
Comparability

David S. Johnson
AT&T Labs –

Research

http://www.research.att.com/~dsj/

Outline
•

Classic “Reproducibility”

and the

Experimental Analysis of Algorithms

•

The Traveling Salesman Problem (TSP)
--

our running example

•

“Comparability”

•

More fun TSP stuff (time permitting)

Experimental Analysis of Algorithms:
Measurements of Interest

1.

Quality of solution (possibly under
multiple criteria)

2.

Running Time

3.

Memory utilization

4.

Communication bandwidth
(parallel/distributed algorithms)

5.

…

Experimental Analysis of Algorithms:
The Challenge

We can’t test algorithms directly.
What we test is

1.

Code, supposedly implementing the algorithm

2.

Compiled using a particular compiler
3.

Run on a particular machine/operating
system

4.

Using particular instances as input

Classic Reproducibily

Minor changes in “the apparatus”

(1-4)
should not have a major affect on the

results.

Problem
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code
Language/Compiler
Operating System
Machine
Time of Run
Name of Code
Test Instances

Comparison Standard

Problem
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major

The Traveling Salesman Problem

•

Given a set C

of cities, and for each pair
ci

,cj

of cities a distance dij

, find a
permutation π

of the cities (a tour) that

has the minimum possible length

Σ1≤i<n

dπ(i), π(i+1)

+ dπ(n), π(1)

•

The classic example of an NP-hard problem

•

But not at all typical of such problems
–

Advanced linear-programming-based branch-and-

 cut procedures have succeeded in finding optimal
solutions for real-world instances with as many as
85,900 cities [Applegate, Bixby, Chvatal, & Cook,
2006]

–

Fast implementations of the Lin-Kernighan
algorithm can get within 1.5% of optimal on million-

 city instances in 3 minutes on a modern machine (11
minutes for 3 million cities, 48 minutes for 10
million cities).

http://www.research.att.com/~dsj/chtsp

Machine Time in Seconds
Sequent Balance (1984) ~3600

VAX 8550 6Mhz (?) (1990) 340.2

150 Mhz

SGI Challenge (1993) 9.8

400 Mhz

SGI Challenge (2000) 1.8

2.6 Ghz

Intel Xeon (2008) .57

Lin-Kernighan (Johnson-McGeoch

Implementation)
on a 10,000 City Random Euclidean Instance

Operation Counts: A solution to
the non-reproducibility of time?

•

For example, number of mallocs, comparisons,
calls to key subroutines, etc.

•

For the most part unaffected by machine,
operating system, language, and code-tuning

•

But, especially in complicated algorithms,
counts may not be strongly correlated with
running time.

•

And they may not be useful in comparing
algorithms that take different approaches to
the same problem.

Reproducibility Issues
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major

Reproducibility Issues
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major

Find Minimum Spanning Tree
(No longer than optimal tour)

Add Minimum Length Matching on Odd
Degree Vertices of MST

No longer than ½

Optimal Tour
assuming Triangle Inequality

Christofides

Algorithm

Construct Euler TourTraverse Euler Tour, Shortcutting past previously visited cities

(No increase in length, assuming Triangle Inequality)

Implementation Detail
 (Does not affect worst-case analysis)

•

How are Shortcuts performed?

–

Perform shortcuts in sequence as you
traverse the Euler Tour

–

At each place where the Euler tour crosses
itself, perform the shortcut that reduces
the tour length the most

Reproducibility sina qua non
Algorithms must be described in

sufficient detail that any
implementation that follows the
description will obtain the same
solutions (or at least solutions of
the same average quality).

Reproducibility Issues
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Significant
Operating System Significant
Machine Major
Time of Run Can be Significant
Name of Code Can be Significant
Test Instances Major

Reproducibility Issues
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Possible Effects Significant
Operating System Possible Effects Significant
Machine Possible Effects Major
Time of Run No* Can be Significant
Name of Code No* Can be Significant
Test Instances Major Major

Test Instances
1)

Real-world structured instances
•

Don’t provide reproducible results unless you make instances
available

•

Limits scalability testing

2)

Unstructured random instances
•

E.g., random distance matrices in the TSP, random 3-SAT instances
•

May yield misleading results for practice

3)

Structured random instances
•

E.g., points uniform in the unit square under Euclidean metric for
the TSP

•

Need to be compared to real-world instances as sanity check
•

Still better if they can be made available, but even large ones can
be compactly distributed via generator codes and seeds.

dsj1000 from

TSPLIB

d2103 from

TSPLIB

rl5915 from

TSPLIB

pla7397 from

TSPLIB (from AT&T)

usa13509 from

TSPLIB

The red plots all taken from the Traveling Salesman Problem page
http://www.tsp.gatech.edu//

Reproducibility Issues
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Possible Effects Significant
Operating System Possible Effects Significant
Machine Possible Effects Major
Time of Run No* Can be Significant
Name of Code No* Can be Significant
Test Instances Major Major

Reproducibility Issues
•

Changes in the “computational apparatus”

can

have major effects on the quantities measured.

Solution Quality Running Time
Code Major Major
Language/Compiler Possible Effects Significant
Operating System Possible Effects Significant
Machine Possible Effects Major
Time of Run No* Can be Significant
Name of Code No* Can be Significant
Test Instances Major Major
Comparison Standard Major ----

Evaluating Solution Quality: Options
1)

Simply report value of solution metric (cost, length, …)
•

Valuable only if instance is also provided
•

Doesn’t tell us how good the solution is.

2)

Report ratio to optimal solution value
•

Requires that optimum be known
•

Can limit size and quantity of test instances

3)

Report ratio to expected optimum (random instances)
•

Don’t often know the expected optimum, may be asymptotic

4)

Report ratio to best solution currently known
•

Moving target, but plausible if combined with (1).

5)

Report ratio to computable bound on optimum
•

Example: Held-Karp bound with TSP
•

Don’t have such bounds for many problems

6)

Report ratio to result of well-defined algorithm.

Outline
•

Classic “Reproducibility”

and the Experimental

Analysis of Algorithms

•

The Traveling Salesman Problem (TSP) --

our running
example

•

“Comparability”
•

More fun TSP stuff (time permitting)

•

Methodological Problem:

If we specify the
computational apparatus sufficiently tightly to obtain
reproducible results, these results will likely be far
too narrow to be of interest.

•

One Solution:

Our hypotheses/conclusions should be
about how the apparatus affects the measurements
for the algorithm(s) in question, not about the
measurements themselves, so we can predict
performance in various scenarios.

•

Drawback:

Few of us have the time and effort to
test multiple codes on multiple machines, large sets
of instances in many classes, etc.

•

Challenge:

How do we write experimental papers
today that will be of use to future researchers?

What does the future want?
•

Is the algorithm A you studied worth
implementing (code worth finding and
compiling) on my (presumably faster)
machine to solve my (possibly much
larger) instances?

•

Is my new algorithm/code “better”

than
your algorithm/code A?

•

Is my implementation of algorithm A
consistent with that in your paper?

What do I want from the past?

Preliminary Judgment
Based on surveying the TSP literature for The
Traveling Salesman Problem: A Case Study in Local
Optimization, D. S. Johnson and L. A. McGeoch, in
Local Search in Combinatorial Optimization, E. H. L.
Aarts

and J. K. Lenstra

(editors), John-Wiley and

Sons, Ltd., 1997, pp. 215-310, and continuing to follow
the literature since then.

We still have a long way to go…

What is Needed
•

Describe your algorithm in sufficient detail.

•

Describe compilers, O.S., and machine in detail,
and provide benchmark results for their
composition that will aid in extrapolation.

•

Run on a variety of instances, including as large
ones as possible to help assess scalability of
your results.

•

Use reproducible instances and standards of
comparison.

•

Report running times, memory usage, and key
operation counts.

Baby Steps:
 The DIMACS TSP Challenge

•

Large range of instance types, sizes
–

Random Euclidean:
•

ten 1000-city, five 3162-city, three 10K-city, two 31K-city, two 100K-city, one
316K-, 1M-, 3M-

and 10M-city

–

Random Clustered Euclidean:
•

ten 1000-city, five 3162-city, three 10K-city, two 31K-city, two 100K-city, one
316K-city

–

TSPLIB
•

34 instances from 1000 to 85,900 cities

–

Random Distance Matrices

•

Four 1000-city, two 3162-city, and one 10K-city

•

Data requested on tour lengths, running times, memory usage,
machine, language, OS, etc.

•

TSP-specific machine benchmarking

s.mips196

1,000 1000 29
3,162 316 31

10,000 100 37
31,623 32 71

100,000 10 160
316,228 3 380

1,000,000 1 480
3,162,278 1 1690

10,000,000 1 6100

Cities # Runs Total Seconds

Normalization

•

For given number of cities n, interpolate
values un

and an

from the benchmark
results for both your machine and the
standard “target”

DEC Alpha machine.

•

Normalize your time for an n-city
instance by dividing it by un

/an

Johnson-McGeoch-LK (500 Mhz

Dec Alpha) vs

Neto-LK (1 Ghz

Pentium III)

Benchmark vs

Benchmark: 196 Mhz

MIPS vs

2.6 Ghz

Intel Xeon

Benchmark vs

Benchmark: 500 Mhz

Alpha vs

2.6 Ghz

Intel Xeon

Outline
•

Classic “Reproducibility”

and the Experimental

Analysis of Algorithms

•

The Traveling Salesman Problem (TSP) --

our
running example

•

“Comparability”

•

More fun TSP stuff (time appears to
permit)

Standards of Comparison, Revisited

• Points uniform in the unit square, expected optima
• Beardwood, Halton, and Hammersley

[1959]:

• Optimal tour length for an n-city instances approaches C√n

 for some constant C

as n → ∞

• Estimated C ≈

.75, based on hand solutions for a 202-city
and a 400-city instance.

• Subsequent supposedly more-accurate estimate due to Stein
[1977] based on computer simulations claimed C ≈

.765

• Many researchers subsequently used (.765)√n

as a
surrogate for the optimal tour length.

• Is this realistic?

What does today’s data tell us?
•

Much faster machines, much better algorithms

•

The Concorde optimization code and its
relatives can now find optimal solutions for
1,000-city random Euclidean instances with
(relative) ease.

•

Bill Cook (Georgia Tech), one of the developers
of Concorde, has generated lots of data for
us to play with.

•

See http://www2.isye.gatech.edu/~wcook/beta/

Running times (in seconds)
for 10,000 Concorde runs
by Bill Cook (Georgia Tech)
on random 1000-city planar
Euclidean instances (2.66
Ghz

Intel Xeon processor
in dual-processor PC,
purchased late 2002.

Range: 7.1 seconds
to 38.3 hours

99.7% confidence intervals on OPT/√n,
based on computations of true optima
by Bill Cook using Concorde on
instances in a 10,000,000 x 10,000,000
integer square, 10,000 for each size.

Fits what function?
•

Expected distance to nearest neighbor proportional
to 1/√n, times n cities yields Θ(√n)

•

O(√n) cities close to the boundary are missing some
neighbors, for an added contribution proportional to
(√n)(1/√n), or Θ(1)

•

A constant number of cities are close to two
boundaries (at the corners of the square), which may
add an additional Θ(1/√n)

•

This yields target function

OPT/√n = C + β/√n + γ/n

Residuals to Least Squares Fit:

OPT/√n = C + α/√n + β/n

Suggests C ≈

0.71

With all this data, can we get
more precision?

How to highlight correlations with n
that aren’t caused by the boundary:

 “Toroidal”

Instances
•

Join left boundary of the unit square to the
right boundary, top to the bottom

•

Same asymptotic constant for E[OPT/√n]

as
for planar instances [Jaillet, 1992]

•

Somewhat easier to solve –

Bill Cook solved
1,000,000 random instances for each n

Running times (in seconds)
for 1,000,000 Concorde
runs on random 1000-city
“Toroidal”

Euclidean
instances

Range: 2.6 seconds
to 6 hours

Toroidal

Instances
(1,000,000 samples for each size)

99.7% confidence intervals on OPT/√n,
10 ≤

n ≤

1000

99.7% confidence intervals on OPT/√n,
3 ≤

n ≤

30.

Thanks to David Applegate for million-run estimates of
the values for 4--9, 11--19, 21--29 (there is a closed-

form expression for the n = 3 case)

99.7% confidence intervals on OPT/√n,
10 ≤

n ≤

30.

1st

Random Instance Generation Scheme

99.7% confidence intervals on OPT/√n,
10 ≤

n ≤

30.

2nd

Random Instance Generation Scheme

99.7% confidence intervals on OPT/√n,
10 ≤

n ≤

30.

99.7% confidence intervals on OPT/√n,
10 ≤

n ≤

1000.

Residuals to Least Squares Fit,
3 ≤

n ≤

1000,

:

OPT/√n

= C + α/n + β/n2

Residuals to Least Squares Fit,
20 ≤

n ≤

1000,

:

OPT/√n

= C + α/n + β/n2

Estimate: C =

.712401 ±

.000006*

*Flakey estimate = twice standard error on a

reported by least squares software

Residuals to Least Squares Fit for
100 ≤

n ≤

1000, OPT/√n

= C

Residuals to Least Squares Fit for
100 ≤

n ≤

1000, OPT/√n

= C + α/n

C = .712404 ±

.000006

Planar Instances, again
Residuals to Least Squares Fit:

OPT/√n

= C + α/√n + β/n + γ/n2

C = .7120 ±

.0002

Residuals to Least Squares Fit:

OPT/√n

= C + α/√n + β/n + γ/n2

+ δ/n3

C = .7125 ±

.0002

Residuals to Least Squares Fit for
100 ≤

n ≤

1000, OPT/√n

= C + α/√n + β/n

C

= .7122 ±

.0002

Yet Another Approach
(Suggested by [Johnson, McGeoch, Rothberg, 1996])

•

The Held-Karp (or subtour) lower bound on OPT is much
easier to compute than OPT -

feasible even for n =

1,000,000

•

HK/√n

is also asymptotic to a constant, CHK

, which, as with
OPT, is the same for both Planar and Toroidal

instances.

•

CHK can be determined quite accurately, given data for n as
large as 1,000,000.

•

OPT and HK are highly correlated -

for a given n, the
standard deviation on (OPT -

HK) is roughly 1/10 of that

for OPT.

•

Thus one can get very good estimates on C(n) -

CHK

(n),
hence on C -

CHK , hence on C = CHK + (C -

CHK).

99.7% confidence intervals on Held-
 Karp (Subtour) lower bound HK/√n

for Planar and Toroidal

instances

Both curves yield
CHK = .70800 ±

.00004

99.7% confidence intervals for
(OPT –

HK)/√n,

Planar and Toroidal

instances

(must be asymptotic to same constant)

Planar data implies (OPT –

HK)/√n →

.00425 ±

.00005
Toroidal

data: (OPT –

HK)/√n →

.004420 ±

.000002

Various Estimates on C
Percus-Martin [1997] -

physics argument
combined with experimental data on heuristic
optima for 10-

to 100-city toroidal

instances
.7120 ±

.0002

Johnson-McGeoch-Rothberg [1996] HK + HK
gap estimates, Toroidal .7124 ±

.0002

Cook data, Toroidal, 20 -

1000, 3 terms .712401 ±

.000006
Cook data, Toroidal, 100 -

1000, 2 terms .712404 ±

.000006
Cook data, Planar, 10 -

1000, 4 terms .7120 ±

.0002
Cook data, Planar, 10 -

1000, 5 terms .7125 ±

.0002
Cook data, Planar, 100 -

1000, 3 terms .7122 ±

.0002
Cook data, Planar, HK + HK gap, 100 -

1 million .7123 ±

.0001
Cook data, toroidal, HK + HK gap, 100 -

1 million .71242 ±

.00004

Various Estimates on C
Percus-Martin [1997] -

physics argument
combined with experimental data on heuristic
optima for 10-

to 100-city toroidal

instances
.7120 ±

.0002

Johnson-McGeoch-Rothberg [1996] HK + HK
gap estimates, Toroidal .7124 ±

.0002

Cook data, Toroidal, 20 -

1000, 3 terms .712401 ±

.000006
Cook data, Toroidal, 100 -

1000, 2 terms .712404 ±

.000006
Cook data, Planar, 10 -

1000, 4 terms .7120 ±

.0002
Cook data, Planar, 10 -

1000, 5 terms .7125 ±

.0002
Cook data, Planar, 100 -

1000, 3 terms .7122 ±

.0002
Cook data, Planar, HK + HK gap, 100 -

1 million .7123 ±

.0001
Cook data, toroidal, HK + HK gap, 100 -

1 million .71242 ±

.00004

OPEN PROBLEM

Find a function C(n) = E[OPT/√n]

matching ALL the data for 3 ≤

n ≤

1000,
and explain what is going on when n < 20.

Further Reading
•

A Theoretician's Guide to the Experimental Analysis of Algorithms, D. S.
Johnson. Data Structures, Near Neighbor Searches, and Methodology:
Proceedings of the Fifth and Sixth DIMACS Implementation Challenges, M.
Goldwasser, D. S. Johnson, and C. C. McGeoch, Editors, American Mathematical
Society, Providence, 2002, 215-250.

•

The Traveling Salesman Problem: A Case Study in Local Optimization, D. S.
Johnson and L. A. McGeoch, Local Search in Combinatorial Optimization, E. H. L.
Aarts

and J. K. Lenstra

(editors), John-Wiley and Sons, Ltd., 1997, pp. 215-310.
•

Asymptotic Experimental Analysis for the Held-Karp Traveling Salesman
Bound, D. S. Johnson, L. A. McGeoch, and E. E. Rothberg, Proc. 7th Ann. ACM-

SIAM Symp. on Discrete Algorithms, 1996, pp. 341-350.

•

Experimental Analysis of Heuristics for the STSP, D. S. Johnson and L. A.
McGeoch, in The Traveling Salesman Problem and its Variations, G. Gutin

and A.
Punnen, Editors, Kluwer

Academic Publishers, Dordrecht, 2002, 369-443.
•

Experimental Analysis of Heuristics for the ATSP, D. S. Johnson, G. Gutin, L.
A. McGeoch, A. Yeo, W. Zhang, and A. Zverovich, in The Traveling Salesman
Problem and its Variations, G. Gutin

and A. Punnen, Editors, Kluwer

Academic
Publishers, Dordrecht, 2002, 445-487.

•

All available from

http://www.research.att.com/~dsj/papers

Stop!

	Comparability
	Outline
	Experimental Analysis of Algorithms: Measurements of Interest
	Experimental Analysis of Algorithms: The Challenge
	Classic Reproducibily
	Problem
	Problem
	The Traveling Salesman Problem
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Operation Counts: A solution to the non-reproducibility of time?
	Reproducibility Issues
	Reproducibility Issues
	Slide Number 17
	Slide Number 18
	Implementation Detail�(Does not affect worst-case analysis)
	Slide Number 20
	Slide Number 21
	Reproducibility sina qua non
	Reproducibility Issues
	Reproducibility Issues
	Test Instances
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Reproducibility Issues
	Reproducibility Issues
	Evaluating Solution Quality: Options
	Outline
	Slide Number 36
	What does the future want?
	Preliminary Judgment
	What is Needed
	Baby Steps:�The DIMACS TSP Challenge
	Slide Number 41
	s.mips196
	Slide Number 43
	Normalization
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Outline
	Standards of Comparison, Revisited
	What does today’s data tell us?
	Slide Number 60
	Slide Number 61
	Fits what function?
	Slide Number 63
	How to highlight correlations with n that aren’t caused by the boundary: “Toroidal” Instances
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Yet Another Approach �(Suggested by [Johnson, McGeoch, Rothberg, 1996])
	Slide Number 80
	Slide Number 81
	Various Estimates on C
	Various Estimates on C
	OPEN PROBLEM
	Further Reading
	Stop!

