Graph Cores via Universal Completability

Antonios Varvitsiotis

Nanyang Technological University & Centre for Quantum Technologies, Singapore

Joint work with: C. Godsil, D. Roberson, B. Rooney, R. Šámal

Outline

Universal completable frameworks

Sufficient condition for UC

Least eigenvalue frameworks

Sufficient condition for showing a graph is a core

Def: A framework for G is assignment of real vectors p_1, \ldots, p_n to its vertices

Def: A framework for G is assignment of real vectors p_1, \ldots, p_n to its vertices

Notation: $G(\mathbf{p}) \subseteq \mathbb{R}^d$ where $\mathbf{p} := \{p_1, \ldots, p_n\}$

Def: A framework for G is assignment of real vectors p_1, \ldots, p_n to its vertices

Notation:
$$G(\mathbf{p}) \subseteq \mathbb{R}^d$$
 where $\mathbf{p} := \{p_1, \dots, p_n\}$

ex: a
$$C_{2k+1}$$
- framework
 $p_x = \left(\cos\left(\frac{2\pi kx}{2k+1}\right), \sin\left(\frac{2\pi kx}{2k+1}\right)\right), \ 0 \le x \le 2k,$

Def: A framework $G(\mathbf{p})$ is called UC if $\forall q_1, \dots, q_n$ $\langle p_i, p_j \rangle = \langle q_i, q_j \rangle$ for $[i = j \& ij \in E]$ implies that $\langle p_i, p_j \rangle = \langle q_i, q_j \rangle$ for $i, j \in [n]$

Def: A framework $G(\mathbf{p})$ is called UC if $\forall q_1, \dots, q_n$ $\langle p_i, p_j \rangle = \langle q_i, q_j \rangle$ for $[i = j \& ij \in E]$ implies that $\langle p_i, p_j \rangle = \langle q_i, q_j \rangle$ for $i, j \in [n]$

the G-partial matrix corresponding to $\mathrm{G}(\mathbf{p})$ has a unique PSD completion

Def [LV'14]: The Gram dimension of G is the smallest k for which every G-partial PSD matrix has a PSD completion of rank \leq k

Def [LV'14]: The Gram dimension of G is the smallest k for which every G-partial PSD matrix has a PSD completion of rank \leq k

the Gram dimension is minor-monotone

Def [LV'14]: The Gram dimension of G is the smallest k for which every G-partial PSD matrix has a PSD completion of rank $\leq k$

the Gram dimension is minor-monotone

To show G is forbidden for $gd(G) \leq k$

find G-partial PSD matrix

all its PSD completions have rank > k

Def [LV'14]: The Gram dimension of G is the smallest k for which every G-partial PSD matrix has a PSD completion of rank $\leq k$

the Gram dimension is minor-monotone

To show G is forbidden for $gd(G) \leq k$

find G-partial PSD matrix

Lem: Let $G(\mathbf{p}) \subseteq \mathbb{R}^d$ with $\operatorname{span}(p_1, \ldots, p_n) = \mathbb{R}^d$. The framework $G(\mathbf{p})$ is UC if $\exists Z \in S^n$ satisfying:

Lem: Let $G(\mathbf{p}) \subseteq \mathbb{R}^d$ with $\operatorname{span}(p_1, \dots, p_n) = \mathbb{R}^d$. The framework $G(\mathbf{p})$ is UC if $\exists Z \in S^n$ satisfying:

 \rightarrow Z is positive semidefinite

Lem: Let $G(\mathbf{p}) \subseteq \mathbb{R}^d$ with $\operatorname{span}(p_1, \ldots, p_n) = \mathbb{R}^d$. The framework $G(\mathbf{p})$ is UC if $\exists Z \in S^n$ satisfying:

 \longrightarrow Z is positive semidefinite

 $Z_{ij} = 0$ when $ij \notin E$

- Lem: Let $G(\mathbf{p}) \subseteq \mathbb{R}^d$ with $\operatorname{span}(p_1, \ldots, p_n) = \mathbb{R}^d$. The framework $G(\mathbf{p})$ is UC if $\exists Z \in S^n$ satisfying:
 - \longrightarrow Z is positive semidefinite
 - $Z_{ij} = 0$ when $ij \notin E$

 $\sum Z_{ij}p_j = 0$ for $i \in [n]$ $j \in [n]$

- Lem: Let $G(\mathbf{p}) \subseteq \mathbb{R}^d$ with $\operatorname{span}(p_1, \ldots, p_n) = \mathbb{R}^d$. The framework $G(\mathbf{p})$ is UC if $\exists Z \in S^n$ satisfying:
 - \longrightarrow Z is positive semidefinite

 - $Z_{ij} = 0$ when $ij \notin E$

 $\sum Z_{ij}p_j = 0$ for $i \in [n]$ $j \in [n]$ \leftarrow corank(Z) = d

- Lem: Let $G(\mathbf{p}) \subseteq \mathbb{R}^d$ with $\operatorname{span}(p_1, \ldots, p_n) = \mathbb{R}^d$. The framework $G(\mathbf{p})$ is UC if $\exists Z \in S^n$ satisfying:
 - \longrightarrow Z is positive semidefinite

 - $Z_{ij} = 0$ when $ij \notin E$

 $\sum Z_{ij}p_j = 0$ for $i \in [n]$ $j \in [n]$

 $\operatorname{corank}(Z) = d$

 $\implies \operatorname{span}(p_i p_j^T + p_j p_i^T : i, j \in V \cup E)$

How to use this?

Nullspace representations

Def: Let $M \in S^n$ with $\operatorname{corank}(M) = d$ and $\{u_i\}_{i=1}^d$ an orth. basis for $\operatorname{Ker}(M)$. Set $P = [u_1, \dots, u_d]$ and let $\{p_i\}_{i=1}^n \subseteq \mathbb{R}^d$ be the rows of P. The map $[n] \mapsto \mathbb{R}^d$, where $i \mapsto p_i$ is called a nullspace representation of M

Nullspace representations

Def: Let $M \in S^n$ with $\operatorname{corank}(M) = d$ and $\{u_i\}_{i=1}^d$ an orth. basis for $\operatorname{Ker}(M)$. Set $P = [u_1, \dots, u_d]$ and let $\{p_i\}_{i=1}^n \subseteq \mathbb{R}^d$ be the rows of P. The map $[n] \mapsto \mathbb{R}^d$, where $i \mapsto p_i$ is called a nullspace representation of M

e.g. [Lovász, Schrijver'99, '06]

Constructing outerplanar embeddings

Def [GRRSV'15]: A least eigenvalue framework (LEF) for G is a nullspace representation of $A - \lambda_{min}(A)I$.

Def [GRRSV'15]: A least eigenvalue framework (LEF) for G is a nullspace representation of $A - \lambda_{min}(A)I$.

Let $\{u_i\}_{i=1}^m$ an orth. basis for $\operatorname{Ker}(A - \lambda_{min}(A)I)$

Def [GRRSV'15]: A least eigenvalue framework (LEF) for G is a nullspace representation of $A - \lambda_{min}(A)I$.

Let $\{u_i\}_{i=1}^m$ an orth. basis for $Ker(A - \lambda_{min}(A)I)$ Set $P = [u_1, \dots, u_m] \in \mathbb{R}^{n \times m}$.

Def [GRRSV'15]: A least eigenvalue framework (LEF) for G is a nullspace representation of $A - \lambda_{min}(A)I$.

→ Let $\{u_i\}_{i=1}^m$ an orth. basis for $Ker(A - \lambda_{min}(A)I)$ → Set $P = [u_1, \dots, u_m] \in \mathbb{R}^{n \times m}$. → The LEF is given by $i \in [n] \mapsto p_i \in \mathbb{R}^m$

General eigenvalue frameworks

→ Let $\{u_i\}_{i=1}^m$ an orth. basis for $Ker(A - \lambda_i(A)I)$ → Set $P = [u_1, \dots, u_m] \in \mathbb{R}^{n \times m}$. → The LEF is given by $i \in [n] \mapsto p_i \in \mathbb{R}^m$

General eigenvalue frameworks

e.g. see Chan, Godsil (eigenpolytopes)

General eigenvalue frameworks

e.g. see

Chan, Godsil (eigenpolytopes)

Brouwer & Haemers (Euclidean reps.)

Thm: A least eig. framework $G(p) \subseteq \mathbb{R}^m$ is UC iff $\forall R \in S^m : p_i^{\mathsf{T}} R p_j = 0 \text{ for } i = j \text{ and } (i, j) \in E \Longrightarrow R = 0.$

Thm: A least eig. framework $G(p) \subseteq \mathbb{R}^m$ is UC iff $\forall R \in S^m : p_i^{\mathsf{T}} R p_j = 0 \text{ for } i = j \text{ and } (i, j) \in E \Longrightarrow R = 0.$

Pf: \Leftarrow Use the sufficient condition for UC with $Z = A - \lambda_{min}(A)I$

Thm: A least eig. framework $G(p) \subseteq \mathbb{R}^m$ is UC iff $\forall R \in S^m : p_i^{\mathsf{T}} R p_j = 0 \text{ for } i = j \text{ and } (i, j) \in E \Longrightarrow R = 0.$

Pf: \Leftarrow Use the sufficient condition for UC with $Z = A - \lambda_{min}(A)I$ \implies Scale so $\lambda_{min}(R) = -1$ and note that $P(I+R)P^T \neq PP^T$

Graph cores

Def: A map $f: V(G) \to V(G)$ is an endomorphism if: $u \sim v \Longrightarrow f(u) \sim f(v)$

Def: A map $f: V(G) \to V(G)$ is an endomorphism if: $u \sim v \Longrightarrow f(u) \sim f(v)$

Def: A graph is a core if all its endomorphisms are automorphisms

Def: A map $f: V(G) \to V(G)$ is an endomorphism if: $u \sim v \Longrightarrow f(u) \sim f(v)$

Def: A graph is a core if all its endomorphisms are automorphisms

Complete graphs, odd cycles are cores

Def: A map $f: V(G) \to V(G)$ is an endomorphism if: $u \sim v \Longrightarrow f(u) \sim f(v)$

Def: A graph is a core if all its endomorphisms are automorphisms

Complete graphs, odd cycles are cores

Bipartite graphs are not cores

Def: An endomorphism f is locally injective if $d(i,j)=2 \Longrightarrow f(i) \neq f(j)$

Def: An endomorphism f is locally injective if $d(i,j)=2 \Longrightarrow f(i) \neq f(j)$

Thm [Nešetřil]: Every locally injective endomorphism is an automorphism

Thm: Consider a framework $G(\mathbf{p})$ with

 $d(i,j) = 2 \implies p_i \neq p_j$ $||p_i|| \text{ constant for } i \in [n]$ $\langle p_i, p_j \rangle \text{ constant for } ij \in E$

 $\rightarrow G(\mathbf{p})$ is UC

Then G is a core.

Thm: Consider a framework $G(\mathbf{p})$ with $d(i,j) = 2 \Longrightarrow p_i \neq p_j$ $||p_i||$ constant for $i \in [n]$ $\langle p_i, p_j \rangle$ constant for $ij \in E$ $\rightarrow G(\mathbf{p})$ is UC Then G is a core.

Pf: Show that any end. f is locally injective

Pf: Say $\exists u, v$ such that d(u, v) = 2 and f(u) = f(v) \rightarrow Set $p'_i = p_{f(i)}, \forall i$ $G(\mathbf{p})$ and $G(\mathbf{p}')$ are equivalent \exists isometry U such that $p'_i = Up_i, \forall i$ So $\langle p_u, p_v \rangle = \langle p'_u, p'_v \rangle = \langle p_{f(u)}, p_{f(v)} \rangle$ which implies $p_u = p_v$ contradiction

Thm: If there exists a framework $G(\mathbf{p})$ such that:

 $d(i,j) = 2 \Longrightarrow p_i \neq p_j$

 $\langle p_i, p_j \rangle$ constant for $ij \in E$

then G is a core

Thm: If there exists a framework $G(\mathbf{p})$ such that:

 $d(i,j) = 2 \Longrightarrow p_i \neq p_j$ $||p_i||$ constant for $i \in [n]$ $\langle p_i, p_j \rangle$ constant for $ij \in E$ $\rightarrow G(\mathbf{p}) \text{ is UC }$ Use LEF

then G is a core

Thm: If there exists a framework $G(\mathbf{p})$ such that:

 $d(i,j) = 2 \Longrightarrow p_i \neq p_j$

 $||p_i||$ constant for $i \in [n]$

 $\langle p_i, p_j \rangle$ constant for $ij \in E$

What about these?

then G is a core

Def: G is 1WR if $\exists a_k, b_k \in \mathbb{N}$ such that:

$$A^k \circ I = a_k I$$

$$\implies A^k \circ A = b_k A$$

for all $k \in \mathbb{N}$

Recall $(X \circ Y)_{ij} = X_{ij}Y_{ij}$

Thm: Let G be 1WR and $G(\mathbf{p}) \subseteq \mathbb{R}^m$ a LEF. Then:

$$\implies ||p_i||^2 = \frac{m}{n} \quad \text{for all } i \in [n]$$

$$\implies \langle p_i, p_j \rangle = \frac{\tau m}{na_2} \quad \text{for all } ij \in E$$

Pf: Let E_{τ} the projector on the least eigenspace

Pf: Let E_{τ} the projector on the least eigenspace

Pf: Let E_{τ} the projector on the least eigenspace

 $\rightarrow E_{\tau}$ is a polynomial in A

 $\exists a, b \in \mathbb{R}$ such that

 $E_{\tau} \circ I = aI$ and $E_{\tau} \circ A = bA$

Pf: Let E_{τ} the projector on the least eigenspace

- $\rightarrow E_{\tau}$ is a polynomial in A
- $\exists a, b \in \mathbb{R}$ such that

 $E_{\tau} \circ I = aI$ and $E_{\tau} \circ A = bA$

 $F_{\tau} = \operatorname{Gram}(p_1, \dots, p_n)$

Putting everything together

Thm: Let G be 1WR and $G(\mathbf{p}) \subseteq \mathbb{R}^m$ a LEF. Say that $d(i,j) = 2 \Longrightarrow p_i \neq p_j$ $span(p_i p_j^T + p_j p_i^T : i, j \in V \cup E)$ Then G is a core.

Applications

Def: The Kneser graph $K_{n:r}$ has: Vertices: Subsets of [n] of size rEdges: $X \sim Y$ if $X \cap Y = \emptyset$

Def: The Kneser graph $K_{n:r}$ has: Vertices: Subsets of [n] of size rEdges: $X \sim Y$ if $X \cap Y = \emptyset$

Thm: [Hahn, Tardif'97] For $n \ge 2r + 1$ the graph $K_{n:r}$ is a core

Def: The Kneser graph $K_{n:r}$ has: Vertices: Subsets of [n] of size rEdges: $X \sim Y$ if $X \cap Y = \emptyset$

Thm: [Hahn, Tardif'97] For $n \ge 2r+1$ the graph $K_{n:r}$ is a core

The proof uses EKR theorem

To show $K_{n:r}$ is a core using our sufficient condition:

Find LEF and show that

$$p_i \neq p_j, \ \forall i, j$$

 $\Rightarrow \operatorname{span}(p_i p_j^T + p_j p_i^T : i, j \in V \cup E)$

References

Universal completability, least eigenvalue frameworks and vector colorings, arXiv:1512.04972

Vector colorings and graph homomorphisms, coming soon

Thank you!