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Introduction/Example - Ozone data

EPA runs computer models to generate hourly ozone estimates (cf.
Community Multiscale Air Quality System (CMAQ)) with a
resolution of 10mi square.
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Introduction/Example - Ozone data

There also exist a network of ground monitoring stations that also
report the O3 levels.
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Introduction

There are many other examples of spatially indexed datasets
that report measurements on an atmospheric variable at
different spatial supports.

Our goal is to combine the information from different sources to
come up with a better estimate of the true spatial surface.
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Introduction

Consider a function m(·) on a bounded domain D ⊂ Rd that
we want to estimate using data from two different sources.

Data Source 1:

The resolution of Data Source 1 is coarse;
It gives only an averaged version of m(·) over a grid upto an
additive noise.

Thus, Data Source 1 corresponds to data generated by Satellite
or by computer models at a given level of resolution.
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Introduction

Data Source 2:

Data Source 2, on the other hand, gives point-wise
measurements on m(·);
Has an additive noise that is different from the noise variables
for Data Source 1.

Thus, Data Source 2 corresponds to data generated by ground
stations or monitoring stations.
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Introduction

Error Structure:

We suppose that each set of noise variables are correlated.

Further, the variables from the two sources are possibly
cross-correalated.

But, we do NOT want to impose any specific distributional
structure on the error variables or on their joint distributions.

Goals:

Combine the data from the two sources to estimate the function
m(·) at a given resolution (that is finer than that of Source 1);

Quantify the associated uncertainty .
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Theoretical Formulation

For simplicity, suppose that d = 2 and D = [0, 1]2.

Data Source 1:
The underlying random process is given by:

Y (i) = m(i; ∆) + ε(i), i ∈ Zd

where m(i; ∆) = ∆−d
∫

∆(i+[0,1]d )
m(s)ds, ∆ ∈ (0,∞), and

where {ε(i), i ∈ Zd} is a zero mean second order stationary
process.

The observed variables are

{Y (i) : ∆(i + [0, 1)d) ∩ [0, 1)d 6= ∅} ≡ {Y (ik) : k = 1, . . . , N}.
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Data Scource 1: Coarse grid data (spacings= ∆)
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Data Source 2: Point-support measurements

Data Source 2:
The underlying random process is given by:

Z (s) = m(s) + η(s), s ∈ Rd

where {η(s), s ∈ Rd} is a zero mean second order stationary
process on Rd .

The observed variables are

{Z (si) : i = 1, . . . , n}.

where s1, . . . , sn are generated by iid uniform random vectors
over [0, 1]d .

S.N. Lahiri (NCSU) DIMACS Talk May 17, 2013 11 / 33



Data Scource 2: Point-support data
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Theoretical Formulation

Let {ϕj : j ≥ 1} be an O.N.B. of L2[0, 1]d . and let
m(·) ∈ L2[0, 1]d .

Then,
m(s) =

∑
j≥1

βjϕj(s)

where
∑

j∈Z β2
j < ∞.

We consider a finite approximation

m(s) ≈
J∑

j=1

βjϕj(s) ≡ mJ(s).

Our goal is to combine the data from the two sources to
estimate the parameters {βj : j = 1, . . . , J}.
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Estimation on Fine grid

The finite approximation to m(·) may be thought of as a finer
resolution approximation with grid spacings δ � ∆:
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Estimation of the βj ’s

From Data set 1: {Y (ik) : k = 1, . . . , N}, we have

β̂
(1)
j = N−1

N∑
k=1

Y (ik)ϕj(ik∆).

It is easy to check that for ∆ small:

E β̂
(1)
j = N−1

N∑
k=1

m(ik ; ∆)ϕj(ik∆)

≈ N−1
N∑

k=1

∆−d

∫
(ik+[0,1]d )∆

m(s)ϕj(s)ds

=

∫
[0,1]d

m(s)ϕj(s)ds/[N∆d ] ≈ βj .
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Estimation of the βj ’s

From Data set 2: {Z (si) : i = 1, . . . , n}, we have

β̂
(2)
j = n−1

n∑
i=1

Z (si)ϕj(si).

It is easy to check that as n →∞:

E [β̂
(2)
j |S] = n−1

n∑
i=1

m(si)ϕj(si)

→
∫

[0,1]d
m(s)ϕj(s)ds = βj a.s.

where S is the σ-field of the random vectors generating the data
locations.
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Introduction

The estimator from Data Set k ∈ {1, 2} is

m̂(k)(·) =
J∑

j=1

β̂
(k)
j ϕj(·).

We shall consider a combined estimator of m(·) of the form:

m̂(·) = a1m̂
(1)(·) + a2m̂

(2)(·)

where a1, a2 ∈ R and a1 + a2 = 1.
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Combined estimator of m(·)

Many choices of a1 ∈ R (with a2 = 1− a1) is possible.

Here we seek an optimal choice of a1 that minimizes the MISE:∫
E

(
m̂(·)−mJ(·)

)2

.

Evidently, this depends on the joint correlation structure of the
error processes from Data sources 1 and 2.
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Optimal a1

More precisely, it can be shown that the optimal choice of a1 is
given by

a0
1 =

∑J
j=1 E

{
[β̂

(1)
j − β̂

(2)
j ][β̂

(2)
j − βj ]

}
∑J

j=1 E [β̂
(1)
j − β̂

(2)
j ]2

Since each β̂
(K)
j is a linear function of the observations from

Data set k ∈ {1, 2}, the numerator and the denominator of the
optimal a1 depends on the joint covariance structure of
the processes {ε(i) : i ∈ Zd} and {η(s) : s ∈ Rd}.
Note that the ϕj ’s drop out from the formula for the MISE
optimal a0

1 due to the ONB property of {ϕj : j ≥ 1}.
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Joint-Correlation structure

We shall suppose that

{ε(i) : i ∈ Zd} is SOS with covariogram

σ(k) = Cov(ε(i), ε(i + k)) for all i, k ∈ Zd ;

{η(s) : s ∈ Rd} is SOS with covariogram

τ(h) = Cov(η(s), η(s + h)) for all s,h ∈ Rd ;

and the cross-correlation function between the ε(·)’s and η(·)’s is
given by

Cov(ε(i), η(s)) = γ(i− s) for all i ∈ Zd , s ∈ Rd ;

for some function γ : Rd → R.
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Joint Correlation Structure

This formulation is somewhat non-standard, as the two
component spatial processes have different supports.

Example: Consider a zero mean SOS bivariate process
{(η1(s), η2(s)) : s ∈ Rd} with autocovariance matrix
Σ(·) = ((σij(·))). Let η(s) = η1(s) and

ε(i) = ∆−d

∫
[i+[0,1)d ]∆

η2(s)ds, i ∈ Zd .

Then, Cov(ε(i), ε(i + k)) depends only on k for all i, k ∈ Zd ;
(given by an integral of σ11(·)) and

Cov(ε(i), η(s)) depends only on i− s for all i ∈ Zd , s ∈ Rd

( given by an integral of σ12(·)).
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Estimation of a0
1

Recall that the optimal

a0
1 =

∑J
j=1 E

{
[β̂

(1)
j − β̂

(2)
j ][β̂

(2)
j − βj ]

}
∑J

j=1 E [β̂
(1)
j − β̂

(2)
j ]2

depends on the population joint covariogram of the error
processes that are typically unknown.

It is possible to derive an asymptotic approximation to a0
1

that involves only some summary characteristics of these
functions (such as

∫
τ(h)dh and

∑
k∈Zd σ(k)), and use plug-in

estimates.
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Estimation of a0
1

However, the limiting formulae depends on the asymptotic
regimes one employs (relative growth rates of n and N , and the
strength of dependence).

The accuracy of these approximations are not very good even for
d = 2 due to edge-effects.

These issues with the asymptotic approximations suggest that
we may want to use a data-based method, such as the spatial
block bootstrap/subsampling that more closely mimic the
behavior in finite samples.
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Estimation of a0
1

Here we shall use a version of the subsampling for estimating a0
1.

The Subsampling method is known to be computationally
simpler.

Further, it has the same level of accuracy as the bootstrap for
estimating the variance of a linear function of the data.

We shall use the bootstrap for uncertainty quantification of the
resulting estimator, as it is more accurate for distributional
approximation.
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A Spatial Block Resampling Scheme

We now give a brief description of a spatial version of the
Moving Block Bootstrap of K̈’unsch (1989) and Liu and Singh
(1992) in the present set up.

Recall that we have;

Data Set 1: (Coarse grid) {Y (ik) : k = 1, . . . , N}
Data Set 2: (Point support) {Z (si) : i = 1, . . . , n}

For each data set, we also have an estimate of its mean
structure.

First, form the residuals and center them! Denote these by
{ε̂(ik) : k = 1, . . . , N} and {η̂(si) : i = 1, . . . , n}.
We will resample blocks of ε̂()’s and η̂()’s.
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A Spatial Block Resampling Scheme

Next fix an integer ` such that

1 � ` � L, (0.1)

where L = N1/d = 1/∆ denotes the number of ∆-intervals
along a given co-ordinate.

Here ` determines the size (volume) of the spatial blocks.

Let {B(k) : k ∈ K} denote the collection of overlapping blocks
of volume `d∆d contained in [0, 1]d .

Note that under (0.1), K = |K| = the total number of
overlapping blocks satisfies

K = ([L− ` + 1])d ∼ N .
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Overlapping Spatial Blocks
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Spatial Bootstrap

Resample randomly with repalcement from {Bk : k = 1, . . . , K}
a sample of size b ≥ 1.

This yields resampled error variables for both data source 1 and
2, which are used to fill up [0, 1]d .

For b = N/`d , there are N-many Data Source 1 error variables
{ε∗(ik) : k = 1, . . . , N}.
For Data Source 2, this yields a random number n1 of error
variables {η∗(s∗i ) : i = 1, . . . , n1}.
It is evident that n1 ∼ n.
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Spatial Bootstrap & Subsampling

Next use the model eqautions to define the ”bootstrap
observations”

Y ∗(ik) = m̂(1)(ik ; ∆) + ε∗(ik), k = 1, . . . , N

Z ∗(s∗i ) = m̂(2)(s∗i ) + η∗(s∗i ), i = 1, . . . , n1

The reconstruction step is referred to as the residual
bootstrap (Efron (1979), Freedman (1981)).

For b = 1, one gets spatial subsampling.

Note that for b = 1, the corresponding bootstrap moments
(e.g., the variances/covariances) can be evaluated without any
resampling.
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The combined estimator

Recall that

a0
1 =

∑J
j=1 E

{
[β̂

(1)
j − β̂

(2)
j ][β̂

(2)
j − βj ]

}
∑J

j=1 E [β̂
(1)
j − β̂

(2)
j ]2

We use the spatial subsampling to estimate a0
1; Call this â0

1.

Then define the combined estimator of m(·):

m̂0(·) = â0
1m̂

(1)(·) + [1− â0
1]m̂

(2)(·).
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Uncertainty quantification

We can estimate the MISE of our combined estimator by using
spatial bootstrap!

Specifically, let m(1)∗(·) be the bootstrap version of m̂(1)(·) that
is obtained by replacing {Y (ik) : k = 1, . . . , N} with the
Bootstrap data set 1: {Y ∗(ik) : k = 1, . . . , N}.
Similarly, define m(2)∗(·) and a0∗

1 , the bootstrap versions of
m̂(2)(·) and â0∗

1 .

Let m0∗(·) = a0∗
1 m(1)∗(·) + [1− a0∗

1 ]m(2)∗(·).
Then, the Bootstrap estimator of the MISE of m̂0(·) is
given by

M̂ISE =

∫
E∗

(
m0∗(·)− m̂0(·)

)2

.
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Consistency

Theorem
Suppose that ∆ = o(1), N = O(n), `−1 + `/L = o(1) and that the
error random fields satisfy certain moment and weak dependence
conditions. Then,

M̂ISE/MISE →p 1.
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Thank You!!!
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