Combining information from different sources:

resampling based approach

S.N. Lahiri

Department of Statistics
North Carolina State University

May 17, 2013



Background
Examples/Potential applications
Theoretical Framework

Combining information

Uncertainty quantification by the Bootstrap

S.N. Lahiri (NCSU) DIMACS Talk May 17, 2013



Introduction/Example - Ozone data

EPA runs computer models to generate hourly ozone estimates (cf.
Community Multiscale Air Quality System (CMAQ)) with a
resolution of 10mi square.
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Introduction/Example - Ozone data

There also exist a network of ground monitoring stations that also
report the O3 levels.
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Introduction

@ There are many other examples of spatially indexed datasets
that report measurements on an atmospheric variable at
different spatial supports.

@ Our goal is to combine the information from different sources to
come up with a better estimate of the true spatial surface.
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Introduction

e Consider a function m(-) on a bounded domain D C R that
we want to estimate using data from two different sources.

e Data Source 1:
o The resolution of Data Source 1 is coarse;
o It gives only an averaged version of m(-) over a grid upto an
additive noise.
@ Thus, Data Source 1 corresponds to data generated by Satellite
or by computer models at a given level of resolution.
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Introduction

e Data Source 2:
o Data Source 2, on the other hand, gives point-wise

measurements on m(+);
o Has an additive noise that is different from the noise variables

for Data Source 1.
@ Thus, Data Source 2 corresponds to data generated by ground
stations or monitoring stations.
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Introduction

Error Structure:
@ We suppose that each set of noise variables are correlated.
o Further, the variables from the two sources are possibly
cross-correalated.
@ But, we do NOT want to impose any specific distributional
structure on the error variables or on their joint distributions.
Goals:
@ Combine the data from the two sources to estimate the function
m(-) at a given resolution (that is finer than that of Source 1);

@ Quantify the associated uncertainty .
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Theoretical Formulation

e For simplicity, suppose that d =2 and D = [0, 1]°.

e Data Source 1:
The underlying random process is given by:

Y(i) = m(i; A) + (i), iez?

where m(i; A) = A7 [\ 0 m(s)ds, A € (0, 00), and
where {¢(i), i€ Z} is a zero mean second order stationary
process.

@ The observed variables are

(YA : AG+[0,)N) N[0, 1) # 0} ={Y(ix): k=1,...,N}.
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Data Scource 1: Coarse grid data (spacings= A)

S.N. Lahiri (NCSU) DIMACS Talk May 17, 2013 10 / 33



Data Source 2: Point-support measurements

e Data Source 2:
The underlying random process is given by:

Z(s) = m(s) +n(s), s€R?

where {n(s), s € R} is a zero mean second order stationary
process on RY.

@ The observed variables are

where s1,...,s, are generated by iid uniform random vectors
over [0, 1]¢.
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Data Scource 2: Point-support data
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Theoretical Formulation

o Let {¢;:j > 1} be an O.N.B. of L2[0,1]9. and let
m(-) € L?[0, 1]¢.
@ Then,

s) =Y _ Bigj(s)

jz1

2
where 3., 3 < oo.
@ We consider a finite approximation

Zﬁj% = my(s).

@ Our goal is to combine the data from the two sources to
estimate the parameters {3; : j =1,...,J}.
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Estimation on Fine grid

The finite approximation to m(-) may be thought of as a finer
resolution approximation with grid spacings 0 < A:

1
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Estimation of the 3;'s

e From Data set 1: {Y(ix): k=1,..., N}, we have

M=

3 = N1 Y ()i (idd).

k=1

@ It is easy to check that for A small:

Eéj(l) = 12 lk, (pJ IkA)
N
~ NS A / m(s);(s)ds
; (- [0,.119)A !

B /[] m(s)gj(s)ds/[NA) ~ ;.
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Estimation of the 3;'s

@ From Data set 2: {Z(s;):i=1,...,n}, we have

B2 =" Z(s)ei(sh).
i=1
@ It is easy to check that as n — oo:
E[B}2)|5] = nt Z m(s;)p;(si)
i=1
— m(s)ypj(s)ds = 3; a.s.

[0.1]¢

where S is the o-field of the random vectors generating the data
locations.
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Introduction

@ The estimator from Data Set k € {1,2} is

J

() = 3 300,

j=1
@ We shall consider a combined estimator of m(-) of the form:
ﬁ’](.) — alr’h(l)(.) + a2ﬁ7(2)(.)

where a;,a € R and a; + a, = 1.
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Combined estimator of m(-)

@ Many choices of a; € R (with a, =1 — a;) is possible.
@ Here we seek an optimal choice of a; that minimizes the MISE:

() - mi)) "

o Evidently, this depends on the joint correlation structure of the
error processes from Data sources 1 and 2.
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@ More precisely, it can be shown that the optimal choice of a; is
given by

L E{BP - P15 - 51}
L EBY - PP

0
1

a

@ Since each ﬁA}K) is a linear function of the observations from
Data set k € {1,2}, the numerator and the denominator of the
optimal a; depends on the joint covariance structure of
the processes {¢(i) : i € Z} and {n(s) : s € R?}.

@ Note that the ;s drop out from the formula for the MISE
optimal af due to the ONB property of {; : j > 1}.
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Joint-Correlation structure

We shall suppose that
o {¢(i) : i€ Z7} is SOS with covariogram

o(k) = Cov(e(i), (i +k)) forall i keZ

e {n(s) :s € R} is SOS with covariogram
7(h) = Cov(n(s),n(s + h)) forall s hc R

@ and the cross-correlation function between the €(-)'s and n(-)'s is
given by

Cov(e(i),n(s)) =~(i—s) forall i€z’ seR?

for some function v : RY — R.
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Joint Correlation Structure

@ This formulation is somewhat non-standard, as the two
component spatial processes have different supports.

e Example: Consider a zero mean SOS bivariate process
{(m(s),n2(s)) : s € R?} with autocovariance matrix

2(-) = ((o3(-)))- Let n(s) = m(s) and

(i) = A~ / m(s)ds, i€z,
[i+[0,1)4]1A

@ Then, Cov(e(i), e(i + k)) depends only on k for all i,k € Z¢;
(given by an integral of o:(-)) and

@ Cov(e(i),n(s)) depends only on i —s for all i € Z9 s € R?
( given by an integral of o15(-)).
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Estimation of a?

@ Recall that the optimal

S E{1BY - 52157 - 51}
T YL ERT -5

depends on the population joint covariogram of the error
processes that are typically unknown.

e It is possible to derive an asymptotic approximation to 2°
that involves only some summary characteristics of these
functions (such as [ 7(h)dh and )", 4 o(k)), and use plug-in
estimates.

0
1

a
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Estimation of a?

@ However, the limiting formulae depends on the asymptotic
regimes one employs (relative growth rates of n and N, and the
strength of dependence).

@ The accuracy of these approximations are not very good even for
d = 2 due to edge-effects.

@ These issues with the asymptotic approximations suggest that
we may want to use a data-based method, such as the spatial
block bootstrap/subsampling that more closely mimic the
behavior in finite samples.
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Estimation of a?

@ Here we shall use a version of the subsampling for estimating af.

@ The Subsampling method is known to be computationally
simpler.

@ Further, it has the same level of accuracy as the bootstrap for
estimating the variance of a linear function of the data.

@ We shall use the bootstrap for uncertainty quantification of the
resulting estimator, as it is more accurate for distributional
approximation.
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A Spatial Block Resampling Scheme

@ We now give a brief description of a spatial version of the
Moving Block Bootstrap of K'unsch (1989) and Liu and Singh
(1992) in the present set up.

@ Recall that we have;

Data Set 1: (Coarse grid) {Y(@x):k=1,...,N}
Data Set 2: (Point support) {Z(s;):i=1,...,n}

@ For each data set, we also have an estimate of its mean
structure.

@ First, form the residuals and center them! Denote these by
{é(ix) : k=1,...,N} and {f)(s;) : i=1,...,n}.
@ We will resample blocks of €()'s and 7j()'’s.
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A Spatial Block Resampling Scheme

@ Next fix an integer ¢ such that
Il ik L, (0.1)

where L = N¥/9 = 1/A denotes the number of A-intervals
along a given co-ordinate.

e Here ¢ determines the size (volume) of the spatial blocks.

o Let {B(k) : k € K} denote the collection of overlapping blocks
of volume (¢ A? contained in [0, 1]7.

@ Note that under (0.1), K = |K| = the total number of
overlapping blocks satisfies

K=(L-¢+1]) ~ N.
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Overlapping Spatial Blocks
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Spatial Bootstrap

@ Resample randomly with repalcement from {By : k=1,..., K}
a sample of size b > 1.

@ This yields resampled error variables for both data source 1 and
2, which are used to fill up [0, 1]¢.

@ For b= N/Ed, there are N-many Data Source 1 error variables
{e*(i)  k=1,...,N}.

@ For Data Source 2, this yields a random number n; of error
variables {n*(s¥) : i=1,...,m}.

@ It is evident that n; ~ n.
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Spatial Bootstrap & Subsampling

@ Next use the model eqautions to define the "bootstrap
observations”

Y*(i) = MmO A)+e(in), k=1,...,N
Z(st) = mA(s) +n'(s)), i=1,....,m

1

@ The reconstruction step is referred to as the residual
bootstrap (Efron (1979), Freedman (1981)).

o For b =1, one gets spatial subsampling.

@ Note that for b = 1, the corresponding bootstrap moments
(e.g., the variances/covariances) can be evaluated without any
resampling.
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The combined estimator

@ Recall that

L E{BP - P15 - 51}
L EBY - AP

0
a;

@ We use the spatial subsampling to estimate a%; Call this 9.

@ Then define the combined estimator of m(-):

() = BAO() + [1 - EHA ().
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Uncertainty quantification

@ We can estimate the MISE of our combined estimator by using
spatial bootstrap!

e Specifically, let m()*(-) be the bootstrap version of m(®)(-) that
is obtained by replacing {Y(ix) : k = 1,..., N} with the
Bootstrap data set 1: {Y*(ix): k=1,..., N}.

o Similarly, define m®*(-) and a%, the bootstrap versions of
m(-) and 39*.

o Let m¥ () = a¥*mM*(.) + [1 — aP]m@*(.).

@ Then, the Bootstrap estimator of the MISE of A°(-) is

given by ,
ms\E:/E*(mO*(.)—mO(.)) |
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Suppose that A = o(1), N = O(n), {7t +¢/L = o(1) and that the
error random fields satisfy certain moment and weak dependence
conditions. Then,

MISE/MISE —, 1.
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Thank You!!!
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