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Notation: G(p) � Rd where p := {p1, . . . , pn}

Def: A framework for G is assignment  of real 
p1, . . . , pn to its verticesvectors

ex: a C2k+1- framework 
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A framework is called UCG(p)Def: if 8q1, . . . , qn

implies that
hpi, pji = hqi, qji for i, j 2 [n]
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A framework is called UCG(p)Def: if 8q1, . . . , qn

implies that
hpi, pji = hqi, qji for i, j 2 [n]

hpi, pji = hqi, qji for [i = j & ij � E]

the G-partial matrix corresponding to G(p)

has a unique PSD completion
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Def [LV’14]: The Gram dimension of G is the 
smallest k for which every G-partial PSD 
matrix has a PSD completion of rank    k

the Gram dimension is minor-monotone

To show G is forbidden for 

find G-partial PSD matrix

gd(G)  k

has unique PSD completion of rank > k
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Constructing UC frameworks
Lem: Let G(p) � Rd with span(p1, . . . , pn) = Rd.

The framework  satisfying:�Z � SnG(p) is UC if

corank(Z) = d

Z is positive semidefinite

i � [n]
�

j�[n]

Zijpj = 0 for 

Zij = 0 when ij �� E

span(pip
T
j + pjp

T
i : i, j 2 V [ E)



How to use this?



Nullspace representations
Def: Let M 2 Sn with corank(M) = d and {ui}di=1

an orth. basis for Ker(M). Set P = [u1, . . . , ud]

and let {pi}ni=1 ✓ Rd be the rows of P. The map

[n] 7! Rd, where i 7! pi

is called a nullspace representation of M



Nullspace representations
Def: Let M 2 Sn with corank(M) = d and {ui}di=1

an orth. basis for Ker(M). Set P = [u1, . . . , ud]

and let {pi}ni=1 ✓ Rd be the rows of P. The map

[n] 7! Rd, where i 7! pi

is called a nullspace representation of M

e.g. [Lovász, Schrijver’99, ’06] 

Constructing outerplanar embeddings
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General eigenvalue frameworks

an orth. basis for {ui}m
i=1Let Ker(A� �i(A)I)

Set  P = [u1, . . . , um] � Rn�m.

The LEF is given by i 2 [n] 7! pi 2 Rm

e.g. see 

Brouwer & Haemers (Euclidean reps.)

Chan, Godsil (eigenpolytopes)
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Least eigenvalue framework

Pf: 

Z = A� �min(A)I

Use the sufficient condition for UC with(=

Thm: A least eig. framework

p�
i Rpj = 0 for i = j and (i, j) � E =� R = 0.�R � Sm :

is UC  iff G(p) ✓ Rm

=) Scale so  �min(R) = �1 and note that

P (I +R)PT 6= PPT
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Cores

Def: A graph is a core if all its endomorphisms 
are automorphisms

Def: A map f : V (G) � V (G) is an endomorphism if:

u � v =� f(u) � f(v)

Complete graphs, odd cycles are cores

Bipartite graphs are not cores



Cores

Def: An endomorphism f is locally injective if 

d(i, j) = 2 =) f(i) 6= f(j)



Cores

Thm [Nešetřil]: Every locally injective 
endomorphism is an automorphism

Def: An endomorphism f is locally injective if 

d(i, j) = 2 =) f(i) 6= f(j)



Graph cores via UC
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Graph cores via UC
Thm: Consider a framework G(p) with

�pi�

�pi, pj�

constant for i � [n]

constant for ij � E

G(p) is UC

Then G is a core.

d(i, j) = 2 =� pi �= pj

Pf: Show that any end. f is locally injective



Graph cores via UC

p0i = pf(i), 8i

G(p) and G(p0) are equivalent

9 isometry U such that p0i = Upi, 8i

Set

Pf: Say such that d(u, v) = 29u, v and f(u) = f(v)

So hpu, pvi = hp0u, p0vi = hpf(u), pf(v)i which implies
pu = pv contradiction
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Graph cores via UC
Thm: If there exists a framework G(p) such that:

�pi�

�pi, pj�

constant for i � [n]

constant for ij � E

G(p)

then G is a core

What about 
these?

is UC

d(i, j) = 2 =� pi �= pj



1-walk-regular graphs

Recall (X � Y )ij = XijYij

Def: G is 1WR if �ak, bk � N such that:

Ak � I = akI

Ak � A = bkA

for all k � N



1-walk-regular graphs

a LEF. Then:Thm: Let G be 1WR and G(p) � Rm

�pi�2 =
m

n
for all i � [n]

�pi, pj� =
�m

na2
for all ij � E
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1-walk-regular graphs

Pf: Let E⌧ the projector on the least eigenspace

is a polynomial in A E⌧

E⌧ = Gram(p1, . . . , pn)

9a, b 2 R such that

E⌧ � I = aI and E⌧ �A = bA



Putting everything together

Thm: Let G be 1WR and G(p) � Rm a LEF. Say that

Then G is a core.

span(pip
T
j + pjp

T
i : i, j 2 V [ E)

d(i, j) = 2 =� pi �= pj
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Kneser graphs
Def: The Kneser graph Kn:r has:

rVertices: Subsets of [n] of size 

Edges: X � Y if X � Y = �

Thm: [Hahn, Tardif’97]
n � 2r + 1 the graph Kn:r is a coreFor

The proof uses EKR theorem



Kneser graphs
To show Kn:r is a core using our sufficient condition:

pi 6= pj , 8i, j

span(pip
T
j + pjp

T
i : i, j 2 V [ E)

Find LEF and show that 



Thank you!
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