate if $c(i j) \neq \pm 1$ for every $i j \in E(G)$.
Nondegenerate Singularity Degree

$$
\operatorname{sd}^{*}(G)=\max \{\operatorname{sd}(G, c): \text { nondegenerate }(G, c)\} .
$$

Theorem (T16) $\operatorname{sd}^{*}(G)=1$ iff G has neither $W_{n}(n \geq 5)$ nor a proper splitting of $W_{n}(n \geq 4)$ as an induced subgraph.

Nondegenerate Singularity Degree

A completion problem (G, c) is nondegenerate if $c(i j) \neq \pm 1$ for every $i j \in E(G)$.
Nondegenerate Singularity Degree

$$
\operatorname{sd}^{*}(G)=\max \{\operatorname{sd}(G, c): \text { nondegenerate }(G, c)\} .
$$

Theorem (T16) $\operatorname{sd}^{*}(G)=1$ iff G has neither $W_{n}(n \geq 5)$ nor a proper splitting of $W_{n}(n \geq 4)$ as an induced subgraph.

Nondegenerate Singularity Degree

A completion problem (G, c) is nondegenerate if $c(i j) \neq \pm 1$ for every $i j \in E(G)$.
Nondegenerate Singularity Degree

$$
\operatorname{sd}^{*}(G)=\max \{\operatorname{sd}(G, c): \text { nondegenerate }(G, c)\} .
$$

Theorem (T16) $\operatorname{sd}^{*}(G)=1$ iff G has neither $W_{n}(n \geq 5)$ nor a proper splitting of $W_{n}(n \geq 4)$ as an induced subgraph.

If G has no forbidden induced subgraph listed above, then the hyperplane exposing the minimal face is determined by cliques and cycles satisfying the metric inequality with equality

Nondegenerate Singularity Degree

A completion problem (G, c) is nondegenerate if $c(i j) \neq \pm 1$ for every $i j \in E(G)$.
Nondegenerate Singularity Degree

$$
\operatorname{sd}^{*}(G)=\max \{\operatorname{sd}(G, c): \text { nondegenerate }(G, c)\} .
$$

Theorem (T16) $\operatorname{sd}^{*}(G)=1$ iff G has neither $W_{n}(n \geq 5)$ nor a proper splitting of $W_{n}(n \geq 4)$ as an induced subgraph.

If G has no forbidden induced subgraph listed above, then the hyperplane exposing the minimal face is determined by cliques and cycles satisfying the metric inequality with equality

Lemma $\operatorname{sd}(G) \leq \operatorname{sd}^{*}(G)+1$.

Corollary (T16) $\operatorname{sd}(G) \leq 2$ if G has no forbidden induced subgraph listed above.

Example of Large Singularity Degree

Theorem (T16)

For each n there is a graph G with n vertices and $\operatorname{tw}(G)=3$ whose singularity degree is $\left\lceil\frac{n-1}{3}\right\rceil$.

Concluding Remarks

- A similar result can be established for EDM

Concluding Remarks

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
- "X[i,j] $\leq c(i j)$ " or " $X[i, j] \geq c(i j)$ " instead of " $X[i, j]=c(i j)$ "

Concluding Remarks

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
- "X[i,j] $\leq c(i j)$ " or " $X[i, j] \geq c(i j)$ " instead of " $X[i, j]=c(i j)$ "
- primal - the theory of tensegrities by e.g., Connelly
- dual - signed Colin de Verdiere parameter by Arav et al.

Concluding Remarks

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
- "X[i,j] $\leq c(i j)$ " or " $X[i, j] \geq c(i j)$ " instead of " $X[i, j]=c(i j)$ "
- primal - the theory of tensegrities by e.g., Connelly
- dual - signed Colin de Verdiere parameter by Arav et al.
- (T16) $\operatorname{sd}(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_{4}-minor free

Concluding Remarks

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
- "X[i,j] $\leq c(i j)$ " or " $X[i, j] \geq c(i j)$ " instead of " $X[i, j]=c(i j)$ "
- primal - the theory of tensegrities by e.g., Connelly
- dual - signed Colin de Verdiere parameter by Arav et al.
- (T16) $\operatorname{sd}(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_{4}-minor free
- Q. Characterize signed graphs (G, Σ) with $\operatorname{sd}(G, \Sigma)=1$.

Concluding Remarks

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
- "X[i,j] $\leq c(i j)$ " or " $X[i, j] \geq c(i j)$ " instead of " $X[i, j]=c(i j)$ "
- primal - the theory of tensegrities by e.g., Connelly
- dual - signed Colin de Verdiere parameter by Arav et al.
- (T16) $\operatorname{sd}(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_{4}-minor free
- Q. Characterize signed graphs (G, Σ) with $\operatorname{sd}(G, \Sigma)=1$.
- Q. Characterize graphs G with $\operatorname{sd}(G) \leq 2$.

Concluding Remarks

- A similar result can be established for EDM
- Signed PSD matrix completion and the singularity degree of signed graphs:
- "X[i,j] $\leq c(i j)$ " or " $X[i, j] \geq c(i j)$ " instead of " $X[i, j]=c(i j)$ "
- primal - the theory of tensegrities by e.g., Connelly
- dual - signed Colin de Verdiere parameter by Arav et al.
- (T16) $\operatorname{sd}(G, \Sigma) \leq 2$ if (G, Σ) is odd- K_{4}-minor free
- Q. Characterize signed graphs (G, Σ) with $\operatorname{sd}(G, \Sigma)=1$.
- Q. Characterize graphs G with $\operatorname{sd}(G) \leq 2$.
- Q. Bound $\operatorname{sd}(G)$ by other graph parameters.

