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Case Study: UCI Online Network

Online community for University of California, Ivine ~~ (Opsahl & Panzarasa, 2009}
Dataset covers seven-month period: April - October 2004

2000 users, 60K messages

Goal: Characterize user messaging behavior



Degrees Are Not Enough
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Can we do better?




1. Framework for studying interaction histories
¢. Macroscopic behavior

3. Microscopic behavior



tvents, Not Links

Messages

Time Sender  Receiver
t1 1 N
to 12 )2




Point Process Model

Messages from ¢ to j:

Model via intensity, A¢ (%, 7):

At (2, 7) dt = Prob{i sends to j in [t,t 4 dt)}



Key Insight: Use Past History

Hypotheses:

[t you send me a message, | am likely to respond

f | have sent you a message in the past, | am likely to repeat this action in the
future

These effects all decay with time.



History-Dependent Covariates

(3) (2) (1)
e T

d days ¢ days ldy ¢

send( )( j)=#{i — J in I( )}
rece1ve§ )( i,7) = #{j — i in I( )}



Cox Proportional Intensity Model

Ae(%,7) dt  Prob{isends j a message in fime [1 t+di))
A (7) Baseline infensity for sender i
& Vector of coefficients
(%, J) Vector of time-varying covariates

(Butts 2008 , Vu et al. 2011, POP & Wolfe 2013)



Interpretation

B Increasing [z (2, 7)] by one unit while holding all other
covariates constant is associated with multiplying the
message rate by " units.

A¢(7)  Treated os a nuisance parameter, estimated non-parametrically



Example: Self-Reinforcing Send

(4, 7))L = # — j in [t — 1 day, 1)}
xt(zaj)Q — #{Z %] n t — 1 Weekat — 1 daY)}

Every sent message is associated with an e®-fold increase for 1
day, followed by an e"/-fold increase for 6 days (relative to the

baseline).

Mter one week, the message is not associated with a change in rate



Example: Response Model

(%, 9)]1 = #J — i in [t — 1 day, 1)}
xt(zaj)Q — #{] — 2 1n t — 1 Weekat — 1 daY)}

Every received message is associated with an e!*-fold increase for
1 day, followed by an e%*-fold decrease for & days (relative to the
baseline].

Mter one week, the message is not associated with a change in rate



Users Respond to Messages

Coefficient of receivegk)(i,j) = #{7 — 1 in It(k)}

Time Elapsed (Days)



Users Repeat Past Behavior

Coefficient of sendﬁk)(i,j) = #{i — j in It(k)}




Effect

recejve

send
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1) receiving is associated with responding
) users repeat their past behaviors
3) effect (2] decays faster than effect (I
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Same behavior for each user?
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Micro-level Model

At (Za ]) — 5‘75 (Z) exp{ﬁTxt (Za ])}

New Model:
A (i, 5) = Ao (i) exp{B; @:(i, )}
B; ~ Normal(u, 33)

(Related model: DuBois et al. 2013)



Estimating User-Specific
Coefficients

Fitting time: 3 CPU hours
2000 sets of coefficients [one set for each user]

Need summarization method to visualize



Visualize by Factor Analysis

2000 sets of coefficients
lone set for each user]

Reduce dimensionality via
principle components

First 2 components explain

87% of variance N .
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Component 2

User-specific Principle
Component Scores

Component 1



Variation in Response
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Variation in Repetition

send
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recejve

send
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Theorem (POP & Wolfe): Under reqularity conditions, MPLE satisfies:

1.

2.

V(B

B, > B

Related results:
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Andersen & Gill {1982): survival analysis, fixed time interval



Implementation

6/8Txtm(7’m 7]’)’)’2,)

PLtn (6) — H ZJ e/BTxtm(imyj)

tm Stn

Loop over all messages |
Loop over all receivers

Na ve: O(messages  receivers]
With bookkeeping: O(messages + receivers|



Implementation Trick: Sparsity

[nner sum: 3 BT (6,5) 3 87 70 (i,7)
j j

4 Z oB w(i,3) _ BT wo(in)
- j -

Note! x:(%,7) = x0(%,7) + di(4,5)



Implementation [rick: Structure

Initial sum: el
j

I

Redundancy in {(:vo(i, 1), 20(4,2),. .., 20(t, J))}

1=1



More Details

Computing d: (¢, 7)
Self-loops
Similar tricks for gradient, Hessian
Numerical overflow

R package forthcoming




1. Lvents, not links
¢.  Point process model captures behavior

5. User-specific coefficients allow for heterogeneity



