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The High Dimensional Era of Statistics

One of the biggest buzzwords of this year: big data.

One type of big data: large p, small n.

Such data have been encountered in medicine, finance,

engineering, and even social science.



Our Analysis Strategy

Consider a generic model Y ∼ ϕ(β′X) where β is the

unknown regression coefficients. Assume a sparse or

sparsified model.

With n iid observations, denote R(β) as the loss func-

tion.

Analysis goal: from a large number of candidate co-

variates, identify a few that are associated with the

response & estimate the unknown parameters.

Penalization: a generic estimation and variable selec-

tion technique



β̂ = argminβ{R(β) + P (β)}

P (β) is the model complexity measure. It often has the

form P (β) = λ×
∑p

j=1 f(|βj|), that is, it is separable.

Covariates that correspond to the nonzero components

of β̂ are identified as associated with the response.

When log(p)/n → 0 plus a few other mild conditions,

Pr(sign(β̂) = sign(β)) → 1.



Integrative Analysis

Important covariates identified from the analysis of high-

dimensional datasets often have low reproducibility.

There are many contributing factors, among which is

the small sample sizes of individual studies.

If concerned with sample size, let’s have more samples

(for example, NCI consortiums).

Multi-dataset approaches: meta-analysis and integra-

tive analysis



Assume M independent studies, and nm iid observations

in study m(= 1, . . . ,M).
∑

m nm << p.

In study m, denote Y m as the response variable and Xm

as the length p covariates. Assume Y m ∼ ϕ(βm′Xm).

Denote Rm(βm) as the objective function, for example

the negative log-likelihood function.

The overall objective function R(β) =
∑

mRm(βm) where

β = (β1, . . . ,βM).

Denote βm
j as the jthe component of βm. Denote βj =

(β1
j , . . . , β

M
j )′, which represents the effects of covariate

j across M datasets.



Two Candidate Models

Homogeneity model all datasets share the same set of

susceptibility covariates. That is, βm’s have the same

sparsity structure.

Heterogeneity model a covariate can be associated with

outcome in some datasets but not others. It includes

the homogeneity model as a special case and is more

flexible.



Penalized marker selection

Consider the penalized estimate

β̂ = argmin
{
R(β) + Pλ,γ(β)

}
.

Our working penalty is MCP ρ(t;λ1, γ) = λ1
∫ |t|
0

(
1− x

λ1γ

)
+

dx

proposed by Dr. Cunhui Zhang.



Under the homogeneity model

Pλ,γ(β) =
p∑

j=1

ρ
(
||βj||2;

√
Mjλ1, γ

)
which conducts one-dimensional selection. Mj is the

“size” of βj. When the M datasets have matched co-

variate sets, Mj ≡ M .

Under the heterogeneity model

Pλ,γ(β) =
p∑

j=1

ρ
(
||βj||1;

√
Mjλ1, γ

)
which conducts two-dimensional selection. The || · ||1
norm can be replaced with for example MCP, leading

to a composite MCP penalty.



The above penalization approaches account for the group-

ing structure of regression coefficients.

However, there exist other structures of covariates (and

regression coefficients) that have not been effectively

accounted for.

Here we consider two specific examples: a within-dataset

structure and an across-dataset structure.



Within-dataset structure

Here the structure describes the interplay of covariates

within the same dataset.



Network based Analysis

A node corresponds to a covariate.

The most important characteristic of a network is the

adjacency measure, which quantifies how closely two

nodes are connected. The adjacency measure is often

defined based on the notion of similarity between nodes.

Consider ajk, which measures the strength of connec-

tion between nodes (covariates) j and k.

Assume undirected network where ajk = akj for j, k =

1, . . . , p.



Construction of adjacency matrix

Denote rjk as the Pearson’s correlation coefficient, and
πjk as the canonical correlation between covariate j and
k.

(N.1) ajk = I{|rjk| > r}, where r is the cutoff calculated
from the Fisher transformation;

(N.2) ajk = I{πjk > π}, where π is the cutoff calculated
from permutation which corresponds to the null that
all covariates are not associated with response;

(N.3) ajk = 1

1+e
−α(πjk−π), where α > 0 can be deter-

mined by the scale-free topology criterion and π is de-
fined in N.2;



(N.4) ajk = πα
jk, where α is defined in N.3;

(N.5) ajk = πα
jkI{πjk > π}, with α and π defined in N.3

and N.2, respectively;

(N.6) ajk = |rjk|I{|rjk| > r} with r defined in N.1;

(N.7) ajk = πjkI{πjk > π} with π defined in N.2.

... and many more possibilities!



Contrasted penalized estimation

Pλ,γ(β) =
p∑

j=1

ρ
(
||βj||1(2);

√
Mjλ1, γ

)

+
1

2
λ2d

∑
1≤j<k≤p

ajk

||βj||√
Mj

−
||βk||√
Mk


2

.

Rationale: penalize the contrast between βj and βk;

smooth over adjacent covariates.



A more familiar formulation

Denote θ = (θ1, . . . , θp)
′ =

(
||β1||√
M1

, · · · , ||βp||√
Mp

)′
. We ex-

press the the second penalty term using a positive semi-
definite matrix L, which satisfies

θ′Lθ =
∑

1≤j<k≤p

ajk
(
θj − θk

)2
, ∀θ ∈ IRp .

Let A = (ajk,1 ≤ j, k ≤ p) and G = diag(g1, . . . , gp),
where gj =

∑p
k=1 ajk.

In a network where ajk is the weight of edge (j, k), gj is
the degree of vertex j. We then have

∑
1≤j<k≤p ajk(θj−

θk)
2 = θ′(G−A)θ. Thus, L = G−A.

Pλ,γ(θ) =
p∑

j=1

ρ(θj;λ1, γ) +
1

2
λ2dθ

′Lθ.



Computational algorithm



Computation is realized using an iterative coordinate

descent algorithm.

With coordinate descent, we update the estimate for

one group of coefficients at a time, and cycle through

all groups. This process is repeated until convergence.

R(β) and the second penalty have local quadratic forms.

Their sum (f) is regular in the sense of Tseng (2001).

The coordinate descent solution converges to a coordinate-

wise minimum point of f , which is also a stationary

point.



Simulation

Three datasets; 100 samples per dataset; 500 covari-

ates per subject.

500 covariates belong to 100 clusters. Covariates within

the same clusters are correlated. Different clusters are

independent.

Among the 500 covariates, 20 (4 clusters) have nonzero

regression coefficients.

Nonzero regression coefficients ∼ Unif [0.25,0.75]. Ran-

dom error ∼ N(0,1). Log censoring time: normally

distributed.



benchmark N.1 N.2 N.3 N.4 N.5 N.6 N.7
ρ = 0.1

19.5 19.5 19.3 19.7 19.4 19.4 19.4 19.5
11.8 13.3 13.3 16.8 16.2 12.9 13.5 14.1
4.5 4.6 4.6 4.4 4.5 4.5 4.7 4.6

ρ = 0.5
18.9 19.9 20.0 19.1 19.9 19.9 20.0 20.0
11.3 18.4 11.0 16.0 16.7 9.9 17.8 12.3
4.5 3.7 3.7 4.1 3.7 3.8 3.7 3.7

ρ = 0.9
11.1 19.6 20.0 19.3 19.9 19.8 20.0 20.0
7.5 7.8 3.5 21.1 5.1 2.5 7.1 2.5
4.9 3.9 3.8 4.2 3.7 3.9 3.7 3.8

The first row is number of true positives, the second

row is number of false positives, and the third row is

mean prediction error.



Analysis of lung cancer prognosis studies

Lung cancer is the leading cause of death from cancer
for both men and women in the US. NSCLC accounts
for up to 85% of lung cancer deaths.

The UM (University of Michigan) study has 175 pa-
tients and 102 deaths. Median follow-up=53 months.
The HLM (Moffitt Cancer Center) study has 79 sub-
jects and 60 deaths. Median follow-up=39 months.
The CAN/DF (Dana-Farber) study has 82 patients and
35 deaths. Median follow-up=51 months.

22,283 probe sets were profiled. We rank the probe sets
using their variations and select the top 1,000 probes
for downstream analysis.



Canonical correlation among all genes



Canonical correlation with probe 206561 s at



Numbers of identified genes and overlaps

N.1 N.2 N.3 N.4 N.5 N.6 N.7 gMCP
N.1 22 19 22 13 14 13 13 9
N.2 20 19 14 15 14 14 8
N.3 25 14 15 14 14 9
N.4 15 15 14 14 5
N.5 16 15 15 5
N.6 19 19 4
N.7 20 4

gMCP 9



Evaluation of prediction performance

We generate training sets and testing sets by random

splitting with sizes 2:1. Estimates are generated using

the training sets only. We then make prediction for sub-

jects in the testing sets. With the predicted linear risk

scores Xβ̂, dichotomize at the median, create two risk

groups, and compute the logrank statistic, which mea-

sures the difference in survival between the two groups.

The average logrank statistics over 100 splits are 4.47

(N.1), 4.30 (N.2), 4.77 (N.3), 4.93 (N.4), 4.23 (N.5),

5.13 (N.6) and 4.03 (N.7) for SGLS and 3.77 for gMCP.



Genes identified by SGLS (N.6) but not gMCP

Gene SCGB1A1 (secretoglobin, family 1A, member 1),
GPX2 (glutathione peroxidase 2), ABP1 (amiloride bind-
ing protein 1), CST1 (cystatin SN), TSPYL5 (testis-
specific Y-encoded-like protein 5), ID1 (inhibitor of DNA
binding 1, dominant negative helix-loop-helix protein),
TUBB2A (tubulin, beta 2A class IIa), GEM (GTP bind-
ing protein overexpressed in skeletal muscle), KAL1
(Kallmann syndrome 1 sequence), PAH (phenylalanine
hydroxylase), LYZ (lysozyme), PNMAL1(paraneoplastic
Ma antigen family-like), ETS2 (v-ets erythroblastosis
virus E26 oncogene homolog 2) and C4BPB (comple-
ment component 4 binding protein, beta).

Searching published literature suggests that these genes
may have important implications.



Across-datasets structure

Here the structure describes the relationships among re-

gression coefficients for the same covariate across mul-

tiple datasets.



Consider a simulation scenario where the regression

coefficients of response-associated covariates are the

same across multiple datasets.

True Benchmark Contrasted penalization
D1 D2 D3 D1 D2 D3

0.4 0.186 0.391 0.112 0.302 0.292 0.317
0.5 0.349 0.400 0.465 0.411 0.428 0.537
0.6 0.587 0.244 0.392 0.553 0.461 0.587
0.7 0.592 0.746 0.553 0.637 0.659 0.695
0.8 0.683 0.769 0.698 0.617 0.661 0.732
-0.4 -0.302 -0.312 -0.187 -0.309 -0.253 -0.287
-0.5 -0.627 -0.519 -0.482 -0.599 -0.575 -0.502
-0.6 -0.558 -0.742 -0.514 -0.583 -0.568 -0.599
-0.7 -0.571 -0.576 -0.556 -0.557 -0.612 -0.600
-0.8 -0.635 -0.622 -0.495 -0.704 -0.624 -0.730



Under certain scenarios (for example when multiple datasets

are independently generated under the same protocol),

it is reasonable to expect “similar” regression coeffi-

cients across multiple datasets.

However, in practice, we never know how “close” two

datasets are. We cannot rule out the scenario where a

covariate has effects with conflicting signs.



Penalized estimation

Pλ,γ(β) =
p∑

j=1

ρ
(
||βj||1(2);

√
Mjλ1, γ

)

+ λ2

d∑
j=1

∑
(k,l):k ̸=l

aklj (βk
j − βl

j)
2.

aklj = I{sgn(βk
j ) = sgn(βl

j)}

where sgn is the sign function. λ2 ≥ 0 is a data-

dependent tuning parameter.



When sgn(βk
j ) ̸= sgn(βl

j), covariate j demonstrates dif-

ferent effects in different studies. In this case, the con-

trast has no effect.

When sgn(βk
j ) = sgn(βl

j), covariate j has qualitatively

similar effects in studies k and l. The contrast penalty

shrinks the difference between βk
j and βl

j and encourages

them to be similar.

The “smoothing” structure is mainly for covariates with

nonzero effects. We may further consider

aklj = I(||βj||2 ̸= 0)× I{sgn(βk
j ) = sgn(βl

j)}.



With practical data, sgn(βk
j ) needs to be estimated.

There are several proposals (a) marginal estimation (in

the spirit of screening), (b) single-dataset penalization,

(c) integrative penalization, etc.

Their asymptotic consistency can be established.

Our limited experience suggests that (b) and (c) work

reasonably well.

Computation is also based on coordinate descent, in a

similar manner as with the previous estimate.



Simulation study

Three datasets are simulated, each with 100 subjects.

For each subject, d = 1,000 covariates are simulated

to have a multivariate normal distribution.

Under the heterogeneity model, all three datasets share

five common markers. In addition, each dataset has

five dataset-specific markers. Thus, across the three

datasets, there are a total of 30 markers.

In addition, as a special case of the heterogeneity model,

we also consider the homogeneity model.



The regression coefficients of the response-associated

covariates are

(0.4, 0.5, 0.6, 0.7, 0.8, -0.4, -0.5, -0.6, -0.7, -0.8),

(0.4, -0.5, 0.6, -0.7, 0.8, -0.4, 0.5, -0.6, 0.7, -0.8),

(0.4, 0.5, 0.6, 0.7, 0.8, -0.4, -0.5, -0.6, -0.7, -0.8)

for dataset 1-3, respectively.



Heterogeneity model

Contrasted (λ2 =)
Benchmark 0.01 0.1 1 10 100

Auto-regressive ρ = 0.2
10.5 10.4 10.7 10.8 10.8 10.6
46.4 45.5 42.8 41.2 42.0 39.2
7.6 7.0 6.3 6.0 6.0 6.0

Auto-regressive ρ = 0.8
7.4 7.5 7.8 7.9 7.8 7.7
34.5 28.1 27.2 27.9 26.8 24.5
6.7 6.6 6.0 6.3 6.7 7.3

Banded scenario 1
8.5 8.5 8.5 8.8 8.6 8.7
45.2 41.2 40.7 41.4 39.1 37.9
7.4 7.1 6.4 6.3 6.2 6.4

Banded scenario 2
8.9 9.1 9.5 9.0 8.8 8.8
46.3 41.6 42.2 40.2 38.5 37.6
7.4 7.0 6.6 6.4 6.4 6.7

True positive; False positive; Prediction SSE.



Homogeneity model

Contrasted (λ2 =)
Benchmark 0.01 0.1 1 10 100

Auto-regressive ρ = 0.2
25.0 25.1 25.1 25.2 25.1 25.1
32.9 25.0 25.9 22.2 21.1 18.9
2.6 2.4 2.1 2.2 2.2 2.2

Auto-regressive ρ = 0.8
14.4 14.9 15.1 15.3 14.9 14.5
24.0 20.0 15.7 12.9 11.4 9.9
2.5 2.3 2.3 3.1 3.4 3.5

Banded scenario 1
24.7 24.5 24.4 24.2 24.2 24.1
37.4 29.8 27.9 20.4 18.8 17.3
2.7 2.5 2.3 2.4 2.4 2.5

Banded scenario 2
21.9 22.0 21.9 21.7 21.6 21.2
25.9 19.2 15.2 14.2 13.0 11.7
2.2 2.0 2.0 2.4 2.7 2.8



A generic framework

β̂ = argmin {R(β) + P (β) + Pc(Cβ)}

The matrix C specifies the contrasts. It describes the

network structure among all covariates (in the same or

different datasets).

Consider βo, a p×M matrix. Its components that cor-

respond to the zero components of β have been set as

zero. That is, selection has been pre-conducted by an

“oracle”. Consider

β̂
o
= argmin {R(β) + Pc(Cβ)}

Assume C is known.



Some Assumptions

M is fixed. log(p)/
∑

m nm → 0.

The size of set {j : ||βj||2 > 0} is finite.

All Xms satisfy the SRC (sparse Rietz condition): all

submatrices with sizes smaller than a fixed value have

bounded eigenvalues.

Model specific assumptions: for example if Y m = αm+

βm′Xm + ϵm, then ϵm has a sub-Gaussian distribution.

Main result: Pr(β̂ = β̂
o
) → 1



The unsolved, real problem

The contrast penalty C can be data-dependent.

Consider for example network-based analysis. C is closely

related to the variance-covariance matrix. If no addi-

tional assumption is made and p >> n, we may not

have consistent estimates (of, for example, eigenvalues

and eigenvectors).

We can fix the above inconsistency problem by impos-

ing, for example, the banded structure. However, we

do not know what β̂ will be like with estimated C.



Remarks

In high-dimensional data analysis, contrasted penaliza-

tion provides an effective way to accommodate sec-

ondary data structures.

When the contrast is properly specified, simulation shows

that contrasted penalization can improve selection and

estimation. However, it is non-trivial to specify C.

Need development in these aspects: conceptual, theo-

retical, and computational.
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