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Outline
•

 
Classic “Reproducibility”

 
and the 

Experimental Analysis of Algorithms

•
 

The Traveling Salesman Problem (TSP)  
--

 
our running example

•
 

“Comparability”

•
 

More fun TSP stuff (time permitting)



Experimental Analysis of Algorithms: 
Measurements of Interest

1.
 

Quality of solution (possibly under 
multiple criteria)

2.
 

Running Time

3.
 

Memory utilization

4.
 

Communication bandwidth 
(parallel/distributed algorithms)

5.
 

…



Experimental Analysis of Algorithms: 
The Challenge

We can’t test algorithms directly.
What we test is

1.
 
Code, supposedly implementing the algorithm

2.
 

Compiled using a particular compiler
3.

 
Run on a particular machine/operating 
system

4.
 

Using particular instances as input



Classic Reproducibily

Minor changes in “the apparatus”
 

(1-4)
should not have a major affect on the 

results. 



Problem
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code
Language/Compiler
Operating System
Machine
Time of Run
Name of Code
Test Instances

Comparison Standard



Problem
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major



The Traveling Salesman Problem

•
 

Given a set C
 

of cities, and for each pair 
ci

 

,cj
 

of cities a distance dij
 

, find a 
permutation π

 
of the cities (a tour) that 

has the minimum possible length

Σ1≤i<n
 

dπ(i), π(i+1)
 

+  dπ(n), π(1)



•
 

The classic example of an NP-hard problem

•
 

But not at all typical of such problems
–

 
Advanced linear-programming-based branch-and-

 cut procedures have succeeded in finding optimal 
solutions for real-world instances with as many as 
85,900 cities [Applegate, Bixby, Chvatal, & Cook, 
2006]

–
 

Fast implementations of the Lin-Kernighan 
algorithm can get within 1.5% of optimal on million-

 city instances in 3 minutes on a modern machine (11 
minutes for 3 million cities, 48 minutes for 10 
million cities).



http://www.research.att.com/~dsj/chtsp



Machine Time in Seconds
Sequent Balance (1984) ~3600    

VAX 8550 6Mhz (?) (1990) 340.2

150 Mhz

 

SGI Challenge (1993) 9.8

400 Mhz

 

SGI Challenge (2000) 1.8

2.6 Ghz

 

Intel Xeon (2008) .57

Lin-Kernighan (Johnson-McGeoch
 

Implementation) 
on a 10,000 City Random Euclidean Instance







Operation Counts:  A solution to 
the non-reproducibility of time?

•
 

For example, number of mallocs, comparisons, 
calls to key subroutines, etc.

•
 

For the most part unaffected by machine, 
operating system, language, and code-tuning

•
 

But, especially in complicated algorithms, 
counts may not be strongly correlated with 
running time.

•
 

And they may not be useful in comparing 
algorithms that take different approaches to 
the same problem.



Reproducibility Issues
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major



Reproducibility Issues
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major





Find Minimum Spanning Tree 
(No longer than optimal tour)

Add Minimum Length Matching on Odd 
Degree Vertices of MST

No longer than ½

 

Optimal Tour 
assuming Triangle Inequality

Christofides
 

Algorithm

Construct Euler TourTraverse Euler Tour, Shortcutting past previously visited cities

(No increase in length, assuming Triangle Inequality)



Implementation Detail
 (Does not affect worst-case analysis)

•
 

How are Shortcuts performed?

–
 

Perform shortcuts in sequence as you 
traverse the Euler Tour

–
 

At each place where the Euler tour crosses 
itself, perform the shortcut that reduces 
the tour length the most







Reproducibility sina qua non
Algorithms must be described in 

sufficient detail that any 
implementation that follows the 
description will obtain the same 
solutions (or at least solutions of 
the same average quality).



Reproducibility Issues
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major



Reproducibility Issues
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Possible Effects Significant
Operating System Possible Effects Significant
Machine Possible Effects Major
Time of Run No* Can be Significant
Name of Code No* Can be Significant
Test Instances Major Major



Test Instances
1)

 
Real-world structured instances
•

 

Don’t provide reproducible results unless you make instances 
available

•

 

Limits scalability testing

2)
 

Unstructured random instances
•

 

E.g., random distance matrices in the TSP, random 3-SAT instances
•

 

May yield misleading results for practice

3)
 

Structured random instances
•

 

E.g., points uniform in the unit square under Euclidean metric for 
the TSP

•

 

Need to be compared to real-world instances as sanity check
•

 

Still better if they can be made available, but even large ones can 
be compactly distributed via generator codes and seeds.



dsj1000 from
 

TSPLIB



d2103 from
 

TSPLIB



rl5915 from
 

TSPLIB



pla7397 from
 

TSPLIB (from AT&T)



usa13509 from
 

TSPLIB

The red plots all taken from the Traveling Salesman Problem page
http://www.tsp.gatech.edu//





Reproducibility Issues
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Possible Effects Significant
Operating System Possible Effects Significant
Machine Possible Effects Major
Time of Run No* Can be Significant
Name of Code No* Can be Significant
Test Instances Major Major



Reproducibility Issues
•

 
Changes in the “computational apparatus”

 
can 

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Possible Effects Significant
Operating System Possible Effects Significant
Machine Possible Effects Major
Time of Run No* Can be Significant
Name of Code No* Can be Significant
Test Instances Major Major
Comparison Standard Major ----



Evaluating Solution Quality: Options
1)

 
Simply report value of solution metric (cost, length, …)
•

 

Valuable only if instance is also provided
•

 

Doesn’t tell us how good the solution is.

2)
 

Report ratio to optimal solution value
•

 

Requires that optimum be known
•

 

Can limit size and quantity of test instances

3)
 

Report ratio to expected optimum (random instances)
•

 

Don’t often know the expected optimum, may be asymptotic

4)
 

Report ratio to best solution currently known
•

 

Moving target, but plausible if combined with (1).

5)
 

Report ratio to computable bound on optimum
•

 

Example: Held-Karp bound with TSP
•

 

Don’t have such bounds for many problems

6)
 

Report ratio to result of well-defined algorithm.



Outline
•

 
Classic “Reproducibility”

 
and the Experimental 

Analysis of Algorithms

•
 

The Traveling Salesman Problem (TSP)  --
 

our running 
example

•
 

“Comparability”
•

 
More fun TSP stuff (time permitting)



•
 

Methodological Problem:
 

If we specify the 
computational apparatus sufficiently tightly to obtain 
reproducible results, these results will likely be far 
too narrow to be of interest.

•
 

One Solution:
 

Our hypotheses/conclusions should be 
about how the apparatus affects the measurements 
for the algorithm(s) in question, not about the 
measurements themselves, so we can predict 
performance in various scenarios.

•
 

Drawback:
 

Few of us have the time and effort to 
test multiple codes on multiple machines, large sets 
of instances in many classes, etc.

•
 

Challenge:
 

How do we write experimental papers 
today that will be of use to future researchers?



What does the future want?
•

 
Is the algorithm A you studied worth 
implementing (code worth finding and 
compiling) on my (presumably faster) 
machine to solve my (possibly much 
larger) instances?

•
 

Is my new algorithm/code “better”
 

than 
your algorithm/code A?

•
 

Is my implementation of algorithm A 
consistent with that in your paper? 

What do I want from the past?



Preliminary Judgment
Based on surveying the TSP literature for The 
Traveling Salesman Problem: A Case Study in Local 
Optimization, D. S. Johnson and L. A. McGeoch, in 
Local Search in Combinatorial Optimization, E. H. L. 
Aarts

 
and J. K. Lenstra

 
(editors), John-Wiley and 

Sons, Ltd., 1997, pp. 215-310, and continuing to follow 
the literature since then.

We still have a long way to go…



What is Needed
•

 
Describe your algorithm in sufficient detail.

•
 

Describe compilers, O.S., and machine in detail, 
and provide benchmark results for their 
composition that will aid in extrapolation.

•
 

Run on a variety of instances, including as large 
ones as possible to help assess scalability of 
your results.

•
 

Use reproducible instances and standards of 
comparison.

•
 

Report running times, memory usage, and key 
operation counts.



Baby Steps:
 The DIMACS TSP Challenge

•

 

Large range of instance types, sizes
–

 

Random Euclidean:
•

 

ten 1000-city, five 3162-city, three 10K-city, two 31K-city, two 100K-city, one 
316K-, 1M-, 3M-

 

and 10M-city

–

 

Random Clustered Euclidean:
•

 

ten 1000-city, five 3162-city, three 10K-city, two 31K-city, two 100K-city, one 
316K-city

–

 

TSPLIB
•

 

34 instances from 1000 to 85,900 cities

–

 

Random Distance Matrices

•

 

Four 1000-city, two 3162-city, and one 10K-city

•

 

Data requested on tour lengths, running times, memory usage, 
machine, language, OS, etc.

•

 

TSP-specific machine benchmarking





s.mips196

1,000 1000 29
3,162 316 31

10,000 100 37
31,623 32 71

100,000 10 160
316,228 3 380

1,000,000 1 480
3,162,278 1 1690

10,000,000 1 6100

# Cities                 # Runs                 Total Seconds





Normalization

•
 

For given number of cities n, interpolate 
values un

 

and an
 

from the benchmark 
results for both your machine and the 
standard “target”

 
DEC Alpha machine.

•
 

Normalize your time for an n-city 
instance by dividing it by un

 

/an







Johnson-McGeoch-LK (500 Mhz

 

Dec Alpha )   vs

 

Neto-LK (1 Ghz

 

Pentium III)





Benchmark vs

 

Benchmark:  196 Mhz

 

MIPS   vs

 

2.6 Ghz

 

Intel Xeon



Benchmark vs

 

Benchmark:  500 Mhz

 

Alpha   vs

 

2.6 Ghz

 

Intel Xeon















Outline
•

 
Classic “Reproducibility”

 
and the Experimental 

Analysis of Algorithms

•
 

The Traveling Salesman Problem (TSP)  --
 

our 
running example

•
 

“Comparability”

•
 

More fun TSP stuff (time appears to 
permit)



Standards of Comparison, Revisited

• Points uniform in the unit square, expected optima
• Beardwood, Halton, and Hammersley

 
[1959]:

• Optimal tour length for an n-city instances approaches C√n

 for some constant C

 

as n → ∞

• Estimated C ≈

 

.75,  based on hand solutions for a 202-city 
and a 400-city instance.

• Subsequent supposedly more-accurate estimate due to Stein 
[1977] based on computer simulations claimed C ≈

 

.765

• Many researchers subsequently used (.765)√n
 

as a 
surrogate for the optimal tour length.

• Is this realistic?



What does today’s data tell us?
•

 
Much faster machines, much better algorithms

•
 

The Concorde optimization code and its 
relatives can now find optimal solutions for 
1,000-city random Euclidean instances with 
(relative) ease.

•
 

Bill Cook (Georgia Tech), one of the developers 
of Concorde, has generated lots of data for 
us to play with.

•
 

See http://www2.isye.gatech.edu/~wcook/beta/



Running times (in seconds) 
for 10,000 Concorde runs 
by Bill Cook (Georgia Tech) 
on random 1000-city planar 
Euclidean instances (2.66 
Ghz

 

Intel Xeon processor 
in dual-processor PC, 
purchased late 2002.

Range: 7.1 seconds 
to 38.3 hours



99.7% confidence intervals on OPT/√n, 
based on computations of true optima 
by Bill Cook using Concorde on 
instances in a 10,000,000 x 10,000,000 
integer square, 10,000 for each size.



Fits what function?
•

 
Expected distance to nearest neighbor proportional 
to 1/√n, times n cities yields Θ(√n)

•
 

O(√n) cities close to the boundary are missing some 
neighbors, for an added contribution proportional to 
(√n)(1/√n), or Θ(1)

•
 

A constant number of cities are close to two 
boundaries (at the corners of the square), which may 
add an additional Θ(1/√n ) 

•
 

This yields target function

OPT/√n = C + β/√n + γ/n



Residuals to Least Squares Fit:

OPT/√n = C + α/√n + β/n

Suggests C ≈
 

0.71

With all this data, can we get 
more precision?



How to highlight correlations with n 
that aren’t caused by the boundary:

 “Toroidal”
 

Instances
•

 
Join left boundary of the unit square to the 
right boundary, top to the bottom

•
 

Same asymptotic constant for E[OPT/√n]
 

as 
for planar instances [Jaillet, 1992]

•
 

Somewhat easier to solve –
 

Bill Cook solved 
1,000,000 random instances for each n



Running times (in seconds) 
for 1,000,000 Concorde 
runs on random 1000-city 
“Toroidal”

 

Euclidean 
instances

Range: 2.6 seconds 
to 6 hours



Toroidal
 

Instances 
(1,000,000 samples for each size)

99.7% confidence intervals on OPT/√n, 
10 ≤

 
n ≤

 
1000



99.7% confidence intervals on OPT/√n, 
3 ≤

 
n ≤

 
30.

Thanks to David Applegate for million-run estimates of 
the values for 4--9, 11--19, 21--29 (there is a closed-

 
form expression for the n = 3 case)



99.7% confidence intervals on OPT/√n, 
10 ≤

 
n ≤

 
30.

1st
 

Random Instance Generation Scheme



99.7% confidence intervals on OPT/√n, 
10 ≤

 
n ≤

 
30.

2nd
 

Random Instance Generation Scheme



99.7% confidence intervals on OPT/√n, 
10 ≤

 
n ≤

 
30.



99.7% confidence intervals on OPT/√n, 
10 ≤

 
n ≤

 
1000.



Residuals to Least Squares Fit, 
3 ≤

 
n ≤

 
1000,

 
:

OPT/√n
 

= C + α/n + β/n2



Residuals to Least Squares Fit, 
20 ≤

 
n ≤

 
1000,

 
:

OPT/√n
 

= C + α/n + β/n2

Estimate:  C  =
 

.712401 ±
 

.000006*

*Flakey estimate = twice standard error on a

 
reported by least squares software



Residuals to Least Squares Fit for 
100 ≤

 
n ≤

 
1000, OPT/√n

 
= C



Residuals to Least Squares Fit for 
100 ≤

 
n ≤

 
1000, OPT/√n

 
= C + α/n

C = .712404 ±
 

.000006



Planar Instances, again
Residuals to Least Squares Fit:

OPT/√n
 

= C + α/√n + β/n + γ/n2

C = .7120 ±
 

.0002



Residuals to Least Squares Fit:

OPT/√n
 

= C + α/√n + β/n + γ/n2

 

+ δ/n3

C = .7125 ±
 

.0002



Residuals to Least Squares Fit for
100 ≤

 
n ≤

 
1000, OPT/√n

 
= C + α/√n + β/n

C
 

= .7122 ±
 

.0002



Yet Another Approach 
(Suggested by [Johnson, McGeoch, Rothberg, 1996])

•
 

The Held-Karp (or subtour) lower bound on OPT is much 
easier to compute than OPT -

 
feasible even for n = 

1,000,000

•
 

HK/√n
 

is also asymptotic to a constant, CHK

 

, which, as with 
OPT, is the same for both Planar and Toroidal

 
instances. 

•
 

CHK can be determined quite accurately, given data for n as 
large as 1,000,000. 

•
 

OPT and HK are highly correlated -
 

for a given n, the 
standard deviation on (OPT -

 
HK) is roughly 1/10 of that 

for OPT.

•
 

Thus one can get very good estimates on C(n) -
 

CHK

 

(n), 
hence on C -

 
CHK , hence on C = CHK + (C -

 
CHK ).



99.7% confidence intervals on Held-
 Karp (Subtour) lower bound  HK/√n 

for Planar and Toroidal
 

instances

Both curves yield
CHK = .70800 ±

 
.00004



99.7% confidence intervals for 
(OPT –

 
HK)/√n,

Planar and Toroidal
 

instances

(must be asymptotic to same constant)

Planar data implies (OPT –

 

HK)/√n →

 

.00425   ±
 

.00005
Toroidal

 

data:        (OPT –

 

HK)/√n →

 

.004420 ±
 

.000002



Various Estimates on C
Percus-Martin [1997] -

 

physics argument 
combined with experimental data on heuristic 
optima for 10-

 

to 100-city toroidal

 

instances
.7120 ±

 
.0002

Johnson-McGeoch-Rothberg [1996] HK + HK 
gap estimates, Toroidal .7124 ±

 
.0002

Cook data, Toroidal, 20 -

 

1000, 3 terms .712401 ±
 

.000006
Cook data, Toroidal, 100 -

 

1000, 2 terms .712404 ±
 

.000006
Cook data, Planar, 10 -

 

1000, 4 terms .7120 ±
 

.0002
Cook data, Planar, 10 -

 

1000, 5 terms .7125 ±
 

.0002
Cook data, Planar, 100 -

 

1000, 3 terms .7122 ±
 

.0002
Cook data, Planar, HK + HK gap, 100 -

 

1 million .7123 ±
 

.0001
Cook data, toroidal, HK + HK gap, 100 -

 

1 million .71242 ±
 

.00004



Various Estimates on C
Percus-Martin [1997] -

 

physics argument 
combined with experimental data on heuristic 
optima for 10-

 

to 100-city toroidal

 

instances
.7120 ±

 
.0002

Johnson-McGeoch-Rothberg [1996] HK + HK 
gap estimates, Toroidal .7124 ±

 
.0002

Cook data, Toroidal, 20 -

 

1000, 3 terms .712401 ±
 

.000006
Cook data, Toroidal, 100 -

 

1000, 2 terms .712404 ±
 

.000006
Cook data, Planar, 10 -

 

1000, 4 terms .7120 ±
 

.0002
Cook data, Planar, 10 -

 

1000, 5 terms .7125 ±
 

.0002
Cook data, Planar, 100 -

 

1000, 3 terms .7122 ±
 

.0002
Cook data, Planar, HK + HK gap, 100 -

 

1 million .7123 ±
 

.0001
Cook data, toroidal, HK + HK gap, 100 -

 

1 million .71242 ±
 

.00004



OPEN PROBLEM

Find a function   C(n) = E[OPT/√n]

matching ALL the data for 3 ≤
 

n ≤
 

1000, 
and explain what is going on when n < 20.



Further Reading
•

 

A Theoretician's Guide to the Experimental Analysis of Algorithms, D. S. 
Johnson. Data Structures, Near Neighbor Searches, and Methodology: 
Proceedings of the Fifth and Sixth DIMACS Implementation Challenges, M. 
Goldwasser, D. S. Johnson, and C. C. McGeoch, Editors, American Mathematical 
Society, Providence, 2002, 215-250. 

•

 

The Traveling Salesman Problem: A Case Study in Local Optimization, D. S. 
Johnson and L. A. McGeoch, Local Search in Combinatorial Optimization, E. H. L. 
Aarts

 

and J. K. Lenstra

 

(editors), John-Wiley and Sons, Ltd., 1997, pp. 215-310. 
•

 

Asymptotic Experimental Analysis for the Held-Karp Traveling Salesman 
Bound, D. S. Johnson, L. A. McGeoch, and E. E. Rothberg, Proc. 7th Ann. ACM-

 
SIAM Symp. on Discrete Algorithms, 1996, pp. 341-350. 

•

 

Experimental Analysis of Heuristics for the STSP, D. S. Johnson and L. A. 
McGeoch, in The Traveling Salesman Problem and its Variations, G. Gutin

 

and A. 
Punnen, Editors, Kluwer

 

Academic Publishers, Dordrecht, 2002, 369-443. 
•

 

Experimental Analysis of Heuristics for the ATSP, D. S. Johnson, G. Gutin, L. 
A. McGeoch, A. Yeo, W. Zhang, and A. Zverovich, in The Traveling Salesman 
Problem and its Variations, G. Gutin

 

and A. Punnen, Editors, Kluwer

 

Academic 
Publishers, Dordrecht, 2002, 445-487. 

•

 

All available from

 

http://www.research.att.com/~dsj/papers



Stop!
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